Light-Front Holographic QCD: an Overview

Size: px
Start display at page:

Download "Light-Front Holographic QCD: an Overview"

Transcription

1 Light-Front Holographic QCD: an Overview Guy F. de Téramond Universidad de Costa Rica Continuous Advances is QCD University of Minnesota Minneapolis, May 14, 2011 CAQCD, Minneapolis, May 14, 2011 Page 1

2 1 Light Front Dynamics Light-Front Fock Representation Semiclassical Approximation to QCD in the Light Front 2 Light-Front Holographic Mapping Higher Spin Modes in AdS Space Dual QCD Light-Front Wave Equation AdS Bosonic Modes and Meson Spectrum AdS Fermionic Modes and Baryon Spectrum 3 Light-Front Holographic Mapping of Current Matrix Elements Electromagnetic Form Factors Gravitational or Energy-Momentum Form Factor Meson Transition Form Factors CAQCD, Minneapolis, May 14, 2011 Page 2

3 1 Light Front Dynamics Different possibilities to parametrize space-time [Dirac (1949)] Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve with different times and has its own Hamiltonian, but should give the same physical results Instant form: hypersurface defined by t = 0, the familiar one Front form: hypersurface is tangent to the light cone at τ = t + z/c = 0 x + = x 0 + x 3 x = x 0 x 3 light-front time longitudinal space variable k + = k 0 + k 3 longitudinal momentum (k + > 0) k = k 0 k 3 light-front energy k x = 1 2 (k+ x + k x + ) k x On shell relation k 2 = m 2 leads to dispersion relation k = k2 +m2 k + CAQCD, Minneapolis, May 14, 2011 Page 3

4 CAQCD, Minneapolis, May 14, 2011 Page 4

5 Forms of Relativistic Dynamics: dynamical vs. kinematical generators [Dirac (1949)] Instant form Point form Front form H, K dynamical L, P kinematical P µ dynamical M µν kinematical P, L x, L y dynamical P +, P, L z, K kinematical LF quantization is the ideal framework to describe hadronic structure in terms of quarks and gluons: simple vacuum structure allows unambiguous definition of partonic content of a hadron Calculation of a matrix elements P + q J P requires boosting the hadronic bound state from P to P + q : extremely complicated in the instant form, whereas K is trivial in the LF Invariant Hamiltonian equation for bound states similar structure of AdS equations of motion: direct connection of QCD and AdS/CFT possible CAQCD, Minneapolis, May 14, 2011 Page 5

6 QCD Lagrangian L QCD = 1 4g 2 Tr (Gµν G µν ) + iψd µ γ µ ψ + mψψ LF Momentum Generators P = (P +, P, P ) in terms of dynamical fields ψ, A P = 1 dx d 2 x ψ γ + (i ) 2 + m 2 2 i + ψ + interactions P + = dx d 2 x ψ γ + i + ψ P = 1 dx d 2 x ψ γ + i ψ 2 LF Hamiltonian P generates LF time translations [ ψ(x), P ] = i and the generators P + and P are kinematical x + ψ(x) CAQCD, Minneapolis, May 14, 2011 Page 6

7 Light-Front Fock Representation Dirac field ψ, expanded in terms of ladder operators on the initial surface P = λ dq + d 2 q ( q 2 + m 2 ) (2π) 3 q + b λ (q)b λ(q) + interactions Construct LF Lorentz invariant Hamiltonian equation for the relativistic bound state P µ P µ ψ(p ) = ( P P + P 2 ) ψ(p ) = M 2 ψ(p ) State ψ(p ) is expanded in multi-particle Fock states n of the free LF Hamiltonian ψ = n ψ n n, n = { uud, uudg, uudqq, } with k 2 i = m2 i, k i = (k + i, k i, k i), for each constituent i in state n Fock components ψ n (x i, k i, λ z i ) independent of P + and P and depend only on relative partonic coordinates: momentum fraction x i = k + i /P +, transverse momentum k i and spin λ z i n x i = 1, i=1 n k i = 0. i=1 CAQCD, Minneapolis, May 14, 2011 Page 7

8 Semiclassical Approximation to QCD in the Light Front [GdT and S. J. Brodsky, PRL 102, (2009)] Compute M 2 from hadronic matrix element ψ(p ) P µ P µ ψ(p ) =M 2 ψ(p ) ψ(p ) Find M 2 = n [dxi ][ d 2 ] k i l ( k 2 l + m 2 l x q ) ψ n (x i, k i ) 2 + interactions LFWF ψ n represents a bound state which is off the LF energy shell M 2 M 2 n M 2 n = ( n a=1 k µ a ) 2 = a k 2 a + m2 a x a with k 2 a = m 2 a for each constituent Invariant mass M 2 n key variable which controls the bound state: LFWF peaks at the minimum M2 n Semiclassical approximation to QCD: ( ψ n (k 1, k 2,..., k n ) φ n (k1 + k k n ) 2 ), mq 0 }{{} M 2 n CAQCD, Minneapolis, May 14, 2011 Page 8

9 In terms of n 1 independent transverse impact coordinates b j, j = 1, 2,..., n 1, M 2 = n 1 dx j d 2 b j ψn(x i, b i ) ( 2 + ) m2 b l l ψ n (x i, b i ) + interactions x n j=1 q l Relevant variable conjugate to invariant mass in the limit of zero quark masses ζ = x 1 x n 1 j=1 x j b j the x-weighted transverse impact coordinate of the spectator system (x active quark) For a two-parton system ζ 2 = x(1 x)b 2 To first approximation LF dynamics depend only on the invariant variable ζ, and hadronic properties are encoded in the hadronic mode φ(ζ) from ψ(x, ζ, ϕ) = e imϕ X(x) φ(ζ) 2πζ factoring angular ϕ, longitudinal X(x) and transverse mode φ(ζ) (P +, P and J z commute with P ) CAQCD, Minneapolis, May 14, 2011 Page 9

10 Ultra relativistic limit m q 0 longitudinal modes X(x) decouple (L = L z ) M 2 = dζ φ (ζ) ζ ( d2 dζ 2 1 ) d ζ dζ + L2 φ(ζ) ζ 2 + dζ φ (ζ) U(ζ) φ(ζ) ζ where the confining forces from the interaction terms are summed up in the effective potential U(ζ) LF eigenvalue equation P µ P µ φ = M 2 φ is a LF wave equation for φ ( d2 dζ 2 1 4L2 ) 4ζ }{{ 2 + U(ζ) φ(ζ) = M 2 φ(ζ) }{{}} conf inement kinetic energy of partons Effective light-front Schrödinger equation: relativistic, frame-independent and analytically tractable Eigenmodes φ(ζ) determine the hadronic mass spectrum and represent the probability amplitude to find n-massless partons at transverse impact separation ζ within the hadron at equal light-front time Semiclassical approximation to light-front QCD does not account for particle creation and absorption CAQCD, Minneapolis, May 14, 2011 Page 10

