Angular Momentum in Light-Front Dynamics

Similar documents
Applications of Light-Front Dynamics in Hadron Physics

Chapter 1 LORENTZ/POINCARE INVARIANCE. 1.1 The Lorentz Algebra

High t form factors & Compton Scattering - quark based models. Gerald A. Miller University of Washington

Factorization, Evolution and Soft factors

The Lorentz and Poincaré groups. By Joel Oredsson

Nucleon Structure at Twist-3

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama

JSA Graduate Fellowship Final Report

Particle Physics I Lecture Exam Question Sheet

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Real and Virtual Compton Scattering in Perturbative QCD

Instructor: Sudipta Mukherji, Institute of Physics, Bhubaneswar

Overthrows a basic assumption of classical physics - that lengths and time intervals are absolute quantities, i.e., the same for all observes.

arxiv: v2 [nucl-th] 22 Jul 2013

Particles and Deep Inelastic Scattering

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Parity P : x x, t t, (1.116a) Time reversal T : x x, t t. (1.116b)

Introduction to relativistic quantum mechanics

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Gerry and Fermi Liquid Theory. Thomas Schaefer North Carolina State

Spin one matter elds. November 2015

Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics

arxiv: v1 [hep-ph] 27 Apr 2017

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Hidden structures in quantum mechanics

Information Content of the DVCS Amplitude

A Poincaré Covariant Nucleon Spectral Function for A=3 nuclei within the Light-front Hamiltonian Dynamics

PAPER 305 THE STANDARD MODEL

SISSA entrance examination (2007)

232A Lecture Notes Representation Theory of Lorentz Group

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz

Light-Front Holographic QCD: an Overview

Gluonic Spin Orbit Correlations

Longitudinal Waves in Scalar, Three-Vector Gravity

Spin Structure of the Nucleon: quark spin dependence

What is Orbital Angular Momentum?

Inelastic scattering

Motivation: X.Ji, PRL 78, 61 (1997): DVCS, GPDs, ~J q,! GPDs are interesting physical observable! But do GPDs have a simple physical interpretation?

Structure of Generalized Parton Distributions

PHY 396 K. Solutions for problem set #6. Problem 1(a): Starting with eq. (3) proved in class and applying the Leibniz rule, we obtain

Statistical physics and light-front quantization. JR and S.J. Brodsky, Phys. Rev. D70, (2004) and hep-th/

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

General Relativity (j µ and T µν for point particles) van Nieuwenhuizen, Spring 2018

Decays of the Higgs Boson

N N Transitions from Holographic QCD

QCD Collinear Factorization for Single Transverse Spin Asymmetries

Quark-Hadron Duality in Structure Functions

Nucleon Resonance Spectrum and Form Factors from Superconformal Quantum Mechanics in Holographic QCD

Why Quantum Gravity & What is the Graviton? Masterpichtseminar Quantum Field Theory in Curved Spacetime. Clemens Vittmann

Graviton Corrections to Maxwell s Equations. arxiv: (to appear PRD) Katie E. Leonard and R. P. Woodard (U. of Florida)

Physics 444: Quantum Field Theory 2. Homework 2.

Hadron Physics with Real and Virtual Photons at JLab

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV

Spin Densities and Chiral Odd Generalized Parton Distributions

QCD and Rescattering in Nuclear Targets Lecture 2

A Brief Introduction to Relativistic Quantum Mechanics

Lepton Angular Distributions in Drell-Yan Process

Wigner Distributions and Orbital Angular Momentum of Quarks

Nucleon Electromagnetic Form Factors: Introduction and Overview

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35

Distribution Functions

Shape and Structure of the Nucleon

Covariant quark-diquark model for the N N electromagnetic transitions

light-cone (LC) variables

Gluon TMDs and Heavy Quark Production at an EIC

Scale dependence of Twist-3 correlation functions

The Conformal Algebra

Role of the N (2080) resonance in the γp K + Λ(1520) reaction

Measurements with Polarized Hadrons

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12

The Lorentz and Poincaré Groups in Relativistic Field Theory

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois

HUGS Dualities and QCD. Josh Erlich LECTURE 5

What do g 1 (x) and g 2 (x) tell us about the spin and angular momentum content in the nucleon?

