High-energy ea scattering. Spectator nucleon tagging. Future facilities. Energy, luminosity, polarization. Physics objectives with light nuclei

Size: px
Start display at page:

Download "High-energy ea scattering. Spectator nucleon tagging. Future facilities. Energy, luminosity, polarization. Physics objectives with light nuclei"

Transcription

1 High-energy nuclear physics with spectator tagging A. Deshpande, D. Higinbotham, Ch. Hyde, S. Kuhn, M. Sargsian, C. Weiss Topical Workshop, Old Dominion U., 9 11 March 015 High-energy ea scattering e e p, n A pol. High energy process Forward spectators/ fragments detected Energy, luminosity, polarization Physics objectives with light nuclei Spectator nucleon tagging Free neutron structure & spin Bound nucleon structure, EMC effect Short-range correlations, non-nucleonic DOF Coherent phenomena at x 0.1 Future facilities JLab 1 GeV: Hall A/C, CLAS1 BONuS EIC: Forward detection, polarized D

2 Light nuclei: Energy, luminosity, polarization Luminosity [cm - s -1 ] Mainz Bates JLab1 Bonn SLAC MEIC 1 HERMES EIC designs COMPASS µa E665 EMC/NMC MEIC HL-RHIC erhic HERA ep only CM energy s en [GeV] ea / µa facilities Z/A = 1/ LHeC Scattering energy Resolution scale 1/Q LC fraction x: Type of constituents, target configurations Luminosity Exceptional configurations in target Multi-variable final states Polarization observables JLab 1 GeV: Fixed target ea Highest luminosity! Polarized D, 3 He e Q, x EIC: First ea collider A. Luminosity 1000 HERA ep erhic: unpol D, pol 3 He MEIC: polarized D and 3 He

3 Light nuclei: Physics objectives n Neutron structure Flavor decomposition of PDFs, asymmetry ū d, quark spin u, d, gluon polarization g How to account for binding, polarization, FSI? Nuclear modification of partonic structure x > 0. EMC effect x 0.1 Coherent scattering, shadowing How to control nuclear environment? Instantaneous configuration? Short-range correlations N N interactions, non-nucleonic DOF How to identify correlations? Isospin structure? Universality? [Nucleus rest frame view] Inclusive scattering + theory Experimental information on final state!

4 Light nuclei: Nucleon tagging Nucleon tagging e Deuteron A = : Simplest system, wave function known, limited FSI e D... p Identify active nucleon, control quantum state w. recoil momentum Fixed-target experiments Recoil momentum p R MeV Proton slow, isotropic e e Colliding beam experiments p R p D / few 10 GeV longitudinal p RT MeV transverse Forward detection technologies D pol. p, n Forward detection Polarization D beams, longitud/transv Neutron tagging possible Uniquely suited, great potential!

5 Neutron structure: Unpolarized p neutron D t = ( p R q p D ) X proton p R α R, prt Inclusive DIS: Nuclear corrections x > 0.5 Binding effects? x < 0.1 pn difference only few % Proton tagging e+d e +p+x Cross section has pole at t = M N Free neutron from on-shell extrapolation in recoil momentum Model-independent, eliminates FSI Sargsian, Strikman 05. Cf. Chew Low extrapolation in πn Fixed-target: CLAS BONuS Tkachenko Uses recoil momenta p R = MeV, backward angles Impact on PDF analysis, duality Melnitchouk 1 GeV extensions Dupre, Zhang, Charles

6 Neutron structure: Unpolarized Neutron structure function F n Spectator tagging e + D e' + p + X Recoil LC fraction α R = Free neutron Kinemat. limit EIC simulation Int. luminosity 10 6 nb -1 CM energy s en = 1000 GeV x = , Q = M N t from recoil momentum [GeV ] MEIC: Precise neutron structure measurements with proton tagging and on-shell extrapolation Park Full coverage down to p RT 0 Sufficient momentum resolution: Detector resolution, beam momentum spread Large x accessible with high luminosity

7 Neutron structure: Polarized S = 1 p Neutron data needed Flavor separation u, d n + D wave Singlet vs. nonsinglet Q evolution: Gluons, higher twist Inclusive DIS: 3 He target -0.0 Longitudinal spin asymmetry in conditional DIS e + D e + p + X 0 Q = 13-0 GeV Free neutron 0-30 GeV GeV JLab 6/1 GeV program EIC: Wide coverage Cates Spin asymmetry A MEIC: Neutron spin structure w. polarized D and proton tagging On-shell extrapolation of asymmetry Kinem. limit MEIC simulation CM energy s en = 1000 GeV Int. luminosity 10 7 nb -1 x = , α R = M N t from recoil momentum [GeV ] D wave suppressed at on-shell point Impact on polarized PDF analysis Bjorken sum rule: α S from Q dependence Deur

8 Neutron structure: Nuclear theory input Deuteron light front structure for tagging Miller Covariant description of deuteron Van Orden Polarization effects in tagging Sargsian Final state interaction models for tagging at large and small x Cosyn Shadowing effects in tagging at small x Guzey 3 He spectral function for inclusive polarized DIS Scopetta Nuclear structure from EFT-controled interactions Pastore

