Generalized Parton Distributions and Nucleon Structure

Size: px
Start display at page:

Download "Generalized Parton Distributions and Nucleon Structure"

Transcription

1 Generalized Parton Distributions and Nucleon Structure Volker D. Burkert Jefferson Lab With pqcd established we have the tool to understand matter at a deeper level. Nobel prize D. Gross, D. Politzer, F. Wilzcek GPDs - a unifying framework of hadron structure DVCS and DVMP at 12 GeV Extracting GPDs from polarization measurements 3D Imaging of the Nucleon Quark Structure Transverse momentum dependent PDFs A five year program with CLAS12 Summary DOE Science Review for the JLab Upgrade to 12 GeV, Jefferson Lab, April 6-8, 2005

2 Fundamental questions in hadron physics? : Does the proton have finite size and structure? Elastic electron-proton scattering the proton is not a point-like particle but has finite size charge and current distribution in the proton, G E /G M Nobel prize R. Hofstadter : What are the internal constituents of the nucleon? Deeply inelastic scattering discover quarks in scaling of structure function and measure their momentum and spin distributions Nobel prize J. Friedman, H. Kendall, R. Taylor Today: How are the nucleon s charge & current distributions related to the quark momentum & spin distributions?

3 Beyond form factors and quark distributions Generalized Parton Distributions (GPDs) X. Ji, D. Mueller, A. Radyushkin, M. Burkardt, Interpretation in impact parameter space Proton form factors, transverse charge & current densities Correlated quark momentum and helicity distributions in transverse space - GPDs Structure functions, quark longitudinal momentum & helicity distributions

4 From Holography to Tomography A. Belitsky, B. Mueller, NPA711 (2002) 118 An Apple A Proton detector By varying the energy and momentum transfer to the proton we probe its interior and generate tomographic images of the proton ( femto tomography ).

5 GPDs & Deeply Virtual Exclusive Processes handbag mechanism Deeply Virtual Compton Scattering (DVCS) x+ξ hard vertices x-ξ x γ x longitudinal quark momentum fraction 2ξ longitudinal momentum transfer t t Fourier conjugate to transverse impact parameter H(x,ξ,t), E(x,ξ,t),.. ξ = x B 2-x B

6 Link to DIS and Elastic Form Factors ),, ( ~, ~,, t x E H E H q q q q ξ [ ] ξ + ξ J G = = 1 1,0), (,0), ( x E x xdx H J q q q Quark angular momentum (Ji s sum rule) X. Ji, Phy.Rev.Lett.78,610(1997) DIS at ξ=t=0 ) ( ), (,0,0) ( ~ ) ( ), (,0,0) ( x q x q x H x q x q x H q q = = Form factors (sum rules) [ ) ( ),, ( ~ ), ( ),, ( ~ ) Dirac f.f. ( ),, (, 1 1, t G t x dx E t G t x dx H t F 1 t x H dx P q q A q q q q = ξ = ξ = ] ξ [ ) Pauli f.f. ( ),, ( 1 t F 2 t x E dx q q = ] ξ

7 A Unified Description of Hadron Structure Parton momentum distributions Elastic form factors GPDs Real Compton scattering at high t Deeply Virtual Compton Scattering Deeply Virtual Meson production

8 DVCS Kinematics ep epγ γγ*p plane S y e - ee γ* plane e - γ* Θ γγ γ p φ φ s x z A LU : Beam Longitudinally polarized, Target Unpolarized A UL : Beam Unpolarized, Target Longitudinally polarized A UT : Beam Unpolarized, Target Transversely polarized

9 Accessing GPDs through DVCS GPDs are universal, they can be determined in any suitable process d 4 σ dq 2 dx B dtdφ ~ T DVCS + T BH 2 E o = 11 GeV E o = 6 GeV E o = 4 GeV DVCS BH BH T BH : given by elastic form factors T DVCS : determined by GPDs DVCS A LU ~ (BH) Im(DVCS) sinφ + h.t. BH-DVCS interference generates beam and target asymmetries that carry the nucleon structure information. DVCS/BH comparable, allows asymmetry, cross section measurements

10 Measuring GPDs through polarization A = σ + σ σ + + σ = σ 2σ Polarized beam, unpolarized target: ~ σ LU ~ sinφim{f 1 H + ξ(f 1 +F 2 )H +kf 2 E}dφ Unpolarized beam, longitudinal target: ~ Kinematically suppressed σ UL ~ sinφim{f 1 H+ξ(F 1 +F 2 )(H +ξ/(1+ξ)e) -.. }dφ H(ξ,t) ξ = x B /(2-x B ) k = t/4m 2 ~ H(ξ,t), H(ξ,t) Unpolarized beam, transverse target: Kinematically suppressed σ UT ~ sinφim{k(f 2 H F 1 E) +.. }dφ H(ξ,t), E(ξ,t) Kinematically suppressed