NEUTRINOS. Alexey Boyarsky PPEU 1

Single Spin Asymmetry at large x F and k T

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Gravitation: Special Relativity

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

Introduction to Elementary Particle Physics I

Quantum Field Theory Notes. Ryan D. Reece

Systematics of the Hadron Spectrum from Conformal Quantum Mechanics and Holographic QCD

Metric-affine theories of gravity

T. Goldman (T-2, Los Alamos)

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

Recent results on DVCS from Hall A at JLab

A glimpse of gluons through deeply virtual Compton scattering

Quantization of the Photon Field QED

Evaluation of Triangle Diagrams

Transverse Momentum Distributions of Partons in the Nucleon

Strange Sea Contribution to the Nucleon Spin

Probing nucleon structure by using a polarized proton beam

The chiral anomaly and the eta-prime in vacuum and at low temperatures

Graded Lie Algebra of Quaternions and Superalgebra of SO(3, 1)

Goal: find Lorentz-violating corrections to the spectrum of hydrogen including nonminimal effects

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk

Valence quark contributions for the γn P 11 (1440) transition

1 Introduction. 2 Relativistic Kinematics. 2.1 Particle Decay

Light-Front Holography and Gauge/Gravity Correspondence: Applications to the Meson and Baryon Spectrum

Hadron Spectroscopy at COMPASS

Transcription:

Angular Momentum in Light-Front Dynamics Chueng-Ryong Ji North Carolina State University INT Worksho INT-1-49W Orbital Angular Momentum in QCD Seattle, WA, Feb. 7, 01

ν Poincaré Algebra [ µ, ν ] 0 [ µ,j ρσ ] i(g µρ σ g µσ ρ ) [J µν,j ρσ ] i(g µσ J νρ g νρ J µσ g µρ J νσ g νσ J µρ ) 0 1 3 d 3 x T 0ν µ T µν 0 ; 0 K 1 K K 3 K 1 0 J 3 J J µν K J 3 0 J 1 K 3 J J 1 0 T µν M µνλ M µνλ µνλ "O" M "S" M µνλ "O" T µν x λ T µλ x ν k d 3 x M 0µν L ( µ φ k ) ν φ k g µν L µ M µνλ "O" 0 T λν T νλ ; µ M µνλ "S" 0 F. J. Belinfante, Physica 6, 887 (1939); L. Rosenfeld, Mem. Acad. Roy. Belg. 18, 6 (1940).

Dirac s Proosition 1949

6 Stability rou Just Formal? or Physical Consequences? 7 6

Outline Why LFD? - Interolation between Instant and Front Forms - Distinguished Features in LFD Angular Momentum in LFD - Light-Front Helicities - Swa of Helicity Amlitudes Model Indeendent eneral Angular Condition - N-Δ Transition Process - Deuteron Form Factors Conclusion

Interolation between Instant and Front Forms K. Hornbostel, PRD45, 3781 (199); C.Ji and C. Mitchell, PRD64,085013 (001).

g µν 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 g ˆ µ ν ˆ cosδ 0 0 sinδ 0 1 0 0 0 0 1 0 sinδ 0 0 cosδ J µν 0 K 1 K K 3 K 1 0 J 3 J K J 3 0 J 1 K 3 J J 1 0 J ˆ µ ν ˆ ˆ E 1 J sinδ K 1 cosδ ˆ E K cosδ J 1 sinδ ˆ F 1 K 1 sinδ J cosδ ˆ F J 1 cosδ K sinδ 0 E ˆ E ˆ K 3 E ˆ 0 J 3 F ˆ E ˆ J 3 0 F ˆ K 3 F ˆ 1 ˆ F 0

δ 0 0 0 3 3 0 < δ < π /4 ˆ 0 cosδ 3 sinδ ˆ 0 sinδ 3 cosδ δ π /4 Transverse Boost : Transverse Rotation : Longitudinal Boost : Longitudinal Rotation : [ E ˆ i, ˆ ] 0 [ F ˆ i, ˆ ] 0 K 3 J 3 ( i 1, ) Immune to Interolation

Kinematic Oerators (Members of Stability rou) ( ) x ˆ Ex iωℵ ˆ i [ˆ ℵ i, ˆ ] 0 > x ˆ ℵ ˆ i F ˆ i cosδ E ˆ i sinδ > δ 0 J J 1 ℵ ˆ 1 J cosδ K 1 sinδ ˆ ℵ J 1 cosδ K sinδ (J 3, 1,, ˆ ) δ π /4 E 1 (J K 1 ) / E (J 1 K ) /