9 Nuclear modification: EMC effect σ C /σ D JLab Hall C Seely et al. 009 E03103 Norm. (1.6%) SLAC Norm. (1.%) Modification of quark/gluon structure Higinbotham Dynamical origin? σ Be /σ D E03103 Norm. (1.7%) SLAC Norm. (1.%) What momenta and distances in nuclear wave function cause modification? σ 4He /σ D E03103 Norm. (1.5%) SLAC Norm. (.4%) Spin isospin dependence? JLab1/EIC: EMC effect in tagged DIS Schmookler Modification as function of recoil mom x Control size of configurations! e e D EIC: New possibilities Q evolution and gluons average size small size Spin dependence with polarized D

10 Nuclear modification: Short-range correlations χ / ndf 1.63 / 6 p ± r( 56 Fe, 3 He) r( 1 C, 3 He) r( 4 He, 3 He) a) b) c) JLab CLAS Egiyan et al x B Short range N N correlations Strikman High momentum component of nuclear WF Universality, spin isospin dependence Short range N N interaction QCD Non-nucleonic DOF? JLab 6/1 GeV program Inclusive: x > 1 Weinstein Fomin Tagged: (e,e p), (e,e NN) -dr EMC /dx EMC data SLAC (Gomez et al.) JLab Hall-C (Seely et al.) D 3 He 4 He 1 56 C Fe SRC data SLAC (Day et al.) JLab Hall-B (Egiyan et al.) SRCs in tagged DIS Quark/gluon structure of SRC EMC effect driven by SRCs? Higinbotham a N

11 Coherent effects, tensor polarization + Coherent effects at x 0.1 Guzey Coherence length > N N distance: Quantum mechanical interference Inclusive DIS: Shadowing Nucleon 1 Nucleon Tagged DIS: Strong effect on recoil momentum dependence EIC: Explore coherence in A =, quantify approach to saturation S = 0 Tensor polarization Long 1 D +1 Tensor SF zero on free nucleon, requires interactions or coherence JLab1 experiments planned EIC: Tensor polarized D beams, kinematic access to x < 0.1 Morozov

12 Facilities: JLab 1 GeV add new hall CEBAF race track accelerator with linacs + arcs, now at 1 GeV Uses unique superconducting RF technology Extensible to max. 4 GeV 5 new cryomodules double cryo capacity upgrade magnets and power supplies Experimental halls and detectors A, C Magnetic spectrometers SHMS upgrade on-going Add arc B New large-acceptance detector CLAS1 under construction A B C 5 new cryomodules D γ beam, GlueX detector being commissioned Additional devices planned: Moller, SOLID CW beam 100µA Accelerator operating since 1994 Broad physics program: Spectroscopy, hadron structure, nuclear physics, electroweak Tagging experiments CLAS1 + BONUS detector Halls A/C

13 Facilities: Electron Ion Collider JLab ring ring design MEIC 11 GeV CEBAF as injector continued fixed-target op Medium energy: 1 km ring, 3 11 on 60/96 GeV High energy:.5 km ring, 3 11 on 50 GeV Luminosity cm s 1 over wide energy range Figure 8 for polarization transport, up to four IP s BNL linac ring design erhic RHIC proton/ion beam up to 35 GeV 5 0 (30) GeV electrons from linac in tunnel staged Luminosity (10 33 ) over wide range Re-use RHIC detectors? ephenix Related proposals CERN LHeC: GeV on 7 TeV ep Ring ring and linac ring discussed, L Mainly particle physics after LHC, but also high energy QCD Convergence in design goals Differences in technological challenges EIC@China project in Lanzhou Design targets similar to JLab MEIC

14 Facilities: Forward detection Forward detection of protons, neutrons, nuclear fragments Integrated with IR/optics design: Particles travel through final focusing magnets MEIC IR and forward detector Extensive work at erhic, MEIC Parker, Morozov Experience w. heavy ions at LHC Tapia Takaki Tagging requirements Coverage for forward protons with 0 < p RT 300 MeV and p R /(p beam /) 0. Resolution p RT 100MeV and p R /p R 10 erhic IR and forward detector Forward neutron detection with sufficient angular/position resolution

15 Summary Spectator tagging enables next generation studies of short-range nuclear structure and QCD Tagging program with JLab 1 GeV developing Ideally suited for collider, great opportunities with EIC Intersection of different fields QCD and partonic structure Low-energy nuclear structure Detector concepts Accelerator design Looking forward to new impulses from this workshop!

Polarized deuterium physics with EIC C. Weiss (JLab), Tensor Polarized Solid Target Workshop, JLab, 11 Mar 14

Polarized deuterium physics with EIC C. Weiss (JLab), Tensor Polarized Solid Target Workshop, JLab, 11 Mar 14 Polarized deuterium physics with EIC C. Weiss (JLab), Tensor Polarized Solid Target Workshop, JLab, 11 Mar 14 1 e e x, 0000000 1111111 D pol. Q 2 X p, n Electron-Ion Collider overview Design specifications

More information

Next-generation nuclear physics with JLab12 and EIC

Next-generation nuclear physics with JLab12 and EIC Next-generation nuclear physics with JLab12 and EIC Topical Workshop, Florida International University, 10 13 Feb 2016 W. Brooks, R. Dupre, Ch. Hyde, M. Sargsian, C. Weiss (Organizers) Welcome! Physics

