Jacopo Ferretti Sapienza Università di Roma

Size: px
Start display at page:

Download "Jacopo Ferretti Sapienza Università di Roma"

Transcription

1 Jacopo Ferretti Sapienza Università di Roma NUCLEAR RESONANCES: FROM PHOTOPRODUCTION TO HIGH PHOTON VIRTUALITIES ECT*, TRENTO (ITALY), -6 OCTOBER 05

2 Three quark QM vs qd Model A relativistic Interacting qd Model Ferretti, Vassallo and Santopinto, PRC83, (0) Nonstrange baryon spectrum Extension to strange baryons Santopinto and Ferretti, PRC9, 050 (05) A relativistic Interacting qd Model with a spin-isospin transition interaction De Sanctis et al., arxiv: Improved nonstrange spectrum and scalaraxial-vector diquark mixing effects

3 Several versions: Isgur and Karl, Capstick and Isgur, U(7), Graz, Hypercentral QM Some differences, but share main features: ) based on the effective degrees of freedom of three constituent quarks ) (linear) confining potential 3) states classified within SU sf (6) Reproduce reasonably well many observables: baryon magnetic moments, lower part of baryon spectrum, open-flavor decays They have some problems, including that of the missing resonances 3

4 States predicted by quark models with no corresponding experimental counterparts QMs predict eccessive number of states Possible explanations: ) Some baryon states may be very weakly coupled to single-pion channels. Look for two-pion, three-pion, eta decay channels ) Consider models based on smaller number of effective degrees of freedom (like quark-diquark model): number of missing states decreases notably 4

5 Diquark: two strongly correlated quarks, with no internal spatial excitations (Ψ space symmetric) Diquark as effective bosonic degree of freedom Diquark wave function is antisymmetric: Ψ D = Ψ space Ψ color Ψ spin-flavor Baryon in color-singlet: Ψ color is antisymmetric Diquark spin-flavor wave function is symmetric 5 spin-flavor representation is neglected 5

6 0(A) and 70(MA) representations neglected in quark-diquark models Thus, the number of states decreases with respect to three quark QMs 6

7 Model mass formula M = E 0 + q + m + q + m + M dir + M ex + M cont m and m : quark and diquark masses Direct + exchange + contact terms Eigenvalues à numerical variational procedure with h.o. trial wave functions Model parameters (4) fitted to data FERRETTI, VASSALLO AND SANTOPINTO, PRC83, (0) 7

8 Direct Term Smeared Coulomb-like M dir = τ r ( e µr )+ βr Exchange Term Linear confining! M ex = ( ) L+ e σ r [A s s!! s + A I t t! + A Contact Term SI ( s! s! )( t! t! )] M cont η3 e η π 3/ r δ simulating function INTRODUCED TO REPRODUCE Δ-N MASS SPLITTING FERRETTI, VASSALLO AND SANTOPINTO, PRC83, (0) 8

9 TABLE I. Resulting values for the model parameters. m q = 00 MeV m S = 600 MeV m AV = 950 MeV τ =.5 µ = 75.0fm β =.5 fm A S = 375 MeV A I = 60 MeV A SI = 375 MeV σ =.7 fm E 0 = 54 MeV D = 4.66 fm η = 0.0fm ϵ = 0.00 FERRETTI, VASSALLO AND SANTOPINTO, PRC83, (0) 9

10 M GeV.0.5 N(680) *** and **** PDG states below GeV J P FERRETTI, VASSALLO AND SANTOPINTO, PRC83, (0) 0

11 Resonance Status M expt J P L P S s n r M calc (MeV) (MeV) N(939) P **** 939 N(440) P **** N(50) D 3 **** N(535) S **** N(650) S **** N(675) D 5 **** N(680) F 5 **** N(700) D 3 *** N(70) P *** N(70) P 3 **** (3) P 33 **** 3 33 (600) P 33 *** (60) S 3 **** (700) D 33 **** (900) S 3 ** (905) F 35 **** (90) P 3 **** (90) P 33 *** (930) D 35 *** (950) F 37 **** N(00) P * N(090) S * N(900) P 3 ** N(080) D 3 ** (750) P 3 * (940) D 33 * , , No missing states below GeV FERRETTI, VASSALLO AND SANTOPINTO, PRC83, (0)

12 Mass formula M = E 0 + q + m + q + m + M dir + M ex + M cont Exchange potential is generalized to Gürsey-Radicati inspired interaction! M ex = ( ) L+ e σ r [A s s!! s + A I t!! t + A F λ! λ ] λ s are SU(3) Gell-Mann matrices Results updated to most recent exp. data. Global fit to strange & nonstrange baryons SANTOPINTO AND FERRETTI, PRC9, 050 (05)

13 Parameter Value Value Parameter Value Value (fit ) (fit ) (fit ) (fit ) m n 00 MeV 59 MeV m s 550 MeV 3 Mev m [n,n] 600 MeV 607 MeV m [n,s] 900 MeV 856 MeV m {n,n} 950 MeV 963 MeV m {n,s} 00 MeV 6 MeV m {s,s} 580 MeV 35 MeV τ.0.0 µ 75.0 fm 8.4 fm β.5 fm.36 fm A S 350 MeV 436 MeV A F 00 MeV 93 MeV A I 50 MeV 79 MeV σ.30 fm.5 fm E 0 4 MeV 50 MeV ϵ 0.37 D 6.3 fm η.0 fm SANTOPINTO AND FERRETTI, PRC9, 050 (05) 3

