Strange Sea Contribution to the Nucleon Spin

Size: px
Start display at page:

Download "Strange Sea Contribution to the Nucleon Spin"

Transcription

1 Strange Sea Contribution to the Nucleon Spin Fatiha Benmokhtar Carnegie ellon University USA with A. l Alaoui Alaoui (LPC renoble France H. Avakian (JlabUSA K. Hafidi (ANL USA F. Benmokhtar RICH workshop 1

2 Strange Sea Contribution to the Nucleon Spin Outline Strange quark contributions to the nucleon properties (in general. Strange quark contribution to the nucleon spin. World data on ΔS Semi Inclusive DIS: - Five flavor tagging - Isosclar ethod DeltaS with CLAS1? F. Benmokhtar RICH workshop

3 Nucleon constituents P uud u u d d s s g... valence «sea virtual pairs» - The sea contains all flavors but the u and d sea can t be distinguished from the valence the heavier quarks (cbt are too heavy to contribute much Strange quark is the natural candidate to study the sea. With how much do virtual pairs contribute to the structure of the nucleon? ass? omentum? Charge & agnetisation and Spin? F. Benmokhtar RICH workshop 3

4 Strange Quark Contribution to the Nucleon Properties (in brief ass: Hyp -> π-n -> 130 ev 0 to 30 % with big theoretical uncertainties Longitudinal omentum: -Study the spectral functions q( -From unpol DI νμ-nucleon scattering (NuTeV 1. For <0.1 Difficult to connect with (s( s( d ~ 4% 0 ordinary observable lectromagnetic Form Factors: Parity violation eperiments: 0 HAPPX PVA4. γ p γ n Z p ( 1 4 θ s sin W Underway F. Benmokhtar RICH workshop 4

5 What about the contribution to the Nucleon Spin? N s 5 γ μ γ s N??? F. Benmokhtar RICH workshop 5

6 Strangeness Contribution to the Nucleon Spin 1 S Σ Σ 4 3 d 1 3 BUT In 1989 C measured Σ 0.10 ± > ~0 % of the nucleon spin!!! Spin Crisis! ± F. Benmokhtar RICH workshop 6

7 Strangeness Contribution to the Nucleon Spin S q -> luon spin Δ -> Sea quark spin Δq -> Orbital Angular omentum L and L q 1 Lattice Calculations predict: Δs 0. F. Benmokhtar RICH workshop 7

8 World Data on ΔS Polarized deep-inelastic inclusive scattering (SC Δu Δd Δs Δs 0.1± ± ν-p elastic scattering (734 BNL Δs 0.15 ± 0.09 Polarized Semi-Inclusive DIS (HRS * 5 flavor tagging published * Isoscalar method-> preliminary Δs ~ So far the results vary widely and the uncertainties are big N s 5 γ μ γ s N??? F. Benmokhtar RICH workshop 8

9 Semi Inclusive DIS σ ( e p e hx Sidis Selection: ν - Q /( ν y ν / W - ν -Q Q 4 sin (θ/ d σ dωd ' α Q 4 ' L μν W μν Hadron Selection: z h / ν F p / W F. Benmokhtar RICH workshop 9

10 Spin Asymmetries ρ ρ σ q ( S S 1/ σ q ( 1 / ~ γ N ρ ρ 3 / ~ Sγ SN 3/ Select q - ( or q ( by changing the orientation of target nucleon spin or helicity of incident lepton beam Spin Independent Structure Function F 1 Spin Dependent Structure Function g 1 1 ( σ σ g ( e ( q ( q ( 1 σ 1/ σ3 / F1 ( e q ( q ( 1/ 3 / 1 f F. Benmokhtar RICH workshop 10 f q

11 easurement of Δq in Semi-Inclusive DIS ~ e q h ( dzdq ( z h q ( dzd ( z q q e q q q P h q ( z - P q h Purity is a conditional probability that a hadron of type h observed in the final state is originated from a struck quark of flavor q in case of unpolarized beam/target. Δq q ( ( ρ A ρ P Q 1 - D q h is a measure of the probability that a quark of flavor q will fragment into a hadron of type h fragmentation function F. Benmokhtar RICH workshop 11

12 ΔS from SIDIS ρ A P ρ Q 1 1- Five flavor decomposition (Δq -Isoscalar etraction of ΔS F. Benmokhtar RICH workshop 1

13 Five flavor decomposition (Δq with SIDIS ρ A 1 A A A A A 1 p π 1 p π 1 p 1 d K 1 d P h q ( e q q h ( dzdq ( z h q ( dzd ( z e q q q Δu / u Δd / d ρ Q Δu / u Δd / d Δs / s Phys.Rev.D71( Δu Δd -HRS: Purities calculated from C simulation of the entire scattering process Δu Q.5 ev RSV 000 LO std BB01 LO Δu 0.601± 0.039± Δu 0.00± ± Δd Δd 0.6 ± ± Δd ± 0.033± Δs 0.08± 0.033± Δs F. Benmokhtar RICH workshop 13

14 Isoscalar etraction of ΔS K us K us Need a longitudinally polarized deuterium target - strange quark in proton and neutron identical - fragmentation simplifies Assumptions: - isospin symmetry between proton and neutron - charge-conjugation invariance in fragmentation traction from data of: - inclusive A 1d (Q and kaon A 1dK (Q double spin asymmetries - kaon multiplicities F. Benmokhtar RICH workshop 14

15 F. Benmokhtar RICH workshop 15 Isoscalar etraction of ΔS: ( ( 5 ( ( ( ( 5 ( 5 ( S Q S P S Q Q P S Q ( ( ( ( ( ( ( ( d d u u Q s s S Δ Δ Δ Δ Δ Δ Δ Δ tract isoscalar combinations of Q( and S( easure inclusive asymmetry A 1d and kaon asymmetries A 1(K K - Inclusive purities from PDFs (CTQ6 RST RV Kaon purities can be computed from the kaon multiplicities and the pdfs: How?