More information

Neutron structure with spectator tagging at MEIC

Neutron structure with spectator tagging at MEIC Neutron structure with spectator tagging at MEIC C. Weiss (JLab), Users Group Workshop 2014, JLab, 03 Jun 14 Light ion physics with EIC e D pol. e p, n High energy process Forward spectators detected Physics

More information

MEIC polarized deuteron R&D

MEIC polarized deuteron R&D MEIC polarized deuteron R&D C. Weiss, JLab Theory! FY14/15 LDRD Project Physics potential of polarized light ions with EIC@JLab 1 Overview Physics potential of polarized light ions with EIC@JLab! FY14/15

More information

Strong interaction physics with an Electron Ion Collider

Strong interaction physics with an Electron Ion Collider Strong interaction physics with an Electron Ion Collider C. Weiss (JLab), UNAM, Mexico City, 03 April 17 [E-mail] Internal structure of nucleon Quantum Chromodynamics Concepts and methods for structure

More information

(High-x) physics at an Electron-Ion Collider (EIC)

(High-x) physics at an Electron-Ion Collider (EIC) (High-x) physics at an Electron-Ion Collider (EIC) Pawel Nadel-Turonski Jefferson Lab 4 th International Workshop on Nucleon Structure at Large Bjorken x Rome, Italy, November 17-21, 2014 EIC physics program

More information

Nucleon Valence Quark Structure

Nucleon Valence Quark Structure Nucleon Valence Quark Structure Z.-E. Meziani, S. Kuhn, O. Rondon, W. Melnitchouk Physics Motivation Nucleon spin and flavor structure High-x quark distributions Spin-flavor separation Moments of structure

More information

3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider

3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider Workshop on Precision Radiative Corrections for Next Generation Experiments 6 9 May 6, Jefferson Lab, Newport News VA 3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider

More information

erhic: Science and Perspective

erhic: Science and Perspective erhic: Science and Perspective Study of the Fundamental Structure of Matter with an Electron-Ion Collider A. Deshpande, R. Milner, R. Venugopalan, W. Vogelsang hep-ph/0506148, Ann. Rev. Nucl. Part. Sci.

More information

MEIC Physics. Tanja Horn for the MEIC group. Jlab Users Meeting

MEIC Physics. Tanja Horn for the MEIC group. Jlab Users Meeting MEIC Physics Tanja Horn for the MEIC group Jlab Users Meeting The Structure of the Proton Naïve Quark Model: proton = uud (valence quarks) QCD: proton = uud + uu + dd + ss + The proton sea has a non-trivial

More information

Jefferson Lab 12 GeV Science Program

Jefferson Lab 12 GeV Science Program QCD Evolution Workshop 2014 International Journal of Modern Physics: Conference Series Vol. 37 (2015) 1560019 (8 pages) c The Author DOI: 10.1142/S2010194515600198 Jefferson Lab 12 GeV Science Program

More information

a medium energy collider taking nucleon structure beyond the valence region

a medium energy collider taking nucleon structure beyond the valence region EIC@JLAB a medium energy collider taking nucleon structure beyond the valence region Tanja Horn INT09-43W, Seattle, WA 19 October 2009 Tanja Horn, CUA Colloquium 1 A high-luminosity EIC at JLab Use CEBAF

More information

Electron-Ion Collider for Nuclear and Particle Physics. Hugh Montgomery Jefferson Lab

Electron-Ion Collider for Nuclear and Particle Physics. Hugh Montgomery Jefferson Lab Electron-Ion Collider for Nuclear and Particle Physics Hugh Montgomery Jefferson Lab Input to this Talk Abhay Deshpande's EICAC talk to Jefferson Lab Users http://www.jlab.org/conferences/ugm/talks/monday/deshpande.pdf

More information

The Electron-Ion Collider (EIC)

The Electron-Ion Collider (EIC) The Electron-Ion Collider (EIC) A. Accardi, R. Ent, V. Guzey, T. Horn, C. Hyde, P. Nadel-Turonski, A. Prokudin, C. Weiss,... + CASA / accelerator team + lots of JLab of users! JLab Users' Town Hall Meeting,

More information

Physics capabilities at the MEIC at JLab

Physics capabilities at the MEIC at JLab Physics capabilities at the MEIC at JLab Pawel Nadel-Turonski Jefferson Lab for the MEIC group MENU 2013, Rome, Italy, September 30 October 4, 2013 1 Outline The Electron-Ion Collider Some physics highlights

More information

Neutron Structure Function from BoNuS

Neutron Structure Function from BoNuS Neutron Structure Function from BoNuS Stephen BültmannB Old Dominion University for the CLAS Collaboration The Structure of the Neutron at Large x The BoNuS Experiment in 005 First Results from the BoNuS

More information

Probing Short Range Structure Through the Tensor Asymmetry A zz

Probing Short Range Structure Through the Tensor Asymmetry A zz Probing Short Range Structure Through the Tensor Asymmetry A zz (TA ) at x>1 zz Elena Long Joint Hall A/C Collaboration Meeting Jefferson Lab June 6 th, 2014 1 Today s Discussion Overview of Physics Motivation

More information

Physics Opportunities at the MEIC at JLab

Physics Opportunities at the MEIC at JLab Physics Opportunities at the MEIC at JLab Pawel Nadel-Turonski Jefferson Lab QCD Evolution Workshop, JLab, May 16, 2012 1 The physics program of an EIC Map the spin and spatial structure of sea quarks