11 2 Light-Front Holographic Mapping Higher Spin Modes in AdS Space Description of higher spin modes in AdS space (Frondsal, Fradkin and Vasiliev) Action for spin-j field in AdS d+1 in presence of dilaton background ϕ(z) ( x M = (x µ, z) ) S = 1 2 d d x dz g e ϕ(z)( g NN g M 1M 1 g M J M J DN Φ M1 M J D N Φ M 1 M J µ 2 g M 1M 1 g M J M J ΦM1 M J Φ M 1 M J + ) where D M is the covariant derivative which includes parallel transport [D N, D K ]Φ M1 M J = R L M 1 NKΦ L MJ R L M J NKΦ M1 L Physical hadron has plane-wave and polarization indices along 3+1 physical coordinates Φ P (x, z) µ1 µ J = e ip x Φ(z) µ1 µ J, Φ zµ2 µ J = = Φ µ1 µ 2 z = 0 with four-momentum P µ and invariant hadronic mass P µ P µ =M 2 CAQCD, Minneapolis, May 14, 2011 Page 11

12 Construct effective action in terms of spin-j modes Φ J with only physical degrees of freedom [ H. G. Dosch, S. J. Brodsky and GdT (in preparation)] Introduce fields with tangent indices Find effective action ˆΦ A1 A 2 A J = e M 1 A 1 e M 2 A 2 e M J A J Φ M1 M 2 M J = ( z R) JΦA1 A 2 A J S = 1 2 d d x dz g e ϕ(z)( g NN η µ 1µ 1 η µ J µ J N ˆΦµ1 µ J N ˆΦµ 1 µ J ) µ 2 η µ 1µ 1 η µ J µ J ˆΦµ1 µ J ˆΦµ 1 µ J upon µ-rescaling Variation of the action gives AdS wave equation for spin-j mode Φ J = Φ µ1 µ J [ ( zd 1 2J e ϕ ) ( ) ] (z) µr 2 e ϕ(z) z z d 1 2J z + Φ J (z) = M 2 Φ J (z) z with ˆΦ J (z) = (z/r) J Φ J (z) and all indices along 3+1 CAQCD, Minneapolis, May 14, 2011 Page 12

13 Dual QCD Light-Front Wave Equation Φ P (z) ψ(p ) LF Holographic mapping found originally matching expressions of EM and gravitational form factors of hadrons in AdS and LF QCD [Brodsky and GdT (2006, 2008)] Upon substitution z ζ and φ J (ζ) ζ 3/2+J e ϕ(z)/2 Φ J (ζ) in AdS WE [ ( zd 1 2J e ϕ ) ( ) ] (z) µr 2 e ϕ(z) z z d 1 2J z + Φ J (z) = M 2 Φ J (z) z find LFWE (d = 4) ( d2 dζ 2 1 4L2 4ζ 2 ) + U(ζ) φ J (ζ) = M 2 φ J (ζ) with U(ζ) = 1 2 ϕ (z) ϕ (z) 2 + 2J 3 ϕ (z) 2z and (µr) 2 = (2 J) 2 + L 2 AdS Breitenlohner-Freedman bound (µr) 2 4 equivalent to LF QM stability condition L 2 0 Scaling dimension τ of AdS mode ˆΦ J is τ = 2 + L in agreement with twist scaling dimension of a two parton bound state in QCD and determined by QM stability condition CAQCD, Minneapolis, May 14, 2011 Page 13

14 Bosonic Modes and Meson Spectrum Soft wall model [Karch, Katz, Son and Stephanov (2006)] Dilaton ϕ(z) = +κ 2 z 2 (Minkowski metrics), ϕ(z) = κ 2 z 2 (Euclidean metrics) Effective potential U(z) = κ 4 ζ 2 + 2κ 2 (L + S 1) Normalized eigenfunctions φ φ = dζ φ(z) 2 = 1 φ nl (ζ) = κ 1+L 2n! (n+l)! ζ1/2+l e κ2 ζ 2 /2 L L n(κ 2 ζ 2 ) Eigenvalues M 2 n,l,s = 4κ2 (n + L + S/2) 0.8 Φ Ζ a Φ Ζ b Ζ Ζ LFWFs φ n,l (ζ) in physical space time for dilaton exp(κ 2 z 2 ): a) orbital modes and b) radial modes CAQCD, Minneapolis, May 14, 2011 Page 14

15 4κ 2 for n = 1 4κ 2 for L = 1 2κ 2 for S = 1 6 J PC n=3 n=2 n=1 n=0 6 J PC n=3 n=2 n=1 n=0 f 2 (2300) M A5 π(1800) π(1300) π 0 π 2 (1880) π 2 (1670) b(1235) L M A1 ρ(1700) ω(1650) ρ(1450) ω(1420) ρ(770) ω(782) 0 f 2 (1950) a 2 (1320) f 2 (1270) ρ 3 (1690) ω 3 (1670) a 4 (2040) f 4 (2050) L Regge trajectories for the π (κ = 0.6 GeV) and the I =1 ρ-meson and I =0 ω-meson families (κ = 0.54 GeV) CAQCD, Minneapolis, May 14, 2011 Page 15

16 Fermionic Modes and Baryon Spectrum [Hard wall model: GdT and S. J. Brodsky, PRL 94, (2005)] [Soft wall model: GdT and S. J. Brodsky, (2005), arxiv: ] From Nick Evans Nucleon LF modes ψ + (ζ) n,l = κ 2+L 2n! (n + L)! ζ3/2+l e κ2 ζ 2 /2 L L+1 ( n κ 2 ζ 2) ψ (ζ) n,l = κ 3+L 1 2n! n + L + 2 (n + L)! ζ5/2+l e κ2 ζ 2 /2 L L+2 n ( κ 2 ζ 2) Normalization dζ ψ 2 +(ζ) = dζ ψ 2 (ζ) = 1 Eigenvalues Chiral partners M 2 n,l,s=1/2 = 4κ2 (n + L + 1) M N(1535) M N(940) = 2 CAQCD, Minneapolis, May 14, 2011 Page 16