16 Kaon ultiplicities - Using charge symmetry K K K K D ( z D ( z q q easure ultiplicities Fit parameters F. Benmokhtar RICH workshop 16

17 HRS Preliminary results (isoscalar H..Jackson proceedings in PJ 006 F. Benmokhtar RICH workshop 17

18 What can we do with CLAS1? F. Benmokhtar RICH workshop 18

19 11eV Wide detector and physics acceptance (current/target fragmentation High beam polarization 85% High target polarization 85% NH 3 ND 3 targets Track resolutions: δp (ev/c 0.003p 0.001p δθ (mr < 1 δφ (mr < 3 Lumi > cm -1 s -1 F. Benmokhtar RICH workshop 19

20 CLAS1 Kaon Distributions - SIDIS kinematics Q > 1 ev W > 4 ev y < > z > 0.7 X > ev F. Benmokhtar RICH workshop 0

21 CLAS1 kaon SIDIS Simulations K Kaon ultiplicities K- Inclusive Asymmetry Kaon Asymmetry F. Benmokhtar RICH workshop 1

22 CLAS1 points - Overlap with Hermes - What can one do with the data at >0.1? F. Benmokhtar RICH workshop

23 -Does it worth it to go ahead with a proposal? F. Benmokhtar RICH workshop 3

24 Support slides. F. Benmokhtar RICH workshop 4

25 Beam time??? clasdisde.p1.e emn0.75tmn.1.s57.78nb.dis9.dat Data analyzed with 00 runs pol 00 runs pol- & 450 runs unpol > for what? 57.78nb per.dat Number of events: per dat. We have 400.dat polarized file in this simulation. --> total events. Lumi > cm -1 s -1 F. Benmokhtar RICH workshop 5

26 Neutrino-p technique.ν-p elastic scattering (734 BNL.Cross section contains a form factor.. s 1 s 1 (Q > 0 Δs Δs 0.15 ± 0.09 F. Benmokhtar RICH workshop 6

27 Parity Violation and DeltaS Neutral weak probes have sensitivity to Ds Ds contributes to parity violation electron scattering however its sensitivity is suppressed due to the smallness of electron weak charge (at least at forward angles. The contribution of Ds is not suppressed in elastic neutrino-nucleon scattering. It can be determined by fitting the cross section with nucleon form factors inputs. small and negative! Strange aial form factor behaves as Ae at Q->0 F. Benmokhtar RICH workshop 7

28 CLAS1: Kinematical coverage eπx SIDIS kinematics Q >1eV W >4 ev (10 y<0.85 X >ev 0.3 Q ~ ev (CLAS ~5 ev (HRS ~15 ev (COPASS Large Q accessible with CLAS1 are important for separation of HT contributions need to change this. DIS kinematics Q >1 ev W >4 ev y< >z>0.7 X > ev F. Benmokhtar RICH workshop 8

29 Strangeness Contribution to the Nucleon Longitudinal omentum -Study the spectral functions q( ν -From unpolarized deep inelastic νμ-nucleon scattering periments (NuTeV muon from charm quark production: omentum fraction ν μ s c X μ μ ν μ 1 (s ( s ( d 4 %. For <0.1 Difficult to connect with 0 ordinary observable ~ F. Benmokhtar RICH workshop 9

30 Strangeness Contribution to the Nucleon ass ass of the Nucleon: N N H QCD N Quark mass term 0 0 Chiral limit: -> gluon and condensate. N Turn on the quark masses: H QCD m i i N q i q qq σ σ i 0 s heavy quark term σ and σ : scaler FF. f(q s σ m N uu dd N σ s 1 ms N ss N m ( m u m d F. Benmokhtar RICH workshop 30

31 -First constraint: Hyperon mass splitting due the SU(3 flavor symmetry breaking effect. 1 3 (1 m s m (1 yσˆ Λ Ξ y N ss N N uu dd N strange content of the nucleon m s m - canonical ratio: 6 - assume y 0 - Higher order chiral corrections -Second constraint: π N sigma term ˆ 35 ev σ Which is related to the isospin even N scattering amplitude. s invariant mass of the N system t four-momentum transfer Lowest order PQCD low energy theorem states: ( t 0 π trapolation Σ π N Fπ D ( s N t π m Σπ N ˆ( σ t m π σˆ 45 ev F. Benmokhtar RICH workshop 31 π

32 Strangeness Contribution to the Nucleon ass Hyp -> π-n -> σˆ 35 ev ˆ 45eV σ y % Sea quark contribute to a sizable amount to the nucleon mass! However: uncertainty quiet large due to many theoretical or eperimental factors.. Other lattice calculation lead to: σ ~ 53 ev and y perimental input suggests sigma ~90-8 ev. Analysis based on dispersion sum rules: sigma ~ 70-9 ev. tc.. Conclusion ass : 0 to 30 % with big uncertainties 130eV F. Benmokhtar RICH workshop 3