14 spin = 0 and, respectively, for simplicity here we use the notation of Refs. [39,4]. { } Resonance Status M exp. (MeV) J P L P S s n r M calc. (fit ) (MeV) N(939) P **** 939 N(440) P **** N(50) D 3 **** N(535) S **** N(650) S **** N(675) D 5 **** N(680) F 5 **** N(700) D 3 *** N(70) P *** N(70) P 3 **** missing states N(875) D 3 *** N(880) P ** N(895) S ** N(900) P 3 *** (3) **** SANTOPINTO AND FERRETTI, PRC9, 050 (05) 4

15 = { } Resonance Status M exp. (MeV) J P L P S s n r M calc. (fit ) (MeV) + (3) (939) P 33 **** (600) P 33 *** (60) S 3 **** (700) D 33 **** (750) P 3 * (900) S 3 ** (905) F 35 **** (90) P 3 **** (90) P 33 *** (930) D 35 *** (940) D 33 ** (950) F 37 **** No missing states below GeV 5

16 M GeV.0 M GeV J P J P *** and **** PDG states below GeV SANTOPINTO AND FERRETTI, PRC9, 050 (05) 6

17 Resonance Status M exp. J P L P S s Q q F F I t n r M calc. (fit ) (MeV) (MeV) (93) P **** (60) S ** 60 (660) P *** (670) D 3 **** (750) S *** (770) P * 770 (775) D 5 **** (880) P ** 880 (95) F 5 **** (940) D 3 *** missing state (000) S * 000 (385) P 3 **** (840) P 3 * 840 (080) P 3 ** [n,s]n {n,n}s {n,n}s {n,n}s [n,s]n {n,s}n {n,n}s [n,s]n [n,s]n [n,s]n {n,n}s {n,n}s {n,n}s {n,s}n {n,n}s

18 TABLE VI. As Table V,butfor -, -, and -type resonances. Resonance Status M exp. J P L P S s Q q F F I t n r M calc. (fit ) (MeV) (MeV) (38) P **** 35 3 (80) D 3 *** missing states (530) P 3 **** (67) P 03 **** [n,s]s {n,s}s [n,s]s [n,s]s {s,s}n {n,s}s {n,s}s {s,s}n {s,s}s

19 = M GeV Λ * (405) J P *** and **** PDG states below GeV SANTOPINTO AND FERRETTI, PRC9, 050 (05) 9

20 Resonance Status M exp. J P L P S s Q q F F I t n r M calc. (fit ) (MeV) (MeV) (6) P 0 **** 6 (600) P 0 *** (670) S 0 **** (690) D 03 **** (800) S 0 *** (80) P 0 *** (80) F 05 **** (830) D 05 **** (890) P 03 **** (405) S 0 **** (50) D 03 **** missing states [n,n]s [n,s]n [n,n]s [n,n]s [n,s]n {n,s}n [n,n]s [n,s]n [n,n]s [n,n]s {n,s}n {n,s}n {n,s}n [n,s]n {n,s}n {n,s}n [n,n]s [n,n]s [n,s]n [n,s]n [n,n]s [n,n]s [n,s]n [n,s]n 3 0 SANTOPINTO AND FERRETTI, PRC9, 050 (05)

21 SI transition interaction mixes scalar and axial-vector diquark components Motivations:. Improve reproduction of nonstrange baryon spectrum. Introduce axial-vector diquark component in nucleon WF Better reproduction of nucleon e.m. form factors expected De Sanctis et al. PRC84, 0550 (0) Other observables can also be computed

22 H = E 0 + q + m + q + m + M dir + M ex + M cont + M tr M tr = V 0 e ν r (! s! S)(! t! T ) S and T are spin and isospin transition operators DE SANCTIS ET AL., ARXIV:

23 m q =40MeV m S =50MeV m AV =360MeV τ =.3 µ =5fm β =.57 fm A S =5MeV A I =85MeV A SI =350MeV σ =0.60 fm E 0 =86MeV D =.00 fm η =0.0 fm V 0 =450MeV ν =0.35 fm DE SANCTIS ET AL., ARXIV:

24 M GeV N(680) J P DE SANCTIS ET AL., ARXIV:

25 Resonance Status M exp. J P L P S s n r M calc. (MeV) (MeV) Resonance Status M exp. J P L P S s n r M calc. (MeV) (MeV) 0 + N(939) P **** 939 0, N(440) P **** , 4 N(50) D 3 **** , N(535) S **** , N(650) S **** N(675) D 5 **** N(680) F 5 **** , N(700) D 3 *** N(70) P *** , 639 N(70) P 3 **** , N(875) D 3 *** , 866 N(880) P ** , N(895) S ** , 866 N(900) P 3 *** missing missing state + + 0, 990 N(000) F 5 ** , 990 (3) P 33 **** (600) P 33 *** (60) S 3 **** (700) D 33 **** (750) P 3 * (900) S 3 ** (905) F 35 **** (90) P 3 **** (90) P 33 *** (930) D 35 *** (940) D 33 ** (950) F 37 ****