More information

PoS(CD12)001. Overview of Nuclear Physics at Jefferson Lab. R. D. McKeown Thomas Jefferson National Accelerator Facility

PoS(CD12)001. Overview of Nuclear Physics at Jefferson Lab. R. D. McKeown Thomas Jefferson National Accelerator Facility Overview of Nuclear Physics at Jefferson Lab Thomas Jefferson National Accelerator Facility E-mail: bmck@jlab.org The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment

More information

From JLab12 to EIC: QCD in nuclei

From JLab12 to EIC: QCD in nuclei The EIC Science case: a report on the joint BL/IT/JLab program Gluons and the quark sea at high energies: distributions, polarization, tomography Institute for uclear Theory, University of Washington,

More information

A High Luminosity Electron-Ion Collider to Study the Structure of Matter

A High Luminosity Electron-Ion Collider to Study the Structure of Matter A High Luminosity Electron-Ion Collider to Study the Structure of Matter Introduction Scientific motivation Realization Summary Study of the Fundamental Structure of Matter with an Electron-Ion Collider

More information

Electron-Ion Collider Taking us to the next QCD Frontier

Electron-Ion Collider Taking us to the next QCD Frontier QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) Electron-Ion Collider Taking us to the next QCD Frontier Jianwei Qiu Brookhaven National Laboratory Acknowledgement: Much of the physics presented

More information

Electron-Ion Collider for Nuclear and Particle Physics. Hugh Montgomery Jefferson Lab

Electron-Ion Collider for Nuclear and Particle Physics. Hugh Montgomery Jefferson Lab Electron-Ion Collider for Nuclear and Particle Physics Hugh Montgomery Jefferson Lab Input to Talk Abhay Deshpande's EICAC talk to Jefferson Lab Users http://www.jlab.org/conferences/ugm/talks/monday/deshpande.pdf

More information

Gluons at high x in Nuclei at EIC

Gluons at high x in Nuclei at EIC Gluons at high x in Nuclei at EIC in collaboration with: E. Chudakov, D. Higinbotham, C. Hyde, C. Weiss Jefferson Lab DNP 2015 Fall meeting, Santa Fe, NM Outline Motivation HERA and ZEUS experience EIC

More information

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility 1 Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility Motivation Quantum Chromo Dynamics Proton=uud Visible Universe Galaxies, stars, people, Silent Partners: Protons & Neutrons

More information

EMC effect and short-ranged correlations

EMC effect and short-ranged correlations EMC effect and short-ranged correlations Gerald A. Miller University of Washington RMP with Or Hen, Eli Piasetzky, Larry Weinstein arxiv: 1611.09748 Will focus on 0.3

More information

An Electron Ion Collider in China

An Electron Ion Collider in China An Electron Ion Collider in China Xurong Chen The Institute of Modern Physics CAS, Lanzhou, China The Sixth Workshop on Hadron Physics in China and Opportunities in US July 21~24, 2014 at Lanzhou 1 EIC@China

More information

MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group

MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group MEIC Collaboration Meeting 2015/10/07 MEIC Design Goals Energy Full coverage of s from 15 to 65 GeV Electrons 3-10 GeV, protons 20-100 GeV, ions

More information

Project. 1 Introduction. EPJ Web of Conferences 66, (2014)

Project. 1 Introduction. EPJ Web of Conferences 66, (2014) EPJ Web of Conferences 66, 6 (4) DOI:.5/ epjconf/ 4666 C Owned by the authors, published by EDP Sciences, 4 Probing Sea Quarks and Gluons: Project The Electron-Ion Collider Tanja Horn,a Catholic University

More information

Tensor Polarized Deuteron at and EIC

Tensor Polarized Deuteron at and EIC Tensor Polarized Deuteron at and EIC Tensor Polarized Observables Workshop March 10-12, 2014 Narbe Kalantarians Hampton University Outline Background/Motivation Spin-1/Tensor-Polarization Concept Starting

More information

Nuclear Short Range Correlations

Nuclear Short Range Correlations Nuclear Short Range Correlations Larry Weinstein Old Dominion University What are Correlations? Neutron stars EMC effect Hit the correlated pair Spectator correlated pairs np vs pp pairs Summary Elba Workshop,

More information

Spin Structure of the Nucleon: quark spin dependence

Spin Structure of the Nucleon: quark spin dependence Spin Structure of the Nucleon: quark spin dependence R. De Vita Istituto Nazionale di Fisica Nucleare Electromagnetic Interactions with Nucleons and Nuclei EINN005 Milos September, 005 The discovery of

More information

Coherent and Incoherent Nuclear Exclusive Processes

Coherent and Incoherent Nuclear Exclusive Processes Coherent and Incoherent Nuclear Exclusive Processes Vadim Guzey Electron-Ion Collider Workshop: Electron-Nucleon Exclusive Reactions Rutgers University, March 14-15, 2010 Outline Coherent and incoherent

More information

GPDs and TMDs at Electron-Ion Collider. Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN)

GPDs and TMDs at Electron-Ion Collider. Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN) GPDs and TMDs at Electron-Ion Collider Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN) Electron-Ion Collider World s first polarized electron +