33 F. Benmokhtar RICH workshop 33 Strange lectromagnetic Form Factors Strange lectromagnetic Form Factors q q e J q μ μ γ γ μ N J N Define vector ( form factors: s u d n s d u p γ γ Distribution of nucleon s charge and magnetization. Need one more constraint s d u γ. Charge symmetry n s p s n u p d n d p u ; ; γ

34 F. Benmokhtar RICH workshop 34 Neutralweak Neutralweak Form Factors Form Factors Additional Constraint Additional Constraint s W d W u W p Z sin sin sin θ θ θ Flavor decomposition of proton neutral weak form factor: Z V NC N J N μ ( p Z n p W s sin 4 1 γ γ θ Quark weak charges in the unified electroweak theory in S sin θ W 0.31 ± Z γ Z

35 Parity Violation Asymmetry γ Z Interference: σ ~ NC Re( * NC Scatter polarized electrons off unpolarized target Tiny (~10-6 cross section asymmetry isolates weak interaction γ 10 Z 5 A PV σ σ R R σ σ L L ~ NC PV ~ Q ( Z A PV 4ππ F Q A A σ p A A F. Benmokhtar RICH workshop 35 lectric agnetic Aial

Study of Strange Quark in the Nucleon with Neutrino Scattering

Study of Strange Quark in the Nucleon with Neutrino Scattering July 28, 2004 NuFact 04, Osaka Study of Strange Quark in the Nucleon with Neutrino Scattering T.-A. Shibata Tokyo Institute of Technology Contents: 3. Physics Motivation --- Quark Structure of the Nucleon

More information

HERMES Status Report

HERMES Status Report HERMES Status Report Sergey Yaschenko for the Collaboration DESY PRC, Hamburg, April 1, 008 Outline Introduction Physics Highlights from HERMES Isoscalar extraction of ΔS Model-dependent constraint on

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

Spin Structure of the Nucleon: quark spin dependence

Spin Structure of the Nucleon: quark spin dependence Spin Structure of the Nucleon: quark spin dependence R. De Vita Istituto Nazionale di Fisica Nucleare Electromagnetic Interactions with Nucleons and Nuclei EINN005 Milos September, 005 The discovery of

More information

Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC. Andrew Puckett Los Alamos National Laboratory INT 09/24/2010

Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC. Andrew Puckett Los Alamos National Laboratory INT 09/24/2010 Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC Andrew Puckett Los Alamos National Laboratory INT 09/24/2010 Outline Nucleon Structure Nucleon spin structure Flavor decomposition

More information

Nucleon Valence Quark Structure

Nucleon Valence Quark Structure Nucleon Valence Quark Structure Z.-E. Meziani, S. Kuhn, O. Rondon, W. Melnitchouk Physics Motivation Nucleon spin and flavor structure High-x quark distributions Spin-flavor separation Moments of structure

More information

Proton longitudinal spin structure- RHIC and COMPASS results

Proton longitudinal spin structure- RHIC and COMPASS results Proton longitudinal spin structure- RHIC and COMPASS results Fabienne KUNNE CEA /IRFU Saclay, France Gluon helicity PHENIX & STAR: pp jets, pp p 0 COMPASS g 1 QCD fit + DG direct measurements Quark helicity

More information

Fragmentation Function studied with e+-e- data and its impact on the nucleon spin structure analysis

Fragmentation Function studied with e+-e- data and its impact on the nucleon spin structure analysis Fragmentation Function studied with e+-e- data and its impact on the nucleon spin structure analysis Yoshiyuki Miyachi, Tokyo Tech Contents Fragmentation and parton distribution function Resent fragmentation

More information

HERMES status and future running

HERMES status and future running HERMES status and future running Benedikt Zihlmann University of Gent on behalf of the collaboration DESY PRC Mai 24 p.1/18 Access to Transversity Single spin azimuthal asymmetries on a transverse polarized

More information

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois Helicity: Experimental Status Matthias Grosse Perdekamp, University of Illinois Content o The Experimental Effort o Quark and Sea Quark Helicity è DIS, SIDIS, pp è new FFs for global analysis è results

More information

Experimental Program of the Future COMPASS-II Experiment at CERN

Experimental Program of the Future COMPASS-II Experiment at CERN Experimental Program of the Future COMPASS-II Experiment at CERN Luís Silva LIP Lisbon lsilva@lip.pt 24 Aug 2012 On behalf of the COMPASS Collaboration co-financed by THE COMPASS EXPERIMENT Common Muon

More information

Generalized Parton Distributions and Nucleon Structure

Generalized Parton Distributions and Nucleon Structure Generalized Parton Distributions and Nucleon Structure Volker D. Burkert Jefferson Lab With pqcd established we have the tool to understand matter at a deeper level. Nobel prize 2004 - D. Gross, D. Politzer,

More information

How does the proton spin?