26 The SI interaction allows scalar and axialvector diquarks components in nucleon WF with probability: State Scalar component Axial- vector component N 53% 47% N(440) 5% 49% Δ(3) 0 00% Important also in the calculation of several other observables: e.m. form factors, openflavor decays, magnetic moments, DE SANCTIS ET AL., ARXIV:

27 Rel. Interacting qd Model extended to heavy baryons Baryon magnetic moments in qd model Improved nucleon elastic and transition (helicity amplitudes) e.m. form factors Open-flavor decays in a qd model 7

28 Three quark QM vs qd Model A relativistic Interacting qd Model Ferretti, Vassallo and Santopinto, PRC83, (0) Nonstrange baryon spectrum Extension to strange baryons Santopinto and Ferretti, PRC9, 050 (05) A relativistic Interacting qd Model with a spin-isospin transition interaction De Sanctis et al., arxiv: Improved nonstrange spectrum and scalaraxial-vector diquark mixing effects 8

29 Thank you for you attention! 9

30 30

31 Operator: M tr (r) =V 0 e ν r ( s S)( t T ) Matrix elements defined as: s,m s S [] µ s,m s =0fors s S 0 = 0 S = DE SANCTIS ET AL., ARXIV:

32 Point Form Relativistic Dynamics Point Form is one of the Relativistic Hamiltonian Dynamics for a fixed number of particles (Dirac) Construction of a representation of the Poincaré generators P µ (tetramomentum), J k (angular momenta), K i (boosts) obeying the Poincaré group commutation relations in particular [P k, K i ] = i δ kj H Three forms: Light (LF), Instant (IF), Point (PF) Differ in the number and type of (interaction) free generators 3

33 Point form: P µ interaction dependent J k and K i free Composition of angular momentum states as in the non relativistic case Mass operator M = M 0 + M I M 0 = Σ i p i + m Σ i p i = 0 P i undergo the same Wigner rotation -> M 0 is invariant The eigenstates of the relativistic qd Model are interpreted as eigenstates of the mass operator M Moving three-quark states are obtained through (interaction free) Lorentz boosts (velocity states) 33

The Interac+ng Quark Diquark Model

The Interac+ng Quark Diquark Model The Interac+ng Quark Diquark Model qd model Diquark Two strongly correlated quarks (S wave) Baryon in c color representazion à diquark in bar- 3 c Diquark WF: Ψ D (spin- flavor) antysymmetric à 5 (A) repr.

More information

Unquenching the quark model

Unquenching the quark model Unquenching the quark model E. Santopinto (INFN Genoa) and R.Bijker (UNAM). Critical Stability, 9-15 october 2011 Outline of the talk Quark models Spectrum Strong decays e.m. Elastic Form Factors e.m.

More information

Gian Gopal Particle Attributes Quantum Numbers 1

Gian Gopal Particle Attributes Quantum Numbers 1 Particle Attributes Quantum Numbers Intro Lecture Quantum numbers (Quantised Attributes subject to conservation laws and hence related to Symmetries) listed NOT explained. Now we cover Electric Charge

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

Istituto Nazionale Fisica Nucleare

Istituto Nazionale Fisica Nucleare Istituto Nazionale Fisica Nucleare Sezione SANITÀ Istituto Superiore di Sanità Viale Regina Elena 99 I-00161 Roma, Italy INFN-ISS 96/8 September 1996 arxiv:nucl-th/9609047v 11 Feb 1997 Electroproduction

More information

Istituto Nazionale Fisica Nucleare

Istituto Nazionale Fisica Nucleare arxiv:nucl-th/99925v1 13 Sep 1999 Istituto Nazionale Fisica Nucleare Sezione di ROMA Piazzale Aldo Moro, 2 I-185 Roma, Italy INFN-1263/99 September 1999 A light-front description of electromagnetic form

More information

Istituto Nazionale Fisica Nucleare

Istituto Nazionale Fisica Nucleare Istituto Nazionale Fisica Nucleare Sezione SANITÀ Istituto Superiore di Sanità Viale Regina Elena 99 I-00161 Roma, Italy INFN-ISS 96/8 September 1996 arxiv:nucl-th/9609047v1 1 Sep 1996 Electroproduction

More information

Covariant quark-diquark model for the N N electromagnetic transitions

Covariant quark-diquark model for the N N electromagnetic transitions Covariant quark-diquark model for the N N electromagnetic transitions Gilberto Ramalho CFTP, Instituto Superior Técnico, Lisbon In collaboration with F. Gross, M.T. Peña and K. Tsushima Nucleon Resonance

More information

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron Ralf W. Gothe Nucleon Resonances: From Photoproduction to High Photon October 12-16, 2015, ECT*, Trento, Italy