11 Access GPDs through x-section & asymmetries Accessed by beam/target spin asymmetry DIS measures at ξ=0 Quark distribution q(x) -q(-x) t=0 Accessed by cross sections

12 DVCS interpreted in pqcd at Q 2 > 1 GeV 2 Pioneering DVCS experiments First GPD analyses of HERA/CLAS/HERMES data in LO/NLO consistent with α ~ A. Freund (2003), A. Belitsky et al. (2003) Full GPD analysis needs high statistics and broad coverage CLAS preliminary A LU E=5.75 GeV A UL = αsinφ + βsin2φ twist-2 twist-3 twist-3 contributions are small <Q 2 > = 2.0GeV 2 <x> = 0.3 <-t> = 0.3GeV 2 φ [rad]

13 Deeply Virtual Exclusive Processes - Kinematics Coverage of the 12 GeV Upgrade overlap with other experiments H1, ZEUS unique to JLab High x B only reachable with high luminosity JLab Upgrade Upgraded JLab has complementary & unique capabilities

14 DVCS/BH- Beam Asymmetry E e = 11 GeV A LU With large acceptance, measure large Q 2, x B, t ranges simultaneously. A(Q 2,x B,t) σ(q 2,x B,t) σ (Q 2,x B,t)

15 CLAS12 - DVCS/BH- Beam Asymmetry E e = 11 GeV Q 2 =5.5GeV 2 x B = t = 0.25 GeV 2

16 CLAS12 - DVCS/BH Beam Asymmetry e p epγ E = 11 GeV σ LU ~sinφim{f 1 H+..}dφ Sensitive to GPD H Selected Kinematics L = 1x10 35 T = 2000 hrs Q 2 = 1 GeV 2 x = 0.05

17 CLAS12 - DVCS/BH Target Asymmetry e p epγ Longitudinally polarized target ~ σ~sinφim{f 1 H+ξ(F 1 +F 2 )H...}dφ E = 11 GeV L = 2x10 35 cm -2 s -1 T = 1000 hrs Q 2 = 1GeV 2 x = 0.05 CLAS preliminary A UL E=5.75 GeV <Q 2 > = 2.0GeV 2 <x> = 0.2 <-t> = 0.25GeV 2

18 CLAS12 - DVCS/BH Target Asymmetry e p epγ E = 11 GeV Sample kinematics Q 2 =2.2 GeV 2, x B = 0.25, -t = 0.5GeV 2 Transverse polarized target σ ~ sinφim{k 1 (F 2 H F 1 E) + }dφ A UTx Target polarized in scattering plane A UTy Target polarized perpedicular to scattering plane Asymmetry highly sensitive to the u-quark contributions to proton spin.

19 From Observables to GPDs Procedures to extract GPDs from experimental data are currently under intense development. Approximations for certain kinematics (small ξ, t), allow extraction of dominant GPDs directly. Fit parametrizations of GPDs to large sets of DVCS/DVMP cross section and SSA data. Constraint by forward parton distribution Polynomiality conditions Elastic form factors Meson distribution amplitudes Partial wave expansion techniques. GPDs are given by sum over t-channel exchanges See: talk by M. Vanderhaeghen

20 GPDs H from expected DVCS A LU data Q 2 =3.5 GeV 2 b val =b sea =1 MRST02 NNLO distribution Other kinematics measured concurrently

21 GPDs Flavor separation DVCS DVMP long. only hard gluon hard vertices Photons cannot separate u/d quark contributions. M = ρ/ω select H, E, for u/d flavors M = π, η, K select H, E

22 Exclusive ep epρ 0 production L CLAS (4.3 GeV) x B =0.38 HERMES (27GeV) W=5.4 GeV Q 2 (GeV 2 ) GPD formalism approximately describes CLAS and HERMES data Q 2 >1.5 GeV 2

23 CLAS12 L/T Separation ep epρ ο (π + π ) x B = t = GeV 2 Projections for 11 GeV (sample kinematics) σ L Other bins measured concurrently σ T

24 Exclusive ρ 0 production on transverse target Α UT = 2 (Im(AB*))/π T Α 2 (1 ξ 2 ) Β 2 (ξ 2 +t/4m 2 ) - Re(ΑΒ )2ξ 2 ρ 0 A~ 2H u + H d B~ 2E u + E d A UT ρ + A~ H u -H d B ~ E u -E d Asymmetry depends linearly on the GPD E, which enters Ji s sum rule. ρ 0 CLAS12 K. Goeke, M.V. Polyakov, M. Vanderhaeghen, 2001 x B

25 3D Images of the Proton s Quark Content M. Burkardt PRD 66, (2002) b - Impact parameter T u(x,b ) T u X (x,b ) transverse polarized target T d X (x,b ) T d(x,b ) T quark flavor polarization Needs: H u E u Accessed in Single Spin Asymmetries. E d H d