More information

Introduction to EIC/detector concept

Introduction to EIC/detector concept Introduction to EIC/detector concept Tanja Horn 4 th Workshop on Exclusive Reactions at High Momentum Transfer Tanja Horn, CUA Colloquium Newport News, VA 19 May 2010 1 Why an electron-ion Collider? Easier

More information

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives Deeply Virtual Compton Scattering off 4 He: New results and future perspectives M. Hattawy (On behalf of the CLAS collaboration) Next generation nuclear physics with JLab12 and EIC 10-13 February 2016,

More information

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE rhtjhtyhy EINN 2017 NOVEMBER 1, 2017 PAPHOS, CYPRUS THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE KAWTAR HAFIDI Argonne National Laboratory is a U.S. Department of Energy laboratory

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

The Large Hadron electron Collider at CERN

The Large Hadron electron Collider at CERN The Large Hadron electron Collider at CERN A. Polini (for the LHeC Collaboration) Outline: Introduction Accelerator, Interaction Region and Detector Physics Highlights Future and Outlook A. Polini LHeC

More information

Heavy quark production and large-x nuclear gluons at EIC

Heavy quark production and large-x nuclear gluons at EIC Heavy quark production and large-x nuclear gluons at EIC C. Weiss (JLab), Santa Fe Jets and Heavy Flavor Workshop, -Jan-8 Nuclear partons e x e x B, Q c, b _ c, b _ Nuclear modifications NN interactions

More information

Forward Spectator Tagging Event Generator e D e p s X

Forward Spectator Tagging Event Generator e D e p s X Forward Spectator Tagging Event Generator e D e p s X Kijun Park 1 1 Old Dominion University September 24, 2015 EIC Software meeting, JLab, Newport News Tagging with unpolarized and polarized light ions

More information

arxiv: v1 [nucl-ex] 3 Sep 2018

arxiv: v1 [nucl-ex] 3 Sep 2018 A Plan for Electron Ion Collider in China arxiv:89.448v [nucl-ex] 3 Sep 28 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 73, China E-mail: xchen@impcas.ac.cn One of the frontier research

More information

High Momentum Nucleons: where have we been and where are we going

High Momentum Nucleons: where have we been and where are we going High Momentum Nucleons: where have we been and where are we going Nadia Fomin High Energy Nuclear Physics with Spectator Tagging March 10 th, 015 High momentum nucleons where do they come from? Independent

More information

The Jefferson Lab 12 GeV Program

The Jefferson Lab 12 GeV Program The Jefferson Lab 12 GeV Program The Jefferson Lab facilities have undergone a substantial upgrade, both of accelerator, CEBAF, and of the experimental installations. We will discuss the progress to completion

More information

The Detector Design of the Jefferson Lab EIC

The Detector Design of the Jefferson Lab EIC The Detector Design of the Jefferson Lab EIC Jefferson Lab E-mail: mdiefent@jlab.org The Electron-Ion Collider (EIC) is envisioned as the next-generation U.S. facility to study quarks and gluons in strongly

More information

Tagged EMC Effect. Nathan Baltzel Raphaël Dupré Kawtar Hafidi Stepan Stepanyan. Unité mixte de recherche. CNRS-IN2P3 Université Paris-Sud

Tagged EMC Effect. Nathan Baltzel Raphaël Dupré Kawtar Hafidi Stepan Stepanyan. Unité mixte de recherche. CNRS-IN2P3 Université Paris-Sud Tagged EMC Effect Nathan Baltzel Raphaël Dupré Kawtar Hafidi Stepan Stepanyan Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud 91406 Orsay cedex Tél. : +33 1 69 15 73 40 Fax : +33 1 69 15 64 70

More information

JLEIC forward detector design and performance

JLEIC forward detector design and performance Jefferson Lab E-mail: ryoshida@jlab.org A major part of the physics program at the Electron-Ion Collider being planned in the US is the exploration of nucleon and nuclear structure. This program means

More information

ALERT Proposals: Tagged EMC Nuclear DVCS (Φ production) (others)

ALERT Proposals: Tagged EMC Nuclear DVCS (Φ production) (others) ALERT Proposals: Tagged EMC Nuclear DVCS (Φ production) (others) Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud 91406 Orsay cedex Tél. : +33 1 69 15 73 40 Fax : +33 1 69 15 64 70 http://ipnweb.in2p3.fr

More information

THE US-BASED ELECTRON- ION COLLIDER AND PROSPECTS FOR NUCLEON IMAGING STUDIES. Rolf Ent Jefferson Lab

THE US-BASED ELECTRON- ION COLLIDER AND PROSPECTS FOR NUCLEON IMAGING STUDIES. Rolf Ent Jefferson Lab THE US-BASED ELECTRON- ION COLLIDER AND PROSPECTS FOR NUCLEON IMAGING STUDIES Rolf Ent Jefferson Lab INT-17-3, Spatial and Momentum Tomography of Hadrons and Nuclei, Seattle, Washington, September 26,

More information

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives Deeply Virtual Compton Scattering off 4 He: New results and future perspectives M. Hattawy (On behalf of the CLAS collaboration) 2016 JLab Users Group Workshop and Annual Meeting June 20-22, Jefferson

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

Jefferson Lab Program and MEIC. R. D. McKeown Jefferson Lab College of William and Mary