More information

arxiv: v1 [nucl-th] 17 Nov 2015

arxiv: v1 [nucl-th] 17 Nov 2015 Hadron Spectroscopy in the Unquenched Quark Model arxiv:1511.05316v1 [nucl-th] 17 Nov 2015 H. García-Tecocoatzi 1,2, R. Bijker 1, J. Ferretti 3, E. Santopinto 2 1 Instituto de Ciencias Nucleares, Universidad

More information

Valence quark contributions for the γn P 11 (1440) transition

Valence quark contributions for the γn P 11 (1440) transition Valence quark contributions for the γn P 11 (144) transition Gilberto Ramalho (Instituto Superior Técnico, Lisbon) In collaboration with Kazuo Tsushima 12th International Conference on Meson-Nucleon Physics

More information

Istituto Nazionale Fisica Nucleare

Istituto Nazionale Fisica Nucleare @keyginfigure @keyginfile @keyginprolog @keyginsilent[] @ Istituto Nazionale Fisica Nucleare @ Sezione SANITÀ Istituto Superiore di Sanità Viale Regina Elena 99 I-00161 Roma, Italy INFN-ISS 96/8 September

More information

arxiv: v1 [nucl-th] 29 Jun 2015

arxiv: v1 [nucl-th] 29 Jun 2015 Elastic nucleon form factors arxiv:1506.08570v1 [nucl-th] 9 Jun 015 M. De Sanctis INFN, Sezione di Roma1, Piazzale Aldo Moro, Roma (Italy) and Universidad Nacional de Colombia, Bogotà (Colombia) M.M. Giannini,

More information

Quark Model History and current status

Quark Model History and current status Quark Model History and current status Manon Bischoff Heavy-Ion Seminar 2013 October 31, 2013 Manon Bischoff Quark Model 1 Outline Introduction Motivation and historical development Group theory and the

More information

Homework 3: Group Theory and the Quark Model Due February 16

Homework 3: Group Theory and the Quark Model Due February 16 Homework 3: Group Theory and the Quark Model Due February 16 1. Lorentz Group. From the defining requirement that a Lorentz transformation implemented by a matrix Λ leave the metric invariant: Λ µ ρη ρσ

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 22 Fermi Theory Standard Model of Particle Physics SS 22 2 Standard Model of Particle Physics SS 22 Fermi Theory Unified description of all kind

More information

arxiv:hep-ph/ v3 15 Mar 2006

arxiv:hep-ph/ v3 15 Mar 2006 The [56,4 + ] baryons in the 1/N c expansion N. Matagne and Fl. Stancu University of Liège, Institute of Physics B5, Sart Tilman, B-4000 Liège 1, Belgium (Dated: February, 008) arxiv:hep-ph/040961v 15

More information

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction Lecture 5 Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction WS0/3: Introduction to Nuclear and Particle Physics,, Part I I. Angular Momentum Operator Rotation R(θ): in polar coordinates the

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 23 Fermi Theory Standard Model of Particle Physics SS 23 2 Standard Model of Particle Physics SS 23 Weak Force Decay of strange particles Nuclear

More information

Charmed Baryons Productions and decays

Charmed Baryons Productions and decays Charmed Baryons Productions and decays Atsushi Hosaka RCNP, Osaka University Reimei( ), Jan.17-20, 2016 Collaborators: Noumi, Shirotori, Kim, Sadato, Yoshida, Oka, Hiyama, Nagahiro, Yasui PTEP 2014 (2014)

More information

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo Lecture 2 Quark Model The Eight Fold Way Adnan Bashir, IFM, UMSNH, Mexico August 2014 Culiacán Sinaloa The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry

More information

Invariance Principles and Conservation Laws

Invariance Principles and Conservation Laws Invariance Principles and Conservation Laws Outline Translation and rotation Parity Charge Conjugation Charge Conservation and Gauge Invariance Baryon and lepton conservation CPT Theorem CP violation and

More information

The missing resonance problem. E. Santopinto INFN KL2016, 1-3 february 2016

The missing resonance problem. E. Santopinto INFN KL2016, 1-3 february 2016 The missing resonance problem E. Santopinto INFN KL2016, 1-3 february 2016 N* SPECTRUM Missing resonance problem What are collective modes? What is the structure of the states? m = 396 MeV π" Dudek et

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Properties of the proton and neutron in the quark model

Properties of the proton and neutron in the quark model Properties of the proton and neutron in the quark model A good way to introduce the ideas encoded in the quark model is to understand how it simply explains properties of the ground-state baryons and mesons

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Overview of N* Physics

Overview of N* Physics N* analysis white paper mtg. 11/4/06-1 Overview of N* Physics Why study excited states of the nucleon? What do we know about N* states? What are the goals of the N* program? What developments are required

More information

T 1! p k. = T r! k., s k. ', x' ] = i!, s y. ', s y

T 1! p k. = T r! k., s k. ', x' ] = i!, s y. ', s y Time Reversal r k ' = r k = T r k T 1 p k ' = p k, s k ' = s k T cannot be represented by an unitary operator. Unitary opera$ons preserve algebraic rela$ons between operators, while T changes the sign

More information

Space-Time Symmetries

Space-Time Symmetries Space-Time Symmetries Outline Translation and rotation Parity Charge Conjugation Positronium T violation J. Brau Physics 661, Space-Time Symmetries 1 Conservation Rules Interaction Conserved quantity strong

More information

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron.