How does the proton spin? How does the proton spin? Steven Bass Proton spin problem: Where does the spin of the nucleon (proton and neutron) come from? E.g. The key difference between 3 He and 4 He in low temperature physics comes

More information

COMPASS Drell-Yan. Michela Chiosso, University of Torino and INFN. TMD ECT* Workshop April 2016

COMPASS Drell-Yan. Michela Chiosso, University of Torino and INFN. TMD ECT* Workshop April 2016 COMPASS Drell-Yan Michela Chiosso, University of Torino and INFN TMD ECT* Workshop 11-15 April 2016 Outline Single polarized Drell-Yan at COMPASS DY vs SIDIS at COMPASS Experimental setup Spin-dependent

More information

Gian Gopal Particle Attributes Quantum Numbers 1

Gian Gopal Particle Attributes Quantum Numbers 1 Particle Attributes Quantum Numbers Intro Lecture Quantum numbers (Quantised Attributes subject to conservation laws and hence related to Symmetries) listed NOT explained. Now we cover Electric Charge

More information

Central Questions in Nucleon Structure

Central Questions in Nucleon Structure Central Questions in Nucleon Structure Werner Vogelsang BNL Nuclear Theory QCD and Hadron Physics Town Meeting, 01/13/2007 Exploring the nucleon: Of fundamental importance in science Know what we are made

More information

Nucleon Spin. Tyler Corbett

Nucleon Spin. Tyler Corbett Nucleon Spin Tyler Corbett Abstract: In 1988 the European Muon Collaboration showed that the quark contribution to spin only accounts for 20-30 percent of the nucleon spin; The "naive quark parton model

More information

Quark model. Jan 30, 2006 Lecture 8 1

Quark model. Jan 30, 2006 Lecture 8 1 Quark model Jan 30, 2006 Lecture 8 1 Quark model of hadrons!!!! Developed long before QCD was recognized as the appropriate quantum field theory of the strong interactions Postulate that 1.! All baryons

More information

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE rhtjhtyhy EINN 2017 NOVEMBER 1, 2017 PAPHOS, CYPRUS THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE KAWTAR HAFIDI Argonne National Laboratory is a U.S. Department of Energy laboratory

More information

Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC

Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC Aug 25, 2004 NP04, KEK Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC T.-A. Shibata (Tokyo Tech) in collaboration with N. Saito (Kyoto Univ) and Y. Miyachi (Tokyo Tech) for

More information

COMPASS results on inclusive and semi inclusive polarised DIS

COMPASS results on inclusive and semi inclusive polarised DIS COMPASS results on inclusive and semi inclusive polarised DIS Helena Santos LIP - Lisboa on behalf of the COMPASS Collaboration The nucleon spin The COMPASS experiment Longitudinal spin structure functions

More information

PoS(DIS2018)216. W Measurement at PHENIX. Chong Kim

PoS(DIS2018)216. W Measurement at PHENIX. Chong Kim University of California, Riverside Department of Physics & Astronomy, Riverside CA 92521 USA E-mail: ckim.phenix@gmail.com The W measurement at RHIC (Relativistic Heavy Ion Collider) provides unique access

More information

Strange Electromagnetic and Axial Nucleon Form Factors

Strange Electromagnetic and Axial Nucleon Form Factors Strange Electromagnetic and Axial Nucleon Form Factors A combined analysis of HAPPEx, G 0, and BNL E734 data Stephen Pate, Glen MacLachlan, David McKee, Vassili Papavassiliou New Mexico State University

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

Experimental Overview Generalized Parton Distributions (GPDs)

Experimental Overview Generalized Parton Distributions (GPDs) Experimental Overview Generalized Parton Distributions (GPDs) Latifa Elouadrhiri Jefferson Lab Lattice Hadron Physics July 31 August 3, 2006 Outline Generalized Parton Distributions - a unifying framework

More information

Experimental investigation of the nucleon transverse structure

Experimental investigation of the nucleon transverse structure Electron-Nucleus Scattering XIII Experimental investigation of the nucleon transverse structure Silvia Pisano Laboratori Nazionali di Frascati INFN. The unsolved proton How do the lagrangian degrees of

More information

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors 1 Experimental Aspects of Deep-Inelastic Scattering Kinematics, Techniques and Detectors 2 Outline DIS Structure Function Measurements DIS Kinematics DIS Collider Detectors DIS process description Dirac

More information

PoS(Photon 2013)004. Proton structure and PDFs at HERA. Vladimir Chekelian MPI for Physics, Munich

PoS(Photon 2013)004. Proton structure and PDFs at HERA. Vladimir Chekelian MPI for Physics, Munich MPI for Physics, Munich E-mail: shekeln@mail.desy.de The neutral and charged current deep-inelastic ep scattering cross sections are measured in the H and ZEUS eperiments at HERA (99-7), with an electron

More information

Open Issues in DIS The High Energy Perspective

Open Issues in DIS The High Energy Perspective Open Issues in DIS The High Energy Perspective My private point of view using data from DIS in collider mode: Accelerator and Experiments HERA success story: Precision cross sections, structure functions

More information

Spin-dependent PDFs at large x

Spin-dependent PDFs at large x Physics Opportunities at an Electron-Ion Collider (POETIC V) Yale University September 22, 24 Spin-dependent PDFs at large Wally Melnitchouk Outline Why is nucleon (spin) structure at large interesting?