Jefferson Lab Program and MEIC. R. D. McKeown Jefferson Lab College of William and Mary Jefferson Lab Program and MEIC R. D. McKeown Jefferson Lab College of William and Mary Hadron Workshop, Lanzhou July 21, 2014 Outline Recent Highlights 12 GeV Science Overview 12 GeV Project Status EIC

More information

2N and 3N Correlations in Few Body Systems at x > 1

2N and 3N Correlations in Few Body Systems at x > 1 2N and 3N Correlations in Few Body Systems at x > 1 Searching for 3N Correlations at x > 1 Donal Day University of Virginia Next generation nuclear physics with JLab12 and EIC 1 Outline Accepted Notions

More information

Nucleons in the Nuclear Environment

Nucleons in the Nuclear Environment Nucleons in the Nuclear Environment "The next seven years..." John Arrington Argonne National Lab Topic: Study of nucleons (hadrons, quarks) in nuclei 1 - The EMC effect and related measurements 2 - Color

More information

Short Range Correlations and the EMC Effect

Short Range Correlations and the EMC Effect Short Range Correlations and the EMC Effect Or Hen, Tel-Aviv University Short Range Correlations The EMC Effect and nucleon modification The EMC SRC correlation Implications of the EMC-SRC correlation

More information

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois Helicity: Experimental Status Matthias Grosse Perdekamp, University of Illinois Content o The Experimental Effort o Quark and Sea Quark Helicity è DIS, SIDIS, pp è new FFs for global analysis è results

More information

The Jlab 12 GeV Upgrade

The Jlab 12 GeV Upgrade The Jlab 12 GeV Upgrade R. D. McKeown Jefferson Lab College of William and Mary 1 12 GeV Science Program The physical origins of quark confinement (GlueX, meson and baryon spectroscopy) The spin and flavor

More information

Experimental results on nucleon structure Lecture I. National Nuclear Physics Summer School 2013

Experimental results on nucleon structure Lecture I. National Nuclear Physics Summer School 2013 Experimental results on nucleon structure Lecture I Barbara Badelek University of Warsaw National Nuclear Physics Summer School 2013 Stony Brook University, July 15 26, 2013 Barbara Badelek (Univ. of Warsaw

More information

Upgrade for SRC/EMC Studies. Stephen Wood

Upgrade for SRC/EMC Studies. Stephen Wood Upgrade for SRC/EMC Studies Stephen Wood Outline Hall C 12 Hardware overview Standard Spectrometers Additional detectors Hall C SRC/EMC/Nuclear-effects physics program Deuteron EMC with LAD Standard Hall

More information

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS Overview of Jefferson Lab Physics Program David Richards 1 st June, 2008 HUGS Why are we here? Describe how the fundamental building blocks of the nucleus, the protons and neutrons, are built from the

More information

Overview of the SRC/EMC experiments

Overview of the SRC/EMC experiments Overview of the SRC/EMC experiments Donal Day Hall C Winter Meeting 2016 E12-06-105 E12-10-008 PAC Report E12-06-105 (x > 1): Inclusive Scattering from Nuclei at x > 1 in the Quasi-elastic and Deep-inelastic

More information

Proton-lead measurements using the ATLAS detector

Proton-lead measurements using the ATLAS detector Proton-lead measurements using the ATLAS detector Martin Spousta for the ATLAS Collaboration Charles University in Prague DOI: http://dx.doi.org/10.3204/desy-proc-2014-04/275 Measurements of soft and hard

More information

Hadronization with JLab 6/12 GeV

Hadronization with JLab 6/12 GeV Hadronization with JLab 6/12 GeV Next generation nuclear physics with JLab12 and EIC Florida International University February 10-13th, 2016 Lamiaa El Fassi (On behalf of EG2 and CLAS Collaborations) Outline

More information

Timelike Compton Scattering

Timelike Compton Scattering Timelike Compton Scattering Tanja Horn In collaboration with: Y. Illieva, F.J. Klein, P. Nadel-Turonski, R. Paremuzyan, S. Stepanyan 12 th Int. Conference on Meson-Nucleon Physics and the Structure of

More information

HERMES at HERA: Quark-Gluon Spin Structure of the Nucleon

HERMES at HERA: Quark-Gluon Spin Structure of the Nucleon HERMES at HERA: Quark-Gluon Spin Structure of the Nucleon Introduction The year 2002, marked the 75th anniversary of Dennison s discovery that the proton, just like the electron, carries spin. The electron

More information

The Electron-Ion Collider at BNL: Capabilities and Physics Highlights

The Electron-Ion Collider at BNL: Capabilities and Physics Highlights Hadron 2011 Munich 1 The Electron-Ion Collider at BNL: Capabilities and Physics Highlights D. Leinweber J.H. Lee Brookhaven National Laboratory Outline Why do we need electron-ion collider What can we

More information

BoNuS Program at CLAS and CLAS12:

BoNuS Program at CLAS and CLAS12: BoNuS Program at CLAS and CLAS12: BoNuS=Barely off-shell Nuclear Structure measurement of the free neutron structure function at large x in deuterium via spectator tagging Jixie Zhang ( 张机械 ) Jefferson

More information

Drell-Yan experiments at Fermilab/RHIC/J-PARC. QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN)