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron. Particle Physics Positron - discovered in 1932, same mass as electron, same charge but opposite sign, same spin but magnetic moment is parallel to angular momentum. Electron-positron pairs can be produced

More information

Weak interactions, parity, helicity

Weak interactions, parity, helicity Lecture 10 Weak interactions, parity, helicity SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Weak decay of particles The weak interaction is also responsible for the β + -decay of atomic

More information

L. David Roper

L. David Roper The Heavy Proton L. David Roper mailto:roperld@vt.edu Introduction The proton is the nucleus of the hydrogen atom, which has one orbiting electron. The proton is the least massive of the baryons. Its mass

More information

Discrete Transformations: Parity

Discrete Transformations: Parity Phy489 Lecture 8 0 Discrete Transformations: Parity Parity operation inverts the sign of all spatial coordinates: Position vector (x, y, z) goes to (-x, -y, -z) (eg P(r) = -r ) Clearly P 2 = I (so eigenvalues

More information

Tetraquarks in a diquark-antidiquark model

Tetraquarks in a diquark-antidiquark model Tetraquarks in a diquark-antidiquark model Giuseppe Galatà and Elena Santopinto I.N.F.N. and Università di Genova ICN-UNAM ATHOS 2012, 20-22 June 2012, Camogli, Italy Classification of diquark states Our

More information

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group)

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group) Daisuke Jido (Nuclear physics group) Hadrons (particles interacting with strong interactions) are composite objects of quarks and gluons. It has been recently suggested that the structures of some hadrons

More information

Isospin. K.K. Gan L5: Isospin and Parity 1

Isospin. K.K. Gan L5: Isospin and Parity 1 Isospin Isospin is a continuous symmetry invented by Heisenberg: Explain the observation that the strong interaction does not distinguish between neutron and proton. Example: the mass difference between

More information

Structure and reactions of Θ +

Structure and reactions of Θ + Structure and reactions of Θ + Atsushi Hosaka (RCNP, Osaka Univ) hep-ph/0507105 E. Hiyama, Kamimura, Yahiro, A.H., and Toki hep-ph/0505134, hep-ph/0503149 to appear PRD S.I. Nam, A. Hosaka and H.-Ch. Kim

More information

Lecture 9 Valence Quark Model of Hadrons

Lecture 9 Valence Quark Model of Hadrons Lecture 9 Valence Quark Model of Hadrons Isospin symmetry SU(3) flavour symmetry Meson & Baryon states Hadronic wavefunctions Masses and magnetic moments Heavy quark states 1 Isospin Symmetry Strong interactions

More information

Tetraquarks and Goldstone boson physics

Tetraquarks and Goldstone boson physics Tetraquarks and Goldstone boson physics Christian S. Fischer Justus Liebig Universität Gießen February 2017 Eichmann, CF, Heupel, PLB 753 (2016) 282-287 Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

Quark Model. Mass and Charge Patterns in Hadrons. Spin-1/2 baryons: Nucleons: n: MeV; p: MeV

Quark Model. Mass and Charge Patterns in Hadrons. Spin-1/2 baryons: Nucleons: n: MeV; p: MeV Mass and Charge Patterns in Hadrons To tame the particle zoo, patterns in the masses and charges can be found that will help lead to an explanation of the large number of particles in terms of just a few

More information

January 31, PHY357 Lecture 8. Quark composition of hadrons. Hadron magnetic moments. Hadron masses

January 31, PHY357 Lecture 8. Quark composition of hadrons. Hadron magnetic moments. Hadron masses January 3, 08 PHY357 Lecture 8 Quark composition of hadrons Hadron magnetic moments Hadron masses January 3, 08 Quark rules for building Hadrons! Three types of stable quark configurations established!

More information

Problem Set # 1 SOLUTIONS

Problem Set # 1 SOLUTIONS Wissink P640 Subatomic Physics I Fall 2007 Problem Set # 1 S 1. Iso-Confused! In lecture we discussed the family of π-mesons, which have spin J = 0 and isospin I = 1, i.e., they form the isospin triplet

More information

Charm baryon spectroscopy from heavy quark symmetry

Charm baryon spectroscopy from heavy quark symmetry Charm baryon spectroscopy from heavy quark symmetry Phys. Rev. D91, 014031 (2015) Tokyo Institute of Technology Shigehiro YASUI Hadrons and Hadron Interaction in QCD (HHIQCD 2015)@YITP, 16 Feb. 20 Mar.