17 Same multiplicity of states for mesons and baryons! 4κ 2 for n = 1 4κ 2 for L = 1 2κ 2 for S = 1 6 (a) n=3 n=2 n=1 n=0 (b) n=3 n=2 n=1 n=0 M 2 4 N(2200) Δ(2420) 2 N(1710) N(1440) N(1680) N(1720) Δ(1600) Δ(1950) Δ(1905) Δ(1920) Δ(1910) Δ(1232) A3 N(940) L L Regge trajectories for positive parity N and baryon families (κ = 0.5 GeV) CAQCD, Minneapolis, May 14, 2011 Page 17

18 3 Light-Front Holographic Mapping of Current Matrix Elements [S. J. Brodsky and GdT, PRL 96, (2006)], PRD 77, (2008)] EM transition matrix element in QCD: local coupling to pointlike constituents ψ(p ) J µ ψ(p ) = (P + P ) µ F (Q 2 ) where Q = P P and J µ = e q qγ µ q EM hadronic matrix element in AdS space from non-local coupling of external EM field propagating in AdS with extended mode Φ(x, z) d 4 x dz g e ϕ(z) A M (x, z)φ P (x, z) M Φ P (x, z) (2π) 4 δ 4 ( P P ) ( ɛ µ P + P ) µ F (Q 2 ) where A µ (x, z) = ɛ µ (q)e iq x V (q, z), A z = 0, Q 2 = q 2 > 0 How to recover hard pointlike scattering at large Q out of soft collision of extended objects? [Polchinski and Strassler (2002)] Mapping of J + elements at fixed light-front time: Φ P (z) ψ(p ) CAQCD, Minneapolis, May 14, 2011 Page 18

19 Electromagnetic Form-Factor Drell-Yan-West electromagnetic FF in impact space [Soper (1977)] F (q 2 ) = n n 1 j=1 ( n 1 ) dx j d 2 b j e q exp iq x k b k ψ n (x j, b j ) 2 q k=1 Consider a two-quark π + Fock state ud with e u = 2 3 and e d = F π +(q 2 ) = dx d 2 b e iq b (1 x) ψ ud/π (x, b ) with normalization F + π (q =0) = Integrating over angle F π +(q 2 ) = 2π 1 0 dx x(1 x) ) 1 x ζdζj 0 (ζq x ψud/π (x, ζ) 2 where ζ 2 = x(1 x)b 2 CAQCD, Minneapolis, May 14, 2011 Page 19

20 Compare with electromagnetic FF in AdS space [Polchinski and Strassler (2002)] where V (Q, z) = zqk 1 (zq) F (Q 2 ) = R 3 dz z 3 V (Q, z)φ2 π + (z) Use the integral representation V (Q, z) = 1 0 dx J 0 (ζq ) 1 x x Find F (Q 2 ) = R ( dz 1 x dx z 3 J 0 zq x ) Φ 2 π + (z) Compare with electromagnetic FF in LF QCD for arbitrary Q. Expressions can be matched only if LFWF is factorized ψ(x, ζ, ϕ) = e imϕ X(x) φ(ζ) 2πζ Find X(x) = x(1 x), φ(ζ) = ( ) ζ 3/2 Φ(ζ), z ζ R CAQCD, Minneapolis, May 14, 2011 Page 20

21 Free current V (Q, z) = zqk 1 (zq) infinite radius (mauve), no pole structure in time-like region Dressed current non-perturbative sum of an infinite number of terms finite radius (blue) Form factor in soft-wall model expressed as N 1 product of poles along vector radial trajectory ( 2 Mρ 4κ 2 (n + 1/2) ) [Brodsky and GdT (2008)] F (Q 2 ) = [ ( 1 + Q2 M 2 ρ ] ) ) 1 )(1 + Q2 M 2 (1 + Q2 ρ M 2 ρ N F Π q F 1 p Q Pion form factor (lowest mode) Proton form factor (lowest mode) CAQCD, Minneapolis, May 14, 2011 Page 21

22 Higher Fock components in pion LFWF π = ψ qq/π qq τ=2 + ψ qqqq/π qqqq τ=4 + Expansion of LFWF up to twist 4 (monopole + tripole) κ = 0.54 GeV, Γ ρ = 130, Γ ρ = 400, Γ ρ = 300 MeV, P qqqq = 13% 0.6 Q 2 F Π Q 2 2 M Ρ 2 log F Π Q M Ρ M Ρ Q 2 GeV Q 2 GeV Only interaction in LF holographic semiclassical approx is the confinement potential: create Fock states with extra quark-antiquark pairs, no dynamical gluons CAQCD, Minneapolis, May 14, 2011 Page 22

23 Gravitational or Energy-Momentum Form-Factor [S. J. Brodsky and GdT, PRD 78, (2008)] Gravitational form factor of composite hadrons in QCD: local coupling to pointlike constituents P Θ ν µ P = ( P ν P µ + P µ P ν) A(Q 2 ) where Q = P P and Θ µν = 1 2 qi(γ µd ν + γ ν D µ ) q g µν q (i /D m) q G a µλ Ga ν λ g µνg a λσ λσga Hadronic matrix element of energy-momentum tensor from perturbing static AdS metric: non-local coupling of external graviton propagating in AdS with extended mode Φ(x, z) [Abidin and Carlson (2008)] d 4 x dz g h lm ( l Φ P m Φ P + m Φ P l Φ P ) Are the transition amplitudes related? Mapping of Θ ++ elements at fixed LF time: Identical mapping Φ P (z) ψ(p ) as EM FF CAQCD, Minneapolis, May 14, 2011 Page 23

24 Meson Transition Form-Factors γ q [S. J. Brodsky, Fu-Guang Cao and GdT (in preparation)] π 0 γ q Pion TFF from 5-dim Chern-Simons structure [Hill and Zachos (2005), Grigoryan and Radyushkin (2008)] d 4 x dz ɛ LMNP Q A L M A N P A Q (2π) 4 δ (4) (p π + q k) F πγ (q 2 )ɛ µνρσ ɛ µ (q)(p π ) ν ɛ ρ (k)q σ Take A z Φ π (z)/z, Φ π (z) = 2P qq κ z 2 e κ2 z 2 /2, Φπ Φ π = P qq ( φ(x) = 3fπ x(1 x), f π = P qq κ/ 2π ) Find Q 2 F πγ (Q 2 ) = dx φ(x) 1 x [1 e P qqq 2 (1 x)/4π 2 f 2 π x ] normalized to the asymptotic DA [P qq = 1 Musatov and Radyushkin (1997)] Large Q 2 TFF is identical to first principles asymptotic QCD result Q 2 F πγ (Q 2 ) = 2f π The CS form is local in AdS space and projects out only the asymptotic form of the pion DA CAQCD, Minneapolis, May 14, 2011 Page 24