26 Transverse Momentum Dependent GPDs (TMDs) TMD W pu (x,k,r) Parent Wigner distributions d 3 r (FT) d 2 k T GPD Probability to find a quark u in a nucleon P with a certain polarization in a position r and momentum k TMD PDFs: f pu (x,k T ),g 1,f 1T, h 1L GPDs: H pu (x,ξ,t), E pu (x,ξ,t), Measures momentum transfer to quark. d 2 k T ξ=0,t=0 dx Measure momentum transfer to nucleon. PDFs f pu (x), g 1, h 1 FFs F 1pu (t),f 2pu (t)..

27 SIDIS at leading twist e Boer e p Mulders e p Sivers transversity Off-diagonal PDFs vanish if quarks only in s-state! In addition T- odd PDFs require FSI (Brodsky et al., Collins, Ji et al. 2002)

28 Semi-Inclusive Deep Inelastic Scattering (SIDIS) Main focus of SIDIS studies: Give access to quark distributions weighted by fragmentation function Probes orbital motion of quarks through quark transverse momentum distribution Access to new PFDs not accessible in inclusive DIS. parton distributions at large x (Z.E. Meziani) orbital angular momentum of quarks through SSA in inclusive meson production.

29 Azimuthal Asymmetry Sivers Effect Originates in the quark distribution. It is measured in the azimuthal asymmetry with transverse polarized target. sin(φ φ A UT ~ s ) kf 1T D 1 T f 1T = Requires: non-trivial phase from the FSI + interference between different helicity states (S. Brodsky)

30 SIDIS Azimuthal Asymmetry - Sivers effect sin(φ φ A s ) UT Probes orbital angular momentum of quarks by measuring the imaginary part of s-p-wave interference in the amplitude. Extraction of Sivers function f 1T from asymmetry. T

31 CLAS12 - Sivers function from A UT (π 0 ) In large Nc limit: f 1T u = -f 1T d F 1T =1/2 q e q2 f 1T q Efremov et al (large x B behavior of f 1T from GPD E) CLAS12 projected CLAS12 projected x B x B Sivers function extraction from A UT (π 0 ) does not require information on fragmentation function. It is free of HT and diffractive contributions. A UT (π 0 ) on proton and neutron will allow flavor decomposition w/o info on FF.

32 Azimuthal Asymmetry - Collins Effect h 1 = sin(φ+φ σ UT ~ s ) k h 1 H 1 T Access to transversity distribution and fragmentation of polarized quarks.

33 Collins Effect and Kotzinian-Mulders Asymmetry KM σ UL ~ k h 1L H 1 T T Measures the Collins fragmentation with longitudinally polarized target. Access to the real part of s-p wave interference amplitudes.

34 What can be achieved in the first five years? Precision measurements of DVCS/BH and DVMP, beam asymmetry, target asymmetries, and cross section differences in kinematics Q 2 = GeV 2, x B = , -t = GeV 2 Precision measurements of beam and target asymmetries for π +,π,π 0 in current fragmentation region and SIDIS kinematics Determine GPDs H(ξ,ξ,t), H(ξ,ξ,t), E(ξ,ξ,t) Flavor separated E u/d, H u/d from ρ 0, ρ + production Probe the orbital motion of quarks in the nucleon through spin asymmetries. Precision measurement of the Sivers distribution function. Determine transversity in a variety of channels. Confront moments of GPDs with Lattice QCD calculations

35 CLAS12 Large angle coverage, High luminosity, cm -2 s -1 Concurrent measurement of deeply virtual exclusive, semi-inclusive, and inclusive processes, for same target, polarized or unpolarized. The CLAS upgrade is essential to the physics mission of the 12 GeV Upgrade. (PAC27, January 2005)

36 Summary A program to study the nucleon Generalized Parton Distributions has been developed for the CEBAF 12 GeV upgrade covering a broad range of kinematics and reactions. This program will provide fundamentally new insights into the internal quark dynamics through the measurement of polarization observables of exclusive and semi-inclusive deep inelastic processes. It will determine: quark orbital angular momentum contributions to the proton spin, quark flavor contributions to the spin sum rule, quark flavor polarization in polarized nucleons, recently discovered new quark distribution functions, and project 3D images of the nucleon in the infinite momentum frame.

37 The program of Deeply Exclusive and Semi- Inclusive Experiments at the JLab 12 GeV Upgrade constitutes the next step in the breakthrough experiments to study the internal nucleon structure at a deeper level. It has the potential to revolutionize hadronic physics with electromagnetic probes.