More information

Highlights on hadron physics at CLAS. K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011

Highlights on hadron physics at CLAS. K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011 Highlights on hadron physics at CLAS K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011 Outline Meson-Baryon Cloud (MBC) Effects New results on baryon photocouplings Need for coupled-channels analysis

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

The Quark Parton Model

The Quark Parton Model The Quark Parton Model Quark Model Pseudoscalar J P = 0 Mesons Vector J P = 1 Mesons Meson Masses J P = 3 /2 + Baryons J P = ½ + Baryons Resonances Resonance Detection Discovery of the ω meson Dalitz Plots

More information

Physics 125 Course Notes Identical Particles Solutions to Problems F. Porter

Physics 125 Course Notes Identical Particles Solutions to Problems F. Porter Physics 5 Course Notes Identical Particles Solutions to Problems 00 F. Porter Exercises. Let us use the Pauli exclusion principle, and the combination of angular momenta, to find the possible states which

More information

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers.

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers. 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline : Number Conservation Rules Based on the experimental observation of particle interactions a number of particle

More information

Discovery of Pions and Kaons in Cosmic Rays in 1947

Discovery of Pions and Kaons in Cosmic Rays in 1947 Discovery of Pions and Kaons in Cosmic Rays in 947 π + µ + e + (cosmic rays) Points to note: de/dx Bragg Peak Low de/dx for fast e + Constant range (~600µm) (i.e. -body decay) small angle scattering Strange

More information

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion Weak Interactions OUTLINE CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion CHARGED WEAK INTERACTIONS OF QUARKS - Cabibbo-GIM Mechanism - Cabibbo-Kobayashi-Maskawa

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

129 Lecture Notes More on Dirac Equation

129 Lecture Notes More on Dirac Equation 19 Lecture Notes More on Dirac Equation 1 Ultra-relativistic Limit We have solved the Diraction in the Lecture Notes on Relativistic Quantum Mechanics, and saw that the upper lower two components are large

More information

Lecture 8. CPT theorem and CP violation

Lecture 8. CPT theorem and CP violation Lecture 8 CPT theorem and CP violation We have seen that although both charge conjugation and parity are violated in weak interactions, the combination of the two CP turns left-handed antimuon onto right-handed

More information

Problem Set # 4 SOLUTIONS

Problem Set # 4 SOLUTIONS Wissink P40 Subatomic Physics I Fall 007 Problem Set # 4 SOLUTIONS 1. Gee! Parity is Tough! In lecture, we examined the operator that rotates a system by 180 about the -axis in isospin space. This operator,

More information

wave functions PhD seminar- FZ Juelich, Feb 2013

wave functions PhD seminar- FZ Juelich, Feb 2013 SU(3) symmetry and Baryon wave functions Sedigheh Jowzaee PhD seminar- FZ Juelich, Feb 2013 Introduction Fundamental symmetries of our universe Symmetry to the quark model: Hadron wave functions q q Existence

More information

Lecture 11 Weak interactions, Cabbibo-angle. angle. SS2011: Introduction to Nuclear and Particle Physics, Part 2

Lecture 11 Weak interactions, Cabbibo-angle. angle. SS2011: Introduction to Nuclear and Particle Physics, Part 2 Lecture 11 Weak interactions, Cabbibo-angle angle SS2011: Introduction to Nuclear and Particle Physics, Part 2 1 Neutrino-lepton reactions Consider the reaction of neutrino-electron scattering: Feynman

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 013 Weak Interactions II 1 Important Experiments Wu-Experiment (1957): radioactive decay of Co60 Goldhaber-Experiment (1958): radioactive decay

More information

Quark model. Jan 30, 2006 Lecture 8 1

Quark model. Jan 30, 2006 Lecture 8 1 Quark model Jan 30, 2006 Lecture 8 1 Quark model of hadrons!!!! Developed long before QCD was recognized as the appropriate quantum field theory of the strong interactions Postulate that 1.! All baryons

More information

Physics 492 Lecture 28

Physics 492 Lecture 28 Physics 492 Lecture 28 Main points of last lecture: Feynman diagrams. Main points of today s lecture:. Nuclear forces: charge exchange pion exchange Yukawa force deuteron charge independence, isospin symmetry

More information

Lecture 16 V2. October 24, 2017

Lecture 16 V2. October 24, 2017 Lecture 16 V2 October 24, 2017 Recap: gamma matrices Recap: pion decay properties Unifying the weak and electromagnetic interactions Ø Recap: QED Lagrangian for U Q (1) gauge symmetry Ø Introduction of

More information

Photoexcitation of N* Resonances

Photoexcitation of N* Resonances Photoexcitation of N* Resonances Universita di Roma Tor Vergata and INFN Sezione di Roma II Baryonic resonances - N* The existence of N* resonances was observed for the first time in πn scattering, as

More information

x(1 x) b 2 dζ 2 m 2 1 x dζ 2 d dζ 2 + V (ζ) ] + k2 + m2 2 1 x k2 + m2 1 dζ 2 + m2 1 x + m2 2 LF Kinetic Energy in momentum space Holographic Variable

x(1 x) b 2 dζ 2 m 2 1 x dζ 2 d dζ 2 + V (ζ) ] + k2 + m2 2 1 x k2 + m2 1 dζ 2 + m2 1 x + m2 2 LF Kinetic Energy in momentum space Holographic Variable [ d dζ + V (ζ) ] φ(ζ) = M φ(ζ) m 1 de Teramond, sjb x ζ = x(1 x) b m b (1 x) Holographic Variable d dζ k x(1 x) LF Kinetic Energy in momentum space Assume LFWF is a dynamical function of the quark-antiquark

More information

Elementary Particles, Flavour Physics and all that...