Drell-Yan experiments at Fermilab/RHIC/J-PARC. QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN) Drell-Yan experiments at Fermilab/RHIC/J-PARC QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN) Outline Fermilab Drell-Yan experiments Unpolarized program Flavor asymmetry of sea-quark

More information

ERHIC - A PRECISION ELECTRON-PROTON/ION COLLIDER FACILITY AT BROOKHAVEN NATIONAL LABORATORY

ERHIC - A PRECISION ELECTRON-PROTON/ION COLLIDER FACILITY AT BROOKHAVEN NATIONAL LABORATORY ERHIC - A PRECISION ELECTRON-PROTON/ION COLLIDER FACILITY AT BROOKHAVEN NATIONAL LABORATORY B. SURROW Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139, USA E-mail: surrow@mit.edu

More information

Quark-Hadron Duality in Structure Functions

Quark-Hadron Duality in Structure Functions Approaches to QCD, Oberwoelz, Austria September 10, 2008 Quark-Hadron Duality in Structure Functions Wally Melnitchouk Outline Bloom-Gilman duality Duality in QCD OPE & higher twists Resonances & local

More information

Central Questions in Nucleon Structure

Central Questions in Nucleon Structure Central Questions in Nucleon Structure Werner Vogelsang BNL Nuclear Theory QCD and Hadron Physics Town Meeting, 01/13/2007 Exploring the nucleon: Of fundamental importance in science Know what we are made

More information

The Electron-Ion Collider

The Electron-Ion Collider The Electron-Ion Collider An electron attoscope Berndt Mueller BNL & Duke University KMI, Nagoya 6 October 2015 Standard Model particles 3-jet events @ TASSO Gluons are gauge bosons like photons [massless

More information

An Electron Ion Collider in China Xurong Chen

An Electron Ion Collider in China Xurong Chen An Electron Ion Collider in China Xurong Chen The Institute of Modern Physics CAS, Lanzhou, China 1 EIC@China Project IMP Introduction and HIAF Project EIC@HIAF Project 3 GeV (pol. e) X 12 GeV (pol. p),

More information

Nucleon Spin. Tyler Corbett

Nucleon Spin. Tyler Corbett Nucleon Spin Tyler Corbett Abstract: In 1988 the European Muon Collaboration showed that the quark contribution to spin only accounts for 20-30 percent of the nucleon spin; The "naive quark parton model

More information

Paul Newman Birmingham University. Can we add ep and ea collisions to the existing LHC pp, AA and pa programme?

Paul Newman Birmingham University. Can we add ep and ea collisions to the existing LHC pp, AA and pa programme? Paul Newman Birmingham University for the LHeC Study Group Strangeness in Quark Matter Birmingham, Tues 23 July 2013 Can we add ep and ea collisions to the existing LHC pp, AA and pa programme? towards

More information

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline Nuclear GPDs and DVCS in Collider kinematics Vadim Guzey Theory Center, Jefferson Lab Introduction Outline Nuclear PDFs Nuclear GPDs Predictions for DVCS Conclusions Introduction e(k ) Deeply Virtual Compton

More information

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Superconducting Magnets for Future Electron-Ion Collider Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Mini-workshop on Accelerator, IAS, HKUST, Hong Kong, January 18-19, 2018 1 Outline

More information

SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION. Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 94309

SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION. Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 94309 SLAC-PUB-662 September 1994 (TE) SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 9439 Work supported by Department

More information

Models of the Nucleon & Parton Distribution Functions

Models of the Nucleon & Parton Distribution Functions 11th CTEQ Summer School on QCD Analysis and Phenomenology Madison, Wisconsin, June 22-30, 2004 Models of the Nucleon & Parton Distribution Functions Wally Melnitchouk Jefferson Lab Outline Introduction

More information

Short-range NN interactions: Experimental Past and Future

Short-range NN interactions: Experimental Past and Future Short-range NN interactions: Experimental Past and Future 7th Workshop of the APS Topical Group on Hadronic Physics Nadia Fomin University of Tennessee February 1 st, 017 Independent Particle Shell Model

More information

The Neutron Structure Function from BoNuS

The Neutron Structure Function from BoNuS The Neutron Structure Function from BoNuS Stephen Bültmann 1 Physics Department, Old Dominion University, Norfolk, VA 359, USA Abstract. The BoNuS experiment at Jefferson Lab s Hall B measured the structure

More information

VHEeP: A very high energy electron proton collider based on protondriven plasma wakefield acceleration

VHEeP: A very high energy electron proton collider based on protondriven plasma wakefield acceleration VHEeP: A very high energy electron proton collider based on protondriven plasma wakefield acceleration Allen Caldwell (MPI) Matthew Wing (UCL/DESY/Univ. Hamburg) Introduction Accelerator based on plasma

More information

Nucleon and nuclear structure at the EIC

Nucleon and nuclear structure at the EIC Nucleon and nuclear structure at the EIC Alberto Accardi Hampton U. and Jefferson Lab Universidad Técnica Federico Santa María Valparaíso, CHILE 4-8 March 2013 Overview Protons and Deuterons: partons at

More information

estar? Ernst Sichtermann, LBNL Many thanks to colleagues in STAR and outside

estar? Ernst Sichtermann, LBNL Many thanks to colleagues in STAR and outside estar? Ernst Sichtermann, LBNL Many thanks to colleagues in STAR and outside RHIC Spin Mtg, Iowa May 21 Truly impressive proton data: HERA HERA Truly impressive proton data: Much less so for nuclear or

More information

Meson Structure and DIS

Meson Structure and DIS Meson Structure and DIS From HERA to the Electron-Ion Collider Rik Yoshida, November 6, 2017, Trento OUTLINE Introduction Measuring Meson Structure at from DIS HERA Collider and Meson Structure Publications

More information

Nucleon Spin Structure: Overview

Nucleon Spin Structure: Overview Nucleon Spin Structure: Overview Jen-Chieh Peng University of Illinois at Urbana-Champaign Workshop on Spin Structure of Nucleons and Nuclei from Low to High Energy Scales EINN2015, Paphos, Cyprus, Nov.