25 pion-gamma transition form factor, Q2Fpigamma Feta TFF eta prime F! " (Q 2 )(GeV -1 ) BaBar CLEO CELLO Free current; Twist 2 Dressed current; Twist 2 Dressed current; Twist 2+4 F! " (Q 2 )(GeV -1 ) BaBar CLEO Free current; Twist 2 Dressed current; Twist 2 Dressed current; Twist 2+4 F!' " (Q 2 )(GeV -1 ) BaBar CLEO Free current; Twist 2 Dressed current; Twist 2 Dressed current; Twist pion-gamma transition Q 2 (GeVform 2 ) factor, Q2Fpigamma Q2Feta 4 6 Q 2 (GeV 2 ) QTFF 2 (GeV eta 2 ) prime Q 2 F! " (Q 2 )(GeV) BaBar CLEO CELLO Free current; Twist 2 Dressed current; Twist 2 Dressed current; Twist Q 2 (GeV 2 ) Q 2 F! " (Q 2 )(GeV) BaBar CLEO Free current; Twist Dressed current; Twist Dressed current; Twist 2+4 Q 2 (GeV 2 ) Q 2 F!' " (Q 2 )(GeV) BaBar CLEO 0.10 Free current; Twist Dressed current; Twist 2 Dressed current; Twist Q 2 (GeV 2 ) CAQCD, Minneapolis, May 14, 2011 Page 25

N N Transitions from Holographic QCD

N N Transitions from Holographic QCD N N Transitions from Holographic QCD Guy F. de Téramond Universidad de Costa Rica Nucleon Resonance Structure Electroproduction at High Photon Virtualities with the Class 12 Detector Workshop Jefferson

More information

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Higher Fock States

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Higher Fock States Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Higher Fock States Guy F. de Téramond University of Costa Rica Southampton High Energy Physics Theory Group University of Southampton

More information

Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics

Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics Guy F. de Téramond University of Costa Rica In Collaboration with Stan Brodsky 4 th International Sakharov Conference

More information

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Strongly Coupled Dynamics

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Strongly Coupled Dynamics Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Strongly Coupled Dynamics Guy F. de Téramond University of Costa Rica Instituto Tecnológico de Aeronáutica São José dos Campos,

More information

Light-Front Holography and Gauge/Gravity Correspondence: Applications to the Meson and Baryon Spectrum

Light-Front Holography and Gauge/Gravity Correspondence: Applications to the Meson and Baryon Spectrum Light-Front Holography and Gauge/Gravity Correspondence: Applications to the Meson and Baryon Spectrum Guy F. de Téramond University of Costa Rica In Collaboration with Stan Brodsky Light-Cone 009: Relativistic

More information

Systematics of the Hadron Spectrum from Conformal Quantum Mechanics and Holographic QCD

Systematics of the Hadron Spectrum from Conformal Quantum Mechanics and Holographic QCD Systematics of the Hadron Spectrum from Conformal Quantum Mechanics and Holographic QCD Guy F. de Téramond Universidad de Costa Rica Twelfth Workshop on Non-Perturbative Quantum Chromodynamics Institut

More information

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Applications to the Light Hadron Spectrum

Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Applications to the Light Hadron Spectrum Light-Front Quantization Approach to the Gauge/Gravity Correspondence and Applications to the Light Hadron Spectrum Guy F. de Téramond Universidad de Costa Rica Ferrara International School Niccolò Cabeo

More information

Nucleon Resonance Spectrum and Form Factors from Superconformal Quantum Mechanics in Holographic QCD

Nucleon Resonance Spectrum and Form Factors from Superconformal Quantum Mechanics in Holographic QCD Nucleon Resonance Spectrum and Form Factors from Superconformal Quantum Mechanics in Holographic QCD Guy F. de Téramond Universidad de Costa Rica Nucleon Resonances: From Photoproduction to High Photon

More information

Mapping String States into Partons:

Mapping String States into Partons: Mapping String States into Partons: Form Factors, and the Hadron Spectrum in AdS/QCD Guy F. de Téramond Universidad de Costa Rica In Collaboration with Stan Brodsky Continuous Advances in QCD Minneapolis,

More information

S = 0 (b) S = 0. AdS/QCD. Stan Brodsky, SLAC INT. March 28, Fig: Orbital and radial AdS modes in the soft wall model for κ = 0.6 GeV.

S = 0 (b) S = 0. AdS/QCD. Stan Brodsky, SLAC INT. March 28, Fig: Orbital and radial AdS modes in the soft wall model for κ = 0.6 GeV. 6 5 4 Φ(z) Φ(z) 2-5 2-27 8721A2 4 8 z 2-27 8721A21 4 8 z Fig: Orbital and radial AdS modes in the soft wall model for κ =.6 GeV. (a) S = (b) S = (GeV 2 ) 4 π 2 (167) π (18) 2 b 1 (1235) π (13) π (14) π

More information

AdS/QCD and Applications of Light-Front Holography

AdS/QCD and Applications of Light-Front Holography SLAC-PUB-14525 AdS/QCD and Applications of Light-Front Holography Stanley J. Brodsky, 1 Fu-Guang Cao, 2 and Guy F. de Téramond 3 1 SLAC National Accelerator Laboratory Stanford University, Stanford, CA

More information

Gauge/Gravity Duality and Strongly Coupled Light-Front Dynamics

Gauge/Gravity Duality and Strongly Coupled Light-Front Dynamics SLAC-PUB-1459 Gauge/Gravity Duality and Strongly Coupled Light-Front Dynamics Universidad de Costa Rica, San José, Costa Rica E-mail: gdt@asterix.crnet.cr Stanley J. Brodsky SLAC National Accelerator Laboratory

More information

x(1 x) b 2 dζ 2 m 2 1 x dζ 2 d dζ 2 + V (ζ) ] + k2 + m2 2 1 x k2 + m2 1 dζ 2 + m2 1 x + m2 2 LF Kinetic Energy in momentum space Holographic Variable

x(1 x) b 2 dζ 2 m 2 1 x dζ 2 d dζ 2 + V (ζ) ] + k2 + m2 2 1 x k2 + m2 1 dζ 2 + m2 1 x + m2 2 LF Kinetic Energy in momentum space Holographic Variable [ d dζ + V (ζ) ] φ(ζ) = M φ(ζ) m 1 de Teramond, sjb x ζ = x(1 x) b m b (1 x) Holographic Variable d dζ k x(1 x) LF Kinetic Energy in momentum space Assume LFWF is a dynamical function of the quark-antiquark