More information

PVDIS and nucleon structure

PVDIS and nucleon structure Physics Beyond the SM and Precision Nucleon Structure with PVES ECT* Trento, August, 06 PVDIS and nucleon structure Wally Melnitchouk PVDIS (~en! ex) is a valuable tool to study flavor and spin dependence

More information

Angular Analysis of the Decay

Angular Analysis of the Decay Angular Analysis of the Decay Λ b Λ[ Nπ]l + l Philipp Böer, Thorsten Feldmann, and Danny van Dyk Naturwissenschaftlich-Technische Fakultät - Theoretische Physik 1 Universität Siegen 4th Workshop on flavour

More information

Flavor Decomposition

Flavor Decomposition SIDIS Workshop for PAC30 April 14, 2006 Flavor Decomposition in Semi-Inclusive DIS Wally Melnitchouk Jefferson Lab Outline Valence quarks unpolarized d/u ratio polarized d/d ratio Sea quarks flavor asymmetry

More information

The strange asymmetry of the proton sea

The strange asymmetry of the proton sea The strange asymmetry of the proton sea J. Magnin CBPF Brazilian Center for Research in Physics XII Mexican Workshop on Particles and Fields Mazatlán, Mexico Outline Introduction The structure of the proton

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

E , E , E

E , E , E JLab Experiments E12-09-017, E12-09-011, E12-09-002 First-Year of Hall C experiments towards a complete commissioning of the SHMS for precision experiments Spokespersons: P. Bosted, D. Dutta, R. Ent, D.

More information

Lecture 8. CPT theorem and CP violation

Lecture 8. CPT theorem and CP violation Lecture 8 CPT theorem and CP violation We have seen that although both charge conjugation and parity are violated in weak interactions, the combination of the two CP turns left-handed antimuon onto right-handed

More information

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1 High Energy Physics Lecture 9 Deep Inelastic Scattering Scaling Violation HEP Lecture 9 1 Deep Inelastic Scattering: The reaction equation of DIS is written e+ p e+ X where X is a system of outgoing hadrons

More information

Neutrons in a Spin: Nucleon Structure at Jefferson Lab

Neutrons in a Spin: Nucleon Structure at Jefferson Lab Neutrons in a Spin: Nucleon Structure at Jefferson Lab Daria Sokhan University of Glasgow, UK on behalf of the CLAS Collaboration IoP Nuclear Physics Group Conference, York 8 th April 2013 Nucleon structure

More information

Extraction of Quark Distributions on Transverse Spin of the Nucleon at the HERMES Experiment. Hidekazu Tanaka

Extraction of Quark Distributions on Transverse Spin of the Nucleon at the HERMES Experiment. Hidekazu Tanaka Extraction of Quark Distributions on Transverse Spin of the Nucleon at the HERMES Experiment A Dissertation By Hidekazu Tanaka February 25 Department of Physics Tokyo Institute of Technology Abstract

More information

Nucleon polarised parton distribution functions

Nucleon polarised parton distribution functions Nucleon polarised parton distribution functions Gerhard K. Mallot CERN, 111 Geneva 3, Switzerland Abstract An introduction to the present status of spin-dependent parton distribution functions is given.

More information

light-cone (LC) variables

light-cone (LC) variables light-cone (LC) variables 4-vector a µ scalar product metric LC basis : transverse metric 24-Apr-13 1 hadron target at rest inclusive DIS target absorbes momentum from γ * ; for example, if q z P z =0

More information

Physics at Hadron Colliders Partons and PDFs

Physics at Hadron Colliders Partons and PDFs Physics at Hadron Colliders Partons and PDFs Marina Cobal Thanks to D. Bettoni Università di Udine 1 2 How to probe the nucleon / quarks? Scatter high-energy lepton off a proton: Deep-Inelastic Scattering

More information

Parity Violating Electron Scattering at Jefferson Lab. Rakitha S. Beminiwattha Syracuse University

Parity Violating Electron Scattering at Jefferson Lab. Rakitha S. Beminiwattha Syracuse University Parity Violating Electron Scattering at Jefferson Lab Rakitha S. Beminiwattha Syracuse University 1 Outline Parity Violating Electron Scattering (PVES) overview Testing the Standard Model (SM) with PVES

More information

Polarized Drell-Yan Experiment at J-PARC. J-PARC Meeting for Spin and Hadron Physics Nishina Hall at RIKEN April 7 th, 2008 Yuji Goto (RIKEN/RBRC)

Polarized Drell-Yan Experiment at J-PARC. J-PARC Meeting for Spin and Hadron Physics Nishina Hall at RIKEN April 7 th, 2008 Yuji Goto (RIKEN/RBRC) Polarized Drell-Yan Experiment at J-PARC J-PARC Meeting for Spin and Hadron Physics Nishina Hall at RIKEN April 7 th, 2008 Yuji Goto (RIKEN/RBRC) J-PARC proposals P04: measurement of high-mass dimuon production

More information

Lecture 9. Isospin The quark model

Lecture 9. Isospin The quark model Lecture 9 Isospin The quark model There is one more symmetry that applies to strong interactions. isospin or isotopic spin It was useful in formulation of the quark picture of known particles. We can consider

More information

Lessons from Lepton-Nucleon and Lepton-Nuclei Interactions Probing the structure of the atomic nucleus

Lessons from Lepton-Nucleon and Lepton-Nuclei Interactions Probing the structure of the atomic nucleus Lessons from Lepton-Nucleon and Lepton-Nuclei Interactions Probing the structure of the atomic nucleus Raphaël Dupré Disclaimer This will be only a selection of topics Like any review of a field I encourage

More information

Semi-Inclusive Deep-Inelastic Scattering and Kaons from CLAS6

Semi-Inclusive Deep-Inelastic Scattering and Kaons from CLAS6 Semi-Inclusive Deep-Inelastic Scattering and Kaons from CLAS6 K. Griffioen College of William & Mary griff@physics.wm.edu Workshop on Probing Strangeness in Hard Processes Laboratori Nazionale di Frascati