Corresonding Dynamic Oerators ˆ i F ˆ i sinδ E ˆ i cosδ J ˆ µ ν ˆ 0 E ˆ E ˆ K 3 E ˆ 0 J 3 F ˆ E ˆ J 3 0 F ˆ K 3 F ˆ 1 ˆ F 0 J ˆ µ ν ˆ 0 ˆ 1 ˆ K 3 ˆ 1 0 J 3 ℵ ˆ 1 ˆ J 3 0 ℵ ˆ K 3 ℵ ˆ 1 ℵ ˆ 0 δ 0 K 1 K ˆ 1 K 1 cosδ J sinδ ˆ K cosδ J 1 sinδ (K 3, ˆ ) δ π /4 F 1 (K 1 J ) / F (J 1 K ) /

Longitudinal Boost K 3 [K 3, ˆ ] iˆ i(ˆ cosδ ˆ sinδ) δ π /4 [K 3, ] i Ex( iω K 3 ) x > x > One more kinematic generator aears only in the front form. Maximum number (7) of members in the stability grou.

Kinematic Transformation 1 0, 0, ˆ M sinδ ( 0 M, 3 0) { } T Ex i(β ˆ 1 ℵ 1 β ˆ ℵ ) 1 β 1 M sinδ sinα /α, β M sinδ sinα /α, ˆ M sinδ cosα ; α (β 1 β )cosδ δ π /4 β M /, M / ( ( M ) / M, 3 M )

Angular Momentum [J i,j j ] iε ijk J k,[j i,m] 0 { } T Ex i(β ˆ 1 ℵ 1 β ˆ ℵ ) [ ˆ I i, ˆ I j ] iε ijk ˆ I k, [ ˆ I i, M] 0 T n >,n > ˆ I i,n > TJ i n > I ˆ i TJ i T

I ˆ 3 J 3 ˆ ˆ z ( ℵ ˆ ) / M sinδ I ˆ J z cosδ J 3 ˆ ( ℵ ˆ ) ˆ M sinδ (ˆ z )sinδ K 3 δ π /4 ˆ E ˆ M sinδ I I 3 J 3 z ˆ ( z ˆ ( E F K 3 ) I 3 W E ) / ( ) J 3 z ˆ E / M W µ 1 ε µναβ ν J αβ [I 3, Stability rou Members] 0

Front Form Current Matrix Element (Light-Front Helicity Amlitude) µ L λ ʹ λ L j'm'; ʹ, λ ʹ J µ (0) jm;,λ L I 3 jm;,λ > L λ jm;,λ > L The same in all frames related by front-form boosts for each fixed set of angular momentum indices. The value of this matrix element is indeendent of all reference frames related by front-form boosts. e.g. Sin-1 Form Factors µ ε *α ( ʹ, h ʹ )J µ ε β (, h) h ʹ h αβ J µ αβ ( ') µ g αβ q q µ µ α β µ F1 ( q ) ( gα qβ g β qα ) F ( q ) ( ') F3 ( q M W )

3 0 3 1 3 0 0 ), ( Equal t Equal τ 0 m m Energy-Momentum Disersion Relations Distinguished Features in LFD

Zero-Mode Issue in LFD Valence and Nonvalence Contributions Even if q 0, the off-diagonal elements do not go away in some cases. 0 (...) lim 0 q q dk For examle, 00 has the zero-mode contribution in the Standard Model W ± form factors. n n n n n n q W ± ( ) 0 ) (1 ) (1 1 1 1 0 3.. 00 Q x x m k Q x x m k k d dx M Q g W f M Z π B.Bakker and C.Ji, PRD71,053005(005)

PDs rely on the handbag dominance in DVCS; i.e. Q >> any soft mass scale q q q - -q -q -Q <0, e.g. S.J.Brodsky,M.Diehl,D.S.Hwang, NPB596,99 (001)

Swa B.Bakker and C.Ji, Phys.Rev.D83,09150(R) (011)

JLab Kinematics t < - t min 0 Discretion is advised in alying the t0 formulation of DVCS in terms of PDs for the data and/or hadron model analysis.

eneral Angular Condition 0,, ʹ ʹ ʹ ʹ µ µ µ µ ν ν µ µ if J B B B ) ( ) (,, θ θ λ λ λµ ν µ µ µ λ ν ν λ λ ʹ ʹ ʹ ʹ ʹ ʹ ʹ ʹ j B j L L L d d J Angular Momentum Conservation in Breit Frame µ q (q -Q ) λ γ µ ( m ) ( M ) λ γ µ µ Light-front Helicity Amlitude in q 0 Frame tan, tan m M Q MQ m M Q mq ʹ θ θ C.Carlson and C.Ji, Phys.Rev.D67,11600(03)