Elementary Particles, Flavour Physics and all that... Elementary Particles, Flavour Physics and all that... 1 Flavour Physics The term Flavour physics was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins

More information

HOT HADRONIC MATTER. Hampton University and Jefferson Lab

HOT HADRONIC MATTER. Hampton University and Jefferson Lab 200 Cr oss sect ion (m b) 0 K ptotal 20 5 K pelastic 2 1 K N 1 1.6 2 3 4 2 5 6 7 8 9 20 30 3 40 THE ROLE OF BARYON RESONANCES IN Relativistic Heavy Ion Collider (RHIC) HOT HADRONIC MATTER Au+Au K d 2.5

More information

A Dyson-Schwinger equation study of the baryon-photon interaction.

A Dyson-Schwinger equation study of the baryon-photon interaction. A Dyson-Schwinger equation study of the baryon-photon interaction. Diana Nicmorus in collaboration with G. Eichmann A. Krassnigg R. Alkofer Jefferson Laboratory, March 24, 2010 What is the nucleon made

More information

Electroexcitation of Nucleon Resonances BARYONS 02

Electroexcitation of Nucleon Resonances BARYONS 02 Electroexcitation of Nucleon Resonances Volker D. Burkert Jefferson Lab BARYONS 02 9th International Conference on the Structure of Baryons March 3-8, 2002 1 Why N* s are important (Nathan Isgur, N*2000

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

Kern- und Teilchenphysik II Lecture 1: QCD

Kern- und Teilchenphysik II Lecture 1: QCD Kern- und Teilchenphysik II Lecture 1: QCD (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Marcin Chrzaszcz Dr. Annapaola De Cosa (guest lecturer) www.physik.uzh.ch/de/lehre/phy213/fs2017.html

More information

Quark-Hadron Duality in DIS Form Factors and. Drell-Yan Antiquark Flavor Asymmetries

Quark-Hadron Duality in DIS Form Factors and. Drell-Yan Antiquark Flavor Asymmetries Quark-Hadron Duality in DIS Form Factors and Peter Ehlers University of Minnesota, Morris University of Washington Mentor: Wally Melnitchouk Table of Contents 1 Quark-Hadron Duality in DIS Form Factors

More information

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Fall 2015 1 Course Overview Lecture 1: Introduction, Decay Rates and Cross Sections Lecture 2: The Dirac Equation and Spin

More information

Strange Charmed Baryons Spectroscopy

Strange Charmed Baryons Spectroscopy EPJ Web of Conferences 58, 03008 (07) QFTHEP 07 DOI: 0.05/epjconf/075803008 Strange Charmed Baryons Spectroscopy Elena Solovieva, Moscow Institute of Physics and Technology, 9 Institutskiy pereulok, Dolgoprudny,

More information

Baryon Spectroscopy: what do we learn, what do we need?

Baryon Spectroscopy: what do we learn, what do we need? Baryon Spectroscopy: what do we learn, what do we need? E. Klempt Helmholtz-Institut für Strahlen und Kernphysik Universität Bonn Nußallee 14-16, D-53115 Bonn, GERMANY e-mail: klempt@hiskp.uni-bonn.de

More information

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry Particle Physics JJ Thompson discovered electrons in 1897 Rutherford discovered the atomic nucleus in 1911 and the proton in 1919 (idea of gold foil expt) All science is either physics or stamp collecting

More information

Istituto Nazionale Fisica Nucleare

Istituto Nazionale Fisica Nucleare Istituto azionale Fisica ucleare Sezione SAITÀ Istituto Superiore di Sanità Viale Regina Elena 299 I-00161 Roma, Italy IF-ISS 97/7 July 1997 arxiv:nucl-th/9711024v1 12 ov 1997 The nucleon Drell-Hearn-Gerasimov

More information

Nucleon Resonance Physics

Nucleon Resonance Physics Nucleon Resonance Physics Volker D. Burkert Jefferson Lab Introduction Establishing the N* spectrum Identifying the effective DoF s Conclusions & outlook Q 2 (GeV 2 ) From the hydrogen spectrum to the

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Quarks and the Baryons

Quarks and the Baryons Quarks and the Baryons A Review of Chapter 15 of Particles and Nuclei by Povh Evan Phelps University of South Carolina Department of Physics and Astronomy phelps@physics.sc.edu March 18, 2009 Evan Phelps

More information

Quantum Field Theory. Ling-Fong Li. (Institute) Quark Model 1 / 14

Quantum Field Theory. Ling-Fong Li. (Institute) Quark Model 1 / 14 Quantum Field Theory Ling-Fong Li (Institute) Quark Model 1 / 14 QCD Quark Model Isospin symmetry To a good approximation, nuclear force is independent of the electromagnetic charge carried by the nucleons

More information

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst Electroweak Physics Krishna S. Kumar University of Massachusetts, Amherst Acknowledgements: M. Grunewald, C. Horowitz, W. Marciano, C. Quigg, M. Ramsey-Musolf, www.particleadventure.org Electroweak Physics