More information

SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION. Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 94309

SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION. Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 94309 SLAC-PUB-662 September 1994 (TE) SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 9439 Work supported by Department

More information

Particle Physics WS 2012/13 ( )

Particle Physics WS 2012/13 ( ) Particle Physics WS 01/13 (3.11.01) Stephanie Hansmann-Menzemer Physikalisches Institut, INF 6, 3.101 Content of Today Structure of the proton: Inelastic proton scattering can be described by elastic scattering

More information

Symmetry Tests in Nuclear Physics

Symmetry Tests in Nuclear Physics Symmetry Tests in Nuclear Physics Krishna Kumar University of Massachusetts Editorial Board: Parity Violation: K. K, D. Mack, M. Ramsey-Musolf, P. Reimer, P. Souder Low Energy QCD: B. Bernstein, A. Gasparian,

More information

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration Hall A SIDIS Hall A/C collaboration Meeting June 24 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle [X. Ji, 1997] DIS DΣ 0.30 RHIC + DIS Dg

More information

The Quark Parton Model

The Quark Parton Model The Quark Parton Model Quark Model Pseudoscalar J P = 0 Mesons Vector J P = 1 Mesons Meson Masses J P = 3 /2 + Baryons J P = ½ + Baryons Resonances Resonance Detection Discovery of the ω meson Dalitz Plots

More information

Electron-Positron Annihilation

Electron-Positron Annihilation Evidence for Quarks The quark model originally arose from the analysis of symmetry patterns using group theory. The octets, nonets, decuplets etc. could easily be explained with coloured quarks and the

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Probing the Intrinsic Charm in the nucleon at EIC. Ahmed El Alaoui POETIC2012 Workshop, Bloomington, IN August 20-22, 2012

Probing the Intrinsic Charm in the nucleon at EIC. Ahmed El Alaoui POETIC2012 Workshop, Bloomington, IN August 20-22, 2012 Probing the Intrinsic Charm in the nucleon at EIC Ahmed El Alaoui POETIC2012 Workshop, Bloomington, IN August 20-22, 2012 Outline Motivation Extraction of Intrinsic charm component from D meson electroproduction

More information

Single-Spin Asymmetries in SIDIS off Transversely Polarised Protons at HERMES

Single-Spin Asymmetries in SIDIS off Transversely Polarised Protons at HERMES Single-Spin Asymmetries in SIDIS off Transversely Polarised Protons at L. L. Pappalardo (On behalf of the Collaboration) INFN Università degli Studi di Ferrara - Dipartimento di Fisica Polo Scientifico

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 013 Weak Interactions II 1 Important Experiments Wu-Experiment (1957): radioactive decay of Co60 Goldhaber-Experiment (1958): radioactive decay

More information

Electroweak Theory: 2

Electroweak Theory: 2 Electroweak Theory: 2 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS (January, 2011) Paul Langacker (IAS) 31 References

More information

Drell-Yan experiments at Fermilab/RHIC/J-PARC. QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN)

Drell-Yan experiments at Fermilab/RHIC/J-PARC. QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN) Drell-Yan experiments at Fermilab/RHIC/J-PARC QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN) Outline Fermilab Drell-Yan experiments Unpolarized program Flavor asymmetry of sea-quark

More information

erhic: Science and Perspective

erhic: Science and Perspective erhic: Science and Perspective Study of the Fundamental Structure of Matter with an Electron-Ion Collider A. Deshpande, R. Milner, R. Venugopalan, W. Vogelsang hep-ph/0506148, Ann. Rev. Nucl. Part. Sci.

More information

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.: The Development of Particle Physics Dr. Vitaly Kudryavtsev E45, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Previous lecture New unstable particles discovered in 40s-50s. First hyperons (particles

More information

Timelike Compton Scattering

Timelike Compton Scattering Timelike Compton Scattering Tanja Horn In collaboration with: Y. Illieva, F.J. Klein, P. Nadel-Turonski, R. Paremuzyan, S. Stepanyan 12 th Int. Conference on Meson-Nucleon Physics and the Structure of

More information

The GPD program at Jefferson Lab: recent results and outlook

The GPD program at Jefferson Lab: recent results and outlook The GPD program at Jefferson Lab: recent results and outlook Carlos Muñoz Camacho IPN-Orsay, CNRS/INP3 (France) KITPC, Beijing July 17, 1 Carlos Muñoz Camacho (IPN-Orsay) GPDs at JLab KITPC, 1 1 / 3 Outline

More information

Flavour physics Lecture 1

Flavour physics Lecture 1 Flavour physics Lecture 1 Jim Libby (IITM) XI th SERC school on EHEP NISER Bhubaneswar November 2017 Lecture 1 1 Outline What is flavour physics? Some theory and history CKM matrix Lecture 1 2 What is

More information

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target University of Illinois E-mail: rsheitz2@illinois.edu On behalf

More information

Nucleon Spin Structure: Overview

Nucleon Spin Structure: Overview Nucleon Spin Structure: Overview Jen-Chieh Peng University of Illinois at Urbana-Champaign Workshop on Spin Structure of Nucleons and Nuclei from Low to High Energy Scales EINN2015, Paphos, Cyprus, Nov.