More information

QCD and Light-Front Holography

QCD and Light-Front Holography QCD and Light-Front Holography SLAC-PUB-14258 September 2010 Stanley J. Brodsky SLAC National Accelerator Laboratory Stanford University, Stanford, CA 94309, USA, and CP 3 -Origins, Southern Denmark University,

More information

Light-Front Quantization Approach to the Gauge-Gravity Correspondence and Hadron Spectroscopy

Light-Front Quantization Approach to the Gauge-Gravity Correspondence and Hadron Spectroscopy SLAC-PUB-3875 Light-Front Quantization Approach to the Gauge-Gravity Correspondence and Hadron Spectroscopy Guy F. de Téramond and Stanley J. Brodsky Universidad de Costa Rica, San José, Costa Rica SLAC

More information

HUGS Dualities and QCD. Josh Erlich LECTURE 5

HUGS Dualities and QCD. Josh Erlich LECTURE 5 HUGS 2012 Dualities and QCD Josh Erlich LECTURE 5 Outline The meaning of duality in physics (Example: The Ising model) Quark-Hadron duality (experimental and theoretical evidence) Electric-Magnetic Duality

More information

Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics

Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics GEOMETRY AND PHYSICS II Institut Henri Poincaré, Nov. 8 &9, 013 Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics H.G.Dosch Institut für Theoretische Physik der

More information

Conformal Symmetry, Confinement, and Light-Front Holographic QCD. Abstract

Conformal Symmetry, Confinement, and Light-Front Holographic QCD. Abstract SLAC-PUB-15377 Conformal Symmetry, Confinement, and Light-Front Holographic QCD Stanley J. Brodsky, 1 Guy F. de Téramond, 2 and Hans Günter Dosch 3 1 SLAC National Accelerator Laboratory, Stanford University,

More information

arxiv: v1 [hep-th] 19 Dec 2011

arxiv: v1 [hep-th] 19 Dec 2011 AdS/QCD, Light-Front Holography, and Sublimated Gluons arxiv:1112.4212v1 [hep-th] 19 Dec 211 SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 9439, USA E-mail: sjbth@slac.stanford.edu

More information

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016 Holographic Distribution Amplitudes for mesons Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie Diffraction 2016 Progress in QCD session September 5 th 2016 1 Outline Overview

More information

Supersymmetry across the light and heavy-light hadronic spectrum

Supersymmetry across the light and heavy-light hadronic spectrum Supersymmetry across the light and heavy-light hadronic spectrum Hans Günter Dosch Institut für Theoretische Physik der Universität Heidelberg Based on: G. F. de Teramond, H. G. D., S. J. Brodsky Rev.

More information

QCD and Light-Front Dynamics

QCD and Light-Front Dynamics SLAC-PUB-14275 QCD and Light-Front Dynamics SLAC National Accelerator Laboratory Stanford University, Stanford, CA 9439, USA, and CP 3 -Origins, Southern Denmark University, Odense, Denmark E-mail: sjbth@slac.stanford.edu

More information

arxiv: v2 [hep-ph] 16 Aug 2012

arxiv: v2 [hep-ph] 16 Aug 2012 LIGHT-FRONT HOLOGRAPHY AND THE LIGHT-FRONT SCHRÖDINGER EQUATION STANLEY J. BRODSKY SLAC National Accelerator Laboratory, Stanford University Stanford, CA 9439, USA sjbth@slac.stanford.edu GUY DE TÉRAMOND

More information

towards a holographic approach to the QCD phase diagram

towards a holographic approach to the QCD phase diagram towards a holographic approach to the QCD phase diagram Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri Continuous Advances in

More information

Light-Front Holographic Quantum Chromodynamics

Light-Front Holographic Quantum Chromodynamics SLAC-PUB-15735 Light-Front Holographic Quantum Chromodynamics Stanley J. Brodsky a, Guy F. de Téramond b, and Hans Günter Dosch c a SLAC National Accelerator Laboratory, Stanford University, Stanford,

More information

Light-Front Holography and Novel Effects in QCD

Light-Front Holography and Novel Effects in QCD SLAC-PUB-13491 December 28 Light-Front Holography and Novel Effects in QCD Stanley J. Brodsky and Guy F. de Téramond SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 9439, USA Universidad

More information

Toward Baryon Distributions Amplitudes

Toward Baryon Distributions Amplitudes Toward Baryon Distributions Amplitudes Cédric Mezrag INFN Roma1 September 13 th, 2018 Cédric Mezrag (INFN) Baryon DAs September 13 th, 2018 1 / 28 Chapter 1: Dyson-Schwinger equations Cédric Mezrag (INFN)

More information

The Pion Form Factor in AdS/QCD

The Pion Form Factor in AdS/QCD The Pion Form Factor in AdS/QCD 1 0.8 0.6 F π (Q 2 ) 0.4 Richard Lebed 0.2 0 0 1 2 3 4 5 Q 2 (GeV 2 ) CAQCD 08 May 22, 2008 In collaboration with Herry J. Kwee JHEP 0801, 027 (2008) [arxiv:0708.4054] arxiv:0712.1811

More information

A J=0 e 2 qs 0 F (t) Local J=0 fixed pole contribution. Szczepaniak, Llanes- Estrada, sjb

A J=0 e 2 qs 0 F (t) Local J=0 fixed pole contribution. Szczepaniak, Llanes- Estrada, sjb A J=0 e 2 qs 0 F (t) Local J=0 fixed pole contribution Szczepaniak, Llanes- Estrada, sjb Light-cone wavefunction representation of deeply virtual Compton scattering! Stanley J. Brodsky a, Markus Diehl

More information

AdS/QCD and Hadronic Phenomena

AdS/QCD and Hadronic Phenomena and Hadronic Phenomena, November 16, 2007 Stan Brodsky SLAC, Stanford University Research Associate 1964 1966! 1 QCD Lagrangian Yang-Mills Gauge Principle: Invariance under Color Rotation and Phase Change

More information

Internal structure of the pion inspired by the AdS/QCD correspondence

Internal structure of the pion inspired by the AdS/QCD correspondence Internal structure of the pion inspired by the AdS/QCD correspondence Sabrina Cotogno Vrije Universiteit and Nikhef, Amsterdam Supervisor: Prof. P.J.G. Mulders In collaboration with Prof. Alessandro Bacchetta

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

Light-Front Holography and Hadronization at the Amplitude Level

Light-Front Holography and Hadronization at the Amplitude Level July 28 SLAC-PUB-1336 Light-Front Holography and Hadronization at the Amplitude Level Stanley J. Brodsky, Guy F. de Téramond and Robert Shrock Stanford Linear Accelerator Center, Stanford University, Stanford,

More information

Gian Gopal Particle Attributes Quantum Numbers 1

Gian Gopal Particle Attributes Quantum Numbers 1 Particle Attributes Quantum Numbers Intro Lecture Quantum numbers (Quantised Attributes subject to conservation laws and hence related to Symmetries) listed NOT explained. Now we cover Electric Charge

More information

QCD and a Holographic Model of Hadrons

QCD and a Holographic Model of Hadrons QCD and a Holographic Model of Hadrons M. Stephanov U. of Illinois at Chicago AdS/QCD p.1/18 Motivation and plan Large N c : planar diagrams dominate resonances are infinitely narrow Effective theory in

More information

Linear Confinement from AdS/QCD. Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov.