More information

This means that n or p form a doublet under isospin transformation. Isospin invariance simply means that. [T i, H s ] = 0

This means that n or p form a doublet under isospin transformation. Isospin invariance simply means that. [T i, H s ] = 0 1 QCD 1.1 Quark Model 1. Isospin symmetry In early studies of nuclear reactions, it was found that, to a good approximation, nuclear force is independent of the electromagnetic charge carried by the nucleons

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

Light-Front Hadronic Models

Light-Front Hadronic Models Light-Front Hadronic Models Siraj Kunhammed Wayne Polyzou Department of Physics and Astronomy The University of Iowa May 17, 2018 Siraj Kunhammed Wayne Polyzou (Department of Physics Light-Front and Astronomy

More information

Electroexcitation of Nucleon Resonances BARYONS 02

Electroexcitation of Nucleon Resonances BARYONS 02 Electroexcitation of Nucleon Resonances Volker D. Burkert Jefferson Lab BARYONS 02 9th International Conference on the Structure of Baryons March 3-8, 2002 1 Why Excitations of the Nucleon? (Nathan Isgur,

More information

arxiv:nucl-th/ v3 23 Jul 2001

arxiv:nucl-th/ v3 23 Jul 2001 Covariant axial form factor of the nucleon in a chiral constituent quark model L.Ya. Glozman a,b, M. Radici b, R.F. Wagenbrunn a, S. Boffi b, W. Klink c, and W. Plessas a arxiv:nucl-th/0105028v3 23 Jul

More information

The Strong Interaction

The Strong Interaction The Strong Interaction What is the quantum of the strong interaction? The range is finite, ~ 1 fm. Therefore, it must be a massive boson. Yukawa theory of the strong interaction Relativistic equation for

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu August 16 19, 018 Four Lectures The 3 rd WHEPS, August 16-4, 018, Weihai, Shandong q The Goal: The plan for my four lectures To understand the strong

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

Lecture 10. September 28, 2017

Lecture 10. September 28, 2017 Lecture 10 September 28, 2017 The Standard Model s QCD theory Comments on QED calculations Ø The general approach using Feynman diagrams Ø Example of a LO calculation Ø Higher order calculations and running

More information

2007 Section A of examination problems on Nuclei and Particles

2007 Section A of examination problems on Nuclei and Particles 2007 Section A of examination problems on Nuclei and Particles 1 Section A 2 PHYS3002W1 A1. A fossil containing 1 gramme of carbon has a radioactivity of 0.03 disintegrations per second. A living organism

More information

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira Lecture 5 QCD Symmetries & Their Breaking From Quarks to Hadrons Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry

More information

Quark Model. Ling-Fong Li. (Institute) Note 8 1 / 26

Quark Model. Ling-Fong Li. (Institute) Note 8 1 / 26 Quark Model Ling-Fong Li (Institute) Note 8 1 / 6 QCD Quark Model Isospin symmetry To a good approximation, nuclear force is independent of the electric charge carried by the nucleons charge independence.

More information

SU(3) systematization of baryons. Vadim Guzey. Theory Center, Jefferson Lab

SU(3) systematization of baryons. Vadim Guzey. Theory Center, Jefferson Lab SU(3) systematization of baryons Vadim Guzey Theory Center, Jefferson Lab In collaboration with M.V. Polyakov: V. Guzey, hep-ph/05176 V. Guzey and M.V. Polyakov, hep-ph/051355 Cake seminar, Theory Group,

More information

Physics at Hadron Colliders Partons and PDFs

Physics at Hadron Colliders Partons and PDFs Physics at Hadron Colliders Partons and PDFs Marina Cobal Thanks to D. Bettoni Università di Udine 1 2 How to probe the nucleon / quarks? Scatter high-energy lepton off a proton: Deep-Inelastic Scattering

More information

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Volker Credé Florida State University, Tallahassee, FL Spring Meeting of the American Physical Society Atlanta, Georgia,

More information

.! " # e " + $ e. have the same spin as electron neutrinos, and is ½ integer (fermions).

.!  # e  + $ e. have the same spin as electron neutrinos, and is ½ integer (fermions). Conservation Laws For every conservation of some quantity, this is equivalent to an invariance under some transformation. Invariance under space displacement leads to (and from) conservation of linear

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872)

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872) The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872) Carlos Hidalgo, J. Nieves and M. Pavón-Valderrama Hypernuclear and Strange Particle Physics 2012 IFIC (CSIC - Universitat de València)

More information

Fundamental Forces. David Morrissey. Key Concepts, March 15, 2013

Fundamental Forces. David Morrissey. Key Concepts, March 15, 2013 Fundamental Forces David Morrissey Key Concepts, March 15, 2013 Not a fundamental force... Also not a fundamental force... What Do We Mean By Fundamental? Example: Electromagnetism (EM) electric forces

More information

Introduction to particle physics Lecture 7

Introduction to particle physics Lecture 7 Introduction to particle physics Lecture 7 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Deep-inelastic scattering and the structure of protons 2 Elastic scattering Scattering on extended

More information