More information

Two-boson exchange corrections in PVES

Two-boson exchange corrections in PVES Two-boson exchange corrections in PVS Chung-Wen Kao Chung-Yuan Christian University, Taiwan 12th International Conference on eson-nucleon Physics and the Structure of the Nucleon ay 31-June 4, 2010 College

More information

Spin and Azimuthal Asymmetries at JLAB

Spin and Azimuthal Asymmetries at JLAB Spin and Azimuthal Asymmetries at JLAB H. Avakian *) Jefferson Lab Single-Spin Asymmetries Workshop, BNL June 1-3, 2005 *) in collaboration with P.Bosted, V. Burkert and L. Elouadrhiri Outline Introduction

More information

Charged current DIS with polarised e ± beams at HERA. Alex Tapper

Charged current DIS with polarised e ± beams at HERA. Alex Tapper Charged current DIS with polarised e ± beams at HRA Alex Tapper The HRA accelerator e± p 27.5 GeV 920 GeV s=320 GeV Page 2 Longitudinal polarisation at HRA Longitudinal polarisation of the lepton beam

More information

PANIC August 28, Katharina Müller on behalf of the LHCb collaboration

PANIC August 28, Katharina Müller on behalf of the LHCb collaboration Measurements with electroweak bosons at LHCb PANIC August 28, 2014 on behalf of the LHCb collaboration Outline LHCb detector Measurements with electroweak bosons Motivation Z production Z plus jets, Z

More information

Nucleon Spin Structure Longitudinal Spin of the Proton. HUGS Summer School Jefferson National Laboratory June 2, 2011 Lecture 5

Nucleon Spin Structure Longitudinal Spin of the Proton. HUGS Summer School Jefferson National Laboratory June 2, 2011 Lecture 5 Nucleon Spin Structure Longitudinal Spin of the Proton HUGS Summer School Jefferson National Laboratory June 2, 2011 Lecture 5 RHIC as a Polarized Proton Collider Absolute Polarimeter (H jet) pc Polarimeters

More information

Overview of Light-Hadron Spectroscopy and Exotics

Overview of Light-Hadron Spectroscopy and Exotics Overview of Light-Hadron Spectroscopy and Eotics Stefan Wallner Institute for Hadronic Structure and Fundamental Symmetries - Technical University of Munich March 19, 018 HIEPA 018 E COMPASS 1 8 Introduction

More information

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Dipangkar Dutta Mississippi State University (with Dave Gaskell & Garth Huber) Polarized Target Workshop: June 17-18, 2010 Outline

More information

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep.

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep. Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep. of strong dynamics and parton picture) Experimental Development Fixed

More information

Collinear Distributions from Monte Carlo Global QCD Analyses

Collinear Distributions from Monte Carlo Global QCD Analyses Collinear Distributions from Monte Carlo Global QCD Analyses Jacob Ethier On behalf of the JAM Collaboration Light Cone Conference May th, 8 Motivation Want to obtain reliable information of nonperturbative

More information

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Juan Guerrero Hampton University & Jefferson Lab QCD evolution 2017 May 26, 2017 Based on: J. G., J. Ethier, A. Accardi, S. Casper,W. Melnitchouk,

More information

Probing the Atomic Nucleus at Jefferson Lab

Probing the Atomic Nucleus at Jefferson Lab Probing the Atomic Nucleus at Jefferson Lab (a glimpse ) Fatiha Benmokhtar Duquesne University. *Thanks to R. Ent for some of the material 1 Building Blocks of Matter Electrons Atom Nucleus -Most of the

More information

A High Luminosity Electron-Ion Collider to Study the Structure of Matter

A High Luminosity Electron-Ion Collider to Study the Structure of Matter A High Luminosity Electron-Ion Collider to Study the Structure of Matter Introduction Scientific motivation Realization Summary Study of the Fundamental Structure of Matter with an Electron-Ion Collider

More information

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.: The Development of Particle Physics Dr. Vitaly Kudryavtsev E45, Tel.: 0114 4531 v.kudryavtsev@sheffield.ac.uk The structure of the nucleon Electron - nucleon elastic scattering Rutherford, Mott cross-sections

More information

The Physics Program of CLAS12

The Physics Program of CLAS12 1 The Physics Program of CLAS1 S. Niccolai a, for the CLAS collaboration a Institut de Physique Nucléaire d Orsay, Orsay (France) The experimental program to study nucleon structure at the 1-GeV upgraded

More information

Single Spin Asymmetries on proton at COMPASS

Single Spin Asymmetries on proton at COMPASS Single Spin Asymmetries on proton at COMPASS Stefano Levorato on behalf of COMPASS collaboration Outline: Transverse spin physics The COMPASS experiment 2007 Transverse Proton run Data statistics Asymmetries

More information

New JAM global analysis of spin-dependent PDFs

New JAM global analysis of spin-dependent PDFs QCD Evolution Jefferson Lab, May 26, 2015 New JAM global analysis of spin-dependent PDFs Wally Melnitchouk Jefferson Lab Angular Momentum (JAM) Collaboration Nobuo Sato, Jacob Ethier, Alberto Accardi (Pedro

More information

Fundamental Open Questions in Spin Physics

Fundamental Open Questions in Spin Physics Fundamental Open Questions in Spin Physics p. 1/55 Fundamental Open Questions in Spin Physics Jacques Soffer Physics Department, Temple University, Philadelphia,PA, USA Fundamental Open Questions in Spin

More information

Photon PDF and Proton PDFs studied at an EIC

Photon PDF and Proton PDFs studied at an EIC Photon PDF and Proton PDFs studied at an EIC Xiaouan Chu BNL & CCNU November 4, 8 Xiaouan Chu (BNL & CCNU Photon PDF and Proton PDFs studied at an EIC November 4, 8 / 4 Outline. Deep Inelastic Scattering.