Linear Confinement from AdS/QCD. Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov. Linear Confinement from AdS/QCD Andreas Karch, University of Washington work with Ami Katz, Dam Son, and Misha Stephanov. Excited Rho Mesons 6 (from PARTICLE DATA BOOK) Experiment 0.933 n 5 m 2 n, GeV

More information

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism & s Using s Pion Electromagnetic Form Factor in Distribution Formalism A. Old Dominion University and Jefferson Lab QCD 215 Workshop Jefferson Labs, May 26, 215 Pion Distribution Amplitude & s ϕ π (x):

More information

arxiv: v3 [hep-ph] 20 Oct 2015

arxiv: v3 [hep-ph] 20 Oct 2015 SLAC-PUB-678 Connecting the Hadron Mass Scale to the Fundamental Mass Scale of Quantum Chromodynamics arxiv:49.5488v3 [hep-ph] 2 Oct 25 A. Deur, S. J. Brodsky, 2 G. F. de Teramond. 3 Thomas Jefferson National

More information

Virtuality Distributions and γγ π 0 Transition at Handbag Level

Virtuality Distributions and γγ π 0 Transition at Handbag Level and γγ π Transition at Handbag Level A.V. Radyushkin form hard Physics Department, Old Dominion University & Theory Center, Jefferson Lab May 16, 214, QCD Evolution 214, Santa Fe Transverse Momentum form

More information

light-cone (LC) variables

light-cone (LC) variables light-cone (LC) variables 4-vector a µ scalar product metric LC basis : transverse metric 24-Apr-13 1 hadron target at rest inclusive DIS target absorbes momentum from γ * ; for example, if q z P z =0

More information

Spin Densities and Chiral Odd Generalized Parton Distributions

Spin Densities and Chiral Odd Generalized Parton Distributions Spin Densities and Chiral Odd Generalized Parton Distributions Harleen Dahiya Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, PUNJAB 144011 XVI International Conference on Hadron Spectroscopy

More information

Distribution Amplitudes of the Nucleon and its resonances

Distribution Amplitudes of the Nucleon and its resonances Distribution Amplitudes of the Nucleon and its resonances C. Mezrag Argonne National Laboratory November 16 th, 2016 In collaboration with: C.D. Roberts and J. Segovia C. Mezrag (ANL) Nucleon DA November

More information

Light-Front Hadronic Models

Light-Front Hadronic Models Light-Front Hadronic Models Siraj Kunhammed Wayne Polyzou Department of Physics and Astronomy The University of Iowa May 17, 2018 Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy

More information

Glueballs at finite temperature from AdS/QCD

Glueballs at finite temperature from AdS/QCD Light-Cone 2009: Relativistic Hadronic and Particle Physics Instituto de Física Universidade Federal do Rio de Janeiro Glueballs at finite temperature from AdS/QCD Alex S. Miranda Work done in collaboration

More information

QCD Vacuum, Centre Vortices and Flux Tubes

QCD Vacuum, Centre Vortices and Flux Tubes QCD Vacuum, Centre Vortices and Flux Tubes Derek Leinweber Centre for the Subatomic Structure of Matter and Department of Physics University of Adelaide QCD Vacuum, Centre Vortices and Flux Tubes p.1/50

More information

International Journal of Theoretical Physics, October 2015, Volume 54, Issue 10, pp ABSTRACT

International Journal of Theoretical Physics, October 2015, Volume 54, Issue 10, pp ABSTRACT 1 meson-nucleon coupling constant from the soft-wall AdS/QCD model Narmin Huseynova a,b1 and Shahin Mamedov a a Institute for Physical Problems, Baku State University, Z.Khalilov 3, Baku, AZ-1148, Azerbaijan

More information

Seminar presented at the Workshop on Strongly Coupled QCD: The Confinement Problem Rio de Janeiro UERJ November 2011

Seminar presented at the Workshop on Strongly Coupled QCD: The Confinement Problem Rio de Janeiro UERJ November 2011 and and Seminar presented at the Workshop on Strongly Coupled QCD: The Problem Rio de Janeiro UERJ 28-30 November 2011 Work done in collaboration with: N.R.F. Braga, H. L. Carrion, C. N. Ferreira, C. A.

More information

Wigner Distributions and Orbital Angular Momentum of Quarks

Wigner Distributions and Orbital Angular Momentum of Quarks Wigner Distributions and Orbital Angular Momentum of Quarks Asmita Mukherjee Indian Institute of Technology, Mumbai, India Wigner distribution for the quarks Reduced wigner distributions in position and

More information

Valence quark contributions for the γn P 11 (1440) transition

Valence quark contributions for the γn P 11 (1440) transition Valence quark contributions for the γn P 11 (144) transition Gilberto Ramalho (Instituto Superior Técnico, Lisbon) In collaboration with Kazuo Tsushima 12th International Conference on Meson-Nucleon Physics

More information

A Dyson-Schwinger equation study of the baryon-photon interaction.

A Dyson-Schwinger equation study of the baryon-photon interaction. A Dyson-Schwinger equation study of the baryon-photon interaction. Diana Nicmorus in collaboration with G. Eichmann A. Krassnigg R. Alkofer Jefferson Laboratory, March 24, 2010 What is the nucleon made

More information

Measuring transverse size with virtual photons

Measuring transverse size with virtual photons Measuring transverse size with virtual photons 1 Paul Hoyer University of Helsinki Work done with Samu Kurki arxiv:0911.3011 arxiv:1101.4810 How to determine the size of the interaction region in electroproduction

More information

The Structure of Hadrons

The Structure of Hadrons 1 The Structure of Hadrons Paul Hoyer University of Helsinki CP 3 Inauguration 24 November 2009 What are Hadrons? Strongly interacting elementary particles 2 Hadrons are extended objects and can be classified

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering Heidi Schellman University HUGS - JLab - June 2010 June 2010 HUGS 1 Course Outline 1. Really basic stuff 2. How we detect particles 3. Basics of 2 2 scattering 4.