More information

Partonic Structure of Light Nuclei

Partonic Structure of Light Nuclei Partonic Structure of Light Nuclei M. Hattawy - Physics motivations - Recent results from CLAS - Proposed measurements with CLAS12 INT 17-3, Thursday, August 31st 2017 EMC Effect EMC effect: the modification

More information

The Electron-Ion Collider: Exploring the science of Nuclear Femtography

The Electron-Ion Collider: Exploring the science of Nuclear Femtography The Nature of Hadron Mass and Quark-Gluon Confinement from JLab Experiments in the 12-GeV Era The Electron-Ion Collider: Exploring the science of Nuclear Femtography Jianwei Qiu Theory Center, Jefferson

More information

Tagging with Roman Pots at RHIC. Proton tagging at STAR

Tagging with Roman Pots at RHIC. Proton tagging at STAR Tagging with Roman Pots at RHIC Proton tagging at STAR Elastic and Diffractive Processes in High Energy Proton Scattering Elastic scattering Detect protons in very forward direction with Roman Pots (RPs)

More information

SIDIS off polarized 3He: tagging the transversal nucleon structure, the EMC effect and the hadronization mechanism

SIDIS off polarized 3He: tagging the transversal nucleon structure, the EMC effect and the hadronization mechanism (BLT, Dubna SIDIS off polarized 3He: tagging te transversal nucleon structure, te EMC effect and te adronization mecanism wit June 7-July 4, 05, Almaty, Kazkstan ,. Introduction: Standard SIDIS L.P. Kaptari

More information

The Physics of Jefferson Lab 12 GeV Upgrade

The Physics of Jefferson Lab 12 GeV Upgrade The Physics of Jefferson Lab 12 GeV Upgrade Xiaochao Zheng (Univ. of Virginia) Nov. 3, 2010 Jefferson Lab: its mission and current status The Physics from 6 to 12 GeV: A few selected topics Current status

More information

Tensor Asymmetry A zz Jefferson Lab

Tensor Asymmetry A zz Jefferson Lab Tensor Asymmetry A zz at Jefferson Lab Elena Long Tensor Spin Observables Workshop Jefferson Lab March 11 th, 2014 1 Today s Discussion Overview of the Physics Rates Calculation Experimental Set-up Potential

More information

Parton-hadron duality and PDF fits

Parton-hadron duality and PDF fits Parton-hadron duality and PDF fits Alberto Accardi Hampton U. and Jefferson Lab Topical Meeting on Parton Hadron Duality University of Virginia, 13 March 2015 Why PDFs at large x? Accardi, Mod.Phys.Lett.

More information

QCD and low x physics

QCD and low x physics The e Project QCD and low x physics for the LHeC Study Group http://cern.ch/lhec 23rd July 2011 Machine Physics Status, Grenoble, France 2 3 What is the proton? electron electron Time 4 An incomplete history

More information

Collider overview and kinematics

Collider overview and kinematics 1 Collider overview and kinematics QCD studies at colliders 2 ee - ep - pp QCD collider studies Short Long distance Q: large momentum scale PEP, PETRA, Cornell, LEP, SLD, NLC SLAC, FNAL, CERN, HERA, erhic

More information

Neutron Structure Functions and a Radial Time Projection Chamber

Neutron Structure Functions and a Radial Time Projection Chamber Neutron Structure Functions and a Radial Time Projection Chamber Stephen Bültmann Old Dominion University for the BoNuS Collaboration The Structure of the Neutron The BoNuS Experiment at CLAS A New Proton

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

What is possible at the (M)EIC?

What is possible at the (M)EIC? What is possible at the (M)EIC? Pawel Nadel-Turonski Jefferson Lab Exploring Hadron Structure with Tagged Structure Functions Jefferson Lab, Newport News, VA, January 16 18, 2014 Outline The Electron-Ion

More information

EIC at JLab - design considerations and detector overview

EIC at JLab - design considerations and detector overview EIC at JLab - design considerations and detector overview Pawel Nadel-Turonski Jefferson Lab, Newport News, VA EIC Exclusive Workshop,, Rutgers Outline 1. Introduction 2. Exclusive kinematics and Detector

More information

Physics Prospects with the JLab 12 GeV Upgrade

Physics Prospects with the JLab 12 GeV Upgrade Physics Prospects with the JLab 12 GeV Upgrade Gluonic Excitations 3-dim view of the Nucleon Valence Structure of the Nucleon Elton S. Smith Jefferson Lab PANIC02 Osaka 1 CEBAF @ JLab Today Main physics

More information