More information

Lecture 11. Weak interactions

Lecture 11. Weak interactions Lecture 11 Weak interactions 1962-66: Formula/on of a Unified Electroweak Theory (Glashow, Salam, Weinberg) 4 intermediate spin 1 interaction carriers ( bosons ): the photon (γ) responsible for all electromagnetic

More information

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F.

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Elementary Properties 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline Most stable sub-atomic particles are the proton, neutron (nucleons) and electron. Study

More information

Information Content of the DVCS Amplitude

Information Content of the DVCS Amplitude Information Content of the DVCS Amplitude DVCS? GPDs Matthias Burkardt burkardt@nmsu.edu New Mexico State University & Jefferson Lab Information Content of the DVCS Amplitude p.1/25 Generalized Parton

More information

Electroweak measurements at HERA

Electroweak measurements at HERA Electroweak measurements at HERA Alex Tapper DESY forum 1 th & 13 th September 006 Precision electroweak measurements: What can HERA contribute? Outline Introduction High Q physics at HERA Review of recent

More information

Results on the proton structure from HERA

Results on the proton structure from HERA Results on the proton structure from HERA Shima Shimizu (Univ. of Tokyo) Introduction HERA physics Proton structure The world only e-p collider: HERA electron proton A unique collider at DESY, Hamburg

More information

Hadron multiplicities at the HERMES experiment

Hadron multiplicities at the HERMES experiment A. I. Alikhanyan National Science Laboratory, Yerevan, Armenia E-mail: gevkar@mail.desy.de The HERMES collaboration has measured charge-separated pion and kaon multiplicities in semiinclusive deep-inelastic

More information

High-energy ea scattering. Spectator nucleon tagging. Future facilities. Energy, luminosity, polarization. Physics objectives with light nuclei

High-energy ea scattering. Spectator nucleon tagging. Future facilities. Energy, luminosity, polarization. Physics objectives with light nuclei High-energy nuclear physics with spectator tagging A. Deshpande, D. Higinbotham, Ch. Hyde, S. Kuhn, M. Sargsian, C. Weiss Topical Workshop, Old Dominion U., 9 11 March 015 High-energy ea scattering e e

More information

Quarkonium Production at J-PARC

Quarkonium Production at J-PARC Quarkonium Production at J-PARC Jen-Chieh Peng University of Illinois at Urbana-Champaign J-PARC Meeting for Spin and Hadron Physics RIKEN, April 7-8, 008 Outline Quarkonium Production at J-PARC with Unpolarized

More information

Lecture 9 Valence Quark Model of Hadrons

Lecture 9 Valence Quark Model of Hadrons Lecture 9 Valence Quark Model of Hadrons Isospin symmetry SU(3) flavour symmetry Meson & Baryon states Hadronic wavefunctions Masses and magnetic moments Heavy quark states 1 Isospin Symmetry Strong interactions

More information

Physics and Physics prospects at HERA

Physics and Physics prospects at HERA Physics and Physics prospects at HERA 58 th Extended Scientific Council / 130 th Scientific Council 1/ June 004 Yuji Yamazaki (KEK, ZEUS) On behalf of the H1, ZEUS, HERMES and HERA-B collaborations The

More information

Transverse SSA Measured at RHIC

Transverse SSA Measured at RHIC May 21-24, 2007 Jefferson Lab Transverse SSA Measured at RHIC Jan Balewski, IUCF Exclusive Reactions Where does the proton s spin come from? p is made of 2 u and 1d quark S = ½ = Σ S q u u Explains magnetic

More information

Hadronization with JLab 6/12 GeV

Hadronization with JLab 6/12 GeV Hadronization with JLab 6/12 GeV Next generation nuclear physics with JLab12 and EIC Florida International University February 10-13th, 2016 Lamiaa El Fassi (On behalf of EG2 and CLAS Collaborations) Outline

More information

Measurements of the Proton F L and F 2 Structure Functions at Low x at HERA

Measurements of the Proton F L and F 2 Structure Functions at Low x at HERA Measurements of the Proton F L and F 2 Structure Functions at Low x at HERA Andrei Nikiforov DESY on behalf of the H1 and ZEUS collaborations Moriond QCD, La Thuile, 13 March 2008 Andrei Nikiforov DESY

More information

MEIC Physics. Tanja Horn for the MEIC group. Jlab Users Meeting

MEIC Physics. Tanja Horn for the MEIC group. Jlab Users Meeting MEIC Physics Tanja Horn for the MEIC group Jlab Users Meeting The Structure of the Proton Naïve Quark Model: proton = uud (valence quarks) QCD: proton = uud + uu + dd + ss + The proton sea has a non-trivial

More information

a medium energy collider taking nucleon structure beyond the valence region

a medium energy collider taking nucleon structure beyond the valence region EIC@JLAB a medium energy collider taking nucleon structure beyond the valence region Tanja Horn INT09-43W, Seattle, WA 19 October 2009 Tanja Horn, CUA Colloquium 1 A high-luminosity EIC at JLab Use CEBAF

More information