N-Δ Transition < Δ J µ (0) N > eψ β ( ʹ )Γ βµ Ψ( ) Γ βµ 1 (q β γ µ q / g βµ )γ 5 (q β µ ʹ µ q ( ʹ ) g βµ )γ 5 M * E * C * 3 1 3 (q β q µ q g βµ )γ 5 (3M m)( M m) Q M m Q m 1 / M M m Q M m Q 3( M m) 4M 3M m Q ( M m Q ) 3 Q 1 Q 1 1 1 µ h ʹ h u β ( ʹ, h ʹ )Γ βµ u(, h) { 1 ( M m) } ; 3 Q 1 Q ; 6M { 1 (M m) ( M m) 3 } ; 6M {m 1 (Q mm M ) Q 3 } ;

Helicity Amlitudes in N-Δ Transition 3 1 3 1 1 1 1 1 1 1 1 1 3 1 3 1

Helicity Amlitudes in N-Δ Transition LF Parity: Y P R y (π )P 1 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 3 1 λ ʹ λ η ʹ η ( 1) ʹ P P j j λ ʹ λ λ ʹ λ C.Carlson and C.Ji, Phys.Rev.D67,11600(03)

Helicity Amlitudes in N-Δ Transition µ µ ʹ ; µ 1, µ ʹ 3 d 3 ( ʹ ʹ λ 3 θ ) ʹ Angular Condition 3 1 1 λ λ d 1 λ (θ) 0 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 1 3 1 Q[Q m( M m)] 3 1 3MQ 1 1 3MQ( M m) 1 [( M m)( M m ) mq ] 1

High Q Scaling in QCD (modulo logarithm) 1 λ ʹ λ Λ Q λ ʹ λ min λ λ min λmin λ min Λ Q (n 1) λ ʹ λ min λ λ min n the number of quarks in the state; λ min 0 (bosons) or 1/ (fermions); Λ QCD scale; e.g. X.Ji, J.-P.Ma, and F.Yuan, PRL90, 41601 (003) ~ 1 Q ; 4 1 1 a Λ 1 1 ; 3 1 b Λ 1 1 ; 1 c Λ Q Q Q 1 3 1 1 3 1 Q[Q m( M m)] 3 1 3MQ 1 1 3MQ( M m) 1 [( M m)( M m ) mq ] 1 3 bλ M 0 ; b 3M Λ 0 Leading PQCD ostoned to a larger Q region; 1eV ugrade anticiated.

Deuteron Form Factors ) ( ') ( ) ( ) ( ) ( ') ( 3 1 q F M q q q F q g q g q F g J W µ β α α µ β β µ α αβ µ µ αβ C M Q 1 3 η 3 η 3 η(1 η) 0 1 0 1 1 1 η F 1 F F 3 ʹ h h µ ε *α ( ʹ, ʹ h )J αβ µ ε β (, h) η Q 4M Deuteron Helicity Amlitudes

Deuteron Helicity Amlitudes 0 0 00 0 0

Deuteron Helicity Amlitudes LF Parity: Y P R y (π )P 0 0 00 0 0 0 λ ʹ λ 0 η ʹ η ( 1) ʹ P P j j λ ʹ λ λ ʹ λ

Deuteron Helicity Amlitudes LF Time-Reversal: Y T R y (π )T 0 0 0 00 0 0 0 0 λ ʹ λ ( 1) ʹ λ λ λλ ʹ C.Carlson and C.Ji, Phys.Rev.D67,11600(03)

(η 1) 8η 0 0 00 Angular Condition 0 0 0 00 0 0 0 0

λ ʹ λ Λ Q High Q Scaling in QCD λ ʹ λ min λ λ min λmin λ min Λ Q (n 1) λ ʹ λ min λ λ min n the number of quarks in the state; λ min 0 (bosons) or 1/ (fermions); Λ QCD scale 00 ~ 1 Q ; 4 0 a Λ 00 ; b Λ 00 ; c Λ Q Q Q (η 1) 8η 0 0 00 00 1 aλ M 1 cλ 0 ; a or c must be Ο M 0 M Λ Leading PQCD ostoned to a larger Q region; 1eV ugrade anticiated.

Conclusion Angular momentum in LFD is not just formal but consequential in the analysis of hysical observables. LF helicity amlitudes are indeendent of all references frames that are related by LF boosts. Model indeendent constraints can be made using LFD.