More information

Deep inelastic scattering and the OPE in lattice QCD

Deep inelastic scattering and the OPE in lattice QCD Deep inelastic scattering and the OPE in lattice QCD William Detmold [WD & CJD Lin PRD 73, 014501 (2006)] DIS structure of hadrons Deep-inelastic scattering process critical to development of QCD k, E

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly February

More information

Parton Distribution in Pseudoscalar Mesons with a Light-Front constituent Quark Model

Parton Distribution in Pseudoscalar Mesons with a Light-Front constituent Quark Model Parton Distribution in Pseudoscalar Mesons with a Light-Front constituent Quark Model XVI International Conference on Hadron Spectroscopy September 13-18, 2015 - Newport News, VA - TJLAB - 2015 J. Pacheco

More information

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira Lecture 5 QCD Symmetries & Their Breaking From Quarks to Hadrons Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry

More information

Mesons as Open Strings

Mesons as Open Strings Mesons as Open Strings in Holographic QCD Shigeki Sugimoto (IPMU, Univ of Tokyo) based on: arxiv:1005.0655 with T. Imoto and T. Sakai Seminar @ Cambridge 2/17/2011 1 22 1 Introduction (N f = 2, Isovector)

More information

Statistical physics and light-front quantization. JR and S.J. Brodsky, Phys. Rev. D70, (2004) and hep-th/

Statistical physics and light-front quantization. JR and S.J. Brodsky, Phys. Rev. D70, (2004) and hep-th/ Statistical physics and light-front quantization Jörg Raufeisen (Heidelberg U.) JR and S.J. Brodsky, Phys. Rev. D70, 085017 (2004) and hep-th/0409157 Introduction: Dirac s Forms of Hamiltonian Dynamics

More information

Hot and Magnetized Pions

Hot and Magnetized Pions .. Hot and Magnetized Pions Neda Sadooghi Department of Physics, Sharif University of Technology Tehran - Iran 3rd IPM School and Workshop on Applied AdS/CFT February 2014 Neda Sadooghi (Dept. of Physics,

More information

Complex Systems of Hadrons and Nuclei

Complex Systems of Hadrons and Nuclei 1 European Graduate School Complex Systems of Hadrons and Nuclei Copenhagen - Giessen - Helsinki - Jyväskylä -Torino Measuring transverse size with virtual photons In-Medium Effects in Hadronic and Partonic

More information

arxiv: v1 [hep-ph] 1 Mar 2017

arxiv: v1 [hep-ph] 1 Mar 2017 GPDs at non-zero skewness in ADS/QCD model arxiv:1703.00348v1 [hep-ph] 1 Mar 2017 Matteo Rinaldi 1 1 Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Parc Cientific UV, C/ Catedratico Jose

More information

Scattering Vector Mesons in D4/D8 model

Scattering Vector Mesons in D4/D8 model Scattering Vector Mesons in D4/D8 model Marcus A. C. Torres C. A. Ballon Bayona H. Boschi-Filho N. Braga Instituto de Física Universidade Federal do Rio de Janeiro Light-Cone 2009: Relativistic Hadronic

More information

Holographic QCD. M. Stephanov. U. of Illinois at Chicago. Holographic QCD p. 1/2

Holographic QCD. M. Stephanov. U. of Illinois at Chicago. Holographic QCD p. 1/2 Holographic QCD p. 1/2 Holographic QCD M. Stephanov U. of Illinois at Chicago Holographic QCD p. 2/2 Motivation and plan Large N c : planar diagrams dominate resonances are infinitely narrow Effective

More information

The chiral anomaly and the eta-prime in vacuum and at low temperatures

The chiral anomaly and the eta-prime in vacuum and at low temperatures The chiral anomaly and the eta-prime in vacuum and at low temperatures Stefan Leupold, Carl Niblaeus, Bruno Strandberg Department of Physics and Astronomy Uppsala University St. Goar, March 2013 1 Table

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 1 Introduction The use of symmetry, as has previously shown, provides insight to extensions of present physics into physics

More information

A New Perspectives on QCD Condensates and Dark Energy. Stan Brodsky. Applications of AdS/QCD and Light-Front Holography to Hadron Physics

A New Perspectives on QCD Condensates and Dark Energy. Stan Brodsky. Applications of AdS/QCD and Light-Front Holography to Hadron Physics Applications of AdS/QCD and Light-Front Holography to Hadron Physics A New Perspectives on QCD Condensates and Dark Energy Experimental and Theoretical Challenges to Probing Dark Energy A Workshop sponsored

More information

arxiv: v1 [hep-ph] 30 Nov 2018

arxiv: v1 [hep-ph] 30 Nov 2018 Dynamical spin effects in the pseudoscalar nonet within holographic QCD arxiv:1811.1886v1 [hep-ph] 3 Nov 18 Mohammad Ahmady Physics Department, Mount Allison University, New-Brunswick, E4L 1E6, Canada

More information

Quark Structure of the Pion

Quark Structure of the Pion Quark Structure of the Pion Hyun-Chul Kim RCNP, Osaka University & Department of Physics, Inha University Collaborators: H.D. Son, S.i. Nam Progress of J-PARC Hadron Physics, Nov. 30-Dec. 01, 2014 Interpretation

More information

In-medium properties of the nucleon within a pirho-omega model. Ju-Hyun Jung in collaboration with Hyun-Chul Kim and Ulugbek Yakhshiev

In-medium properties of the nucleon within a pirho-omega model. Ju-Hyun Jung in collaboration with Hyun-Chul Kim and Ulugbek Yakhshiev In-medium properties of the nucleon within a pirho-omega model Ju-Hyun Jung in collaboration with Hyun-Chul Kim and Ulugbek Yakhshiev Outline 1. In-medium modified π ρ ω mesonic Lagrangian 2. Structure

More information

Shape and Structure of the Nucleon

Shape and Structure of the Nucleon Shape and Structure of the Nucleon Volker D. Burkert Jefferson Lab Science & Technology Peer Review June 25-27, 2003 8/7/2003June 25, 2003 Science & Technology Review 1 Outline: From form factors & quark

More information

Single Spin Asymmetry at large x F and k T

Single Spin Asymmetry at large x F and k T 1 Single Spin Asymmetry at large x F and k T Paul Hoyer University of Helsinki Workshop on Transverse momentum, spin, and position distributions of partons in hadrons ECT*, 11-15 June 2007 PH and M. Järvinen,

More information

Singular Charge Density at the Center of the Pion?

Singular Charge Density at the Center of the Pion? Singular Charge Density at the Center of the Pion? Gerald A. Miller University of Washington arxive:0901.11171 INT program Jlab-12 Fall 09 www.int.washington.edu/programs/09-3.html Why study the pion?

More information

Fixed Angle Scattering and the Transverse Structure of Hadrons

Fixed Angle Scattering and the Transverse Structure of Hadrons Fixed Angle Scattering and the Transverse Structure of Hadrons Exclusive Reactions at High Momentum Transfer Jefferson Accelerator Facility, May. 18, 2010 George Sterman, Stony Brook Some classic results

More information

Holographic study of magnetically induced QCD effects:

Holographic study of magnetically induced QCD effects: Holographic study of magnetically induced QCD effects: split between deconfinement and chiral transition, and evidence for rho meson condensation. Nele Callebaut, David Dudal, Henri Verschelde Ghent University

More information

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple Symmetry Groups Symmetry plays an essential role in particle theory. If a theory is invariant under transformations by a symmetry group one obtains a conservation law and quantum numbers. For example,

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

How I learned to stop worrying and love the tachyon

How I learned to stop worrying and love the tachyon love the tachyon Max Planck Institute for Gravitational Physics Potsdam 6-October-2008 Historical background Open string field theory Closed string field theory Experimental Hadron physics Mesons mass

More information

Hadrons in a holographic approach to finite temperature (and density) QCD

Hadrons in a holographic approach to finite temperature (and density) QCD Hadrons in a holographic approach to finite temperature (and density) QCD Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau, S. Nicotri EMMI Workshop:

More information

Higher Fock states and power counting in exclusive charmonium decays

Higher Fock states and power counting in exclusive charmonium decays Higher Fock states and power counting in exclusive charmonium decays WU B 98-15 hep-ph/9807470 P. Kroll 1 arxiv:hep-ph/9807470v1 23 Jul 1998 Fachbereich Physik, Universität Wuppertal Gaußstrasse 20, D-42097

More information

QCD and Light-Front Holography

QCD and Light-Front Holography SLAC-PUB-15288 QCD and Light-Front Holography Stanley J. Brodsky SLAC National Accelerator Laboratory Stanford University, Stanford, CA 94309, USA Guy F. de Téramond Universidad de Costa Rica, San José,

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

Quark Orbital Angular Momentum in the Model

Quark Orbital Angular Momentum in the Model Quark Orbital Angular Momentum in the Model Barbara Pasquini, Feng Yuan Pavia, INFN, Italy LBNL and RBRC-BNL, USA Ref: Pasquini, Yuan, work in progress 9/22/2010 1 Proton Spin Sum Quark spin ~30% DIS,

More information

T. Goldman (T-2, Los Alamos)

T. Goldman (T-2, Los Alamos) Physical Degrees of Freedom for Gauge Fields and the Question of Spin T. Goldman (T-2, Los Alamos) work with X.S.Chen, X.F.Lu, Sichuan Univ. W.M.Sun, Fan Wang, Nanjing Univ. Outline I. Spin, boosts and

More information

Covariant quark-diquark model for the N N electromagnetic transitions

Covariant quark-diquark model for the N N electromagnetic transitions Covariant quark-diquark model for the N N electromagnetic transitions Gilberto Ramalho CFTP, Instituto Superior Técnico, Lisbon In collaboration with F. Gross, M.T. Peña and K. Tsushima Nucleon Resonance

More information

OAM Peripheral Transverse Densities from Chiral Dynamics. Carlos Granados in collaboration with Christian Weiss. QCD Evolution 2017.

OAM Peripheral Transverse Densities from Chiral Dynamics. Carlos Granados in collaboration with Christian Weiss. QCD Evolution 2017. OAM Peripheral Transverse Densities from Chiral Dynamics Carlos Granados in collaboration with Christian Weiss Jefferson Lab QCD Evolution 2017 Jefferson Lab Newport News, VA Outline Motivation Transverse

More information

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk Final Exam Instructions: Please write clearly. Do not just answer the questions, but document the thoughts leading

More information

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems?

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? Presented by Eric Moffat Old Dominion University Paper written in collaboration with Wally Melnitchouk, Ted Rogers, and

More information

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

Nucleon form factors and moments of GPDs in twisted mass lattice QCD Nucleon form factors and moments of GPDs in twisted mass lattice QCD European Collab ora tion M. Constantinou, C. Alexandrou, M. Brinet, J. Carbonell P. Harraud, P. Guichon, K. Jansen, C. Kallidonis, T.

More information

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1 High Energy Physics Lecture 9 Deep Inelastic Scattering Scaling Violation HEP Lecture 9 1 Deep Inelastic Scattering: The reaction equation of DIS is written e+ p e+ X where X is a system of outgoing hadrons

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Monday 7 June, 004 1.30 to 4.30 PAPER 48 THE STANDARD MODEL Attempt THREE questions. There are four questions in total. The questions carry equal weight. You may not start

More information

Jacopo Ferretti Sapienza Università di Roma

Jacopo Ferretti Sapienza Università di Roma Jacopo Ferretti Sapienza Università di Roma NUCLEAR RESONANCES: FROM PHOTOPRODUCTION TO HIGH PHOTON VIRTUALITIES ECT*, TRENTO (ITALY), -6 OCTOBER 05 Three quark QM vs qd Model A relativistic Interacting

More information

arxiv: v2 [nucl-th] 22 Jul 2013

arxiv: v2 [nucl-th] 22 Jul 2013 Broken Chiral Symmetry on a Null Plane arxiv:1302.1600v2 [nucl-th] 22 Jul 2013 Silas R. Beane 1 Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Universität Bonn, D-53115 Bonn, Germany beane@hiskp.uni-bonn.de

More information

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE rhtjhtyhy EINN 2017 NOVEMBER 1, 2017 PAPHOS, CYPRUS THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE KAWTAR HAFIDI Argonne National Laboratory is a U.S. Department of Energy laboratory

More information

Nucleon and photon structure functions at small x in a holographic QCD model

Nucleon and photon structure functions at small x in a holographic QCD model Nucleon and photon structure functions at small x in a holographic QCD model Akira Watanabe (Institute of Physics, Academia Sinica) This talk is based on: AW, Katsuhiko Suzuki, PRD89, 115015 (2014) AW,

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information