Experimental Overview Generalized Parton Distributions (GPDs)

Experimental Overview Generalized Parton Distributions (GPDs) Experimental Overview Generalized Parton Distributions (GPDs) Latifa Elouadrhiri Jefferson Lab Lattice Hadron Physics July 31 August 3, 2006 Outline Generalized Parton Distributions - a unifying framework

More information

Shape and Structure of the Nucleon

Shape and Structure of the Nucleon Shape and Structure of the Nucleon Volker D. Burkert Jefferson Lab Science & Technology Peer Review June 25-27, 2003 8/7/2003June 25, 2003 Science & Technology Review 1 Outline: From form factors & quark

More information

Studies of OAM at JLAB

Studies of OAM at JLAB Studies of OAM at JLAB Harut Avakian Jefferson Lab UNM/RBRC Workshop on Parton Angular Momentum, NM, Feb 2005 Introduction Exclusive processes Semi-Inclusive processes Summary * In collaboration with V.Burkert

More information

Generalized Parton Distributions Recent Progress

Generalized Parton Distributions Recent Progress Generalized Parton Distributions Recent Progress (Mostly a summary of various talks at SIR2005@Jlab in May 2005 Pervez Hoodbhoy Quaid-e-Azam University Islamabad γ* γ,π,ρ hard soft x+ξ x-ξ GPDs P P t Factorisation:

More information

The Physics Program of CLAS12

The Physics Program of CLAS12 1 The Physics Program of CLAS1 S. Niccolai a, for the CLAS collaboration a Institut de Physique Nucléaire d Orsay, Orsay (France) The experimental program to study nucleon structure at the 1-GeV upgraded

More information

Probing Generalized Parton Distributions in Exclusive Processes with CLAS

Probing Generalized Parton Distributions in Exclusive Processes with CLAS Probing Generalized Parton Distributions in Exclusive Processes with CLAS Volker D. Burkert Jefferson Lab The nucleon: from structure to dynamics First GPD related results in DVCS and DVMP Experimental

More information

well known known uncertain

well known known uncertain well known known uncertain Kinematical domain E=190, 100GeV Nx2 Collider : H1 & ZEUS 0.0001

More information

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1 Author manuscript, published in "XIX International Baldin Seminar on High Energy Physics Problems, Relativistic Nuclear Physics and Quantum Chromodynamics, Dubna : Russie (8)" THE GPD EXPERIMENTAL PROGRAM

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

Spin and Azimuthal Asymmetries at JLAB

Spin and Azimuthal Asymmetries at JLAB Spin and Azimuthal Asymmetries at JLAB H. Avakian *) Jefferson Lab Single-Spin Asymmetries Workshop, BNL June 1-3, 2005 *) in collaboration with P.Bosted, V. Burkert and L. Elouadrhiri Outline Introduction

More information

Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS

Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS Hyon-Suk Jo for the CLAS collaboration IPN Orsay PANIC 2011 M.I.T. Cambridge - July 25, 2011 19th Particles & Nuclei International Conference

More information

Latifa Elouadrhiri. Phone: X Jefferson Lab. Thomas Jefferson National Accelerator Facility Page 1

Latifa Elouadrhiri. Phone: X Jefferson Lab. Thomas Jefferson National Accelerator Facility Page 1 Deep Exclusive Processes Latifa Elouadrhiri Office: CC B121 Phone: X7303 E-mail: latifa@jlab.org Jefferson Lab Thomas Jefferson National Accelerator Facility Page 1 Outline Some basics about the proton

More information

Transverse Momentum Dependent Parton Distributions

Transverse Momentum Dependent Parton Distributions Transverse Momentum Dependent Parton Distributions Feng Yuan Lawrence Berkeley National Laboratory 8/14/2012 1 Feynman Parton: one-dimension Inclusive cross sections probe the momentum (longitudinal) distributions

More information

Experimental investigation of the nucleon transverse structure

Experimental investigation of the nucleon transverse structure Electron-Nucleus Scattering XIII Experimental investigation of the nucleon transverse structure Silvia Pisano Laboratori Nazionali di Frascati INFN. The unsolved proton How do the lagrangian degrees of

More information

DVCS with CLAS. Elton S. Smith. Jefferson Lab. Conference on Intersections of Particle and Nuclear Physics New York, Elton S.

DVCS with CLAS. Elton S. Smith. Jefferson Lab. Conference on Intersections of Particle and Nuclear Physics New York, Elton S. DVCS with CLAS Elton S. Smith Jefferson Lab Conference on Intersections of Particle and Nuclear Physics New York, 2003 Elton S. Smith 1 Deeply Virtual Compton Scattering Inclusive Scattering Forward Compton

More information

HERMES status and future running

HERMES status and future running HERMES status and future running Benedikt Zihlmann University of Gent on behalf of the collaboration DESY PRC Mai 24 p.1/18 Access to Transversity Single spin azimuthal asymmetries on a transverse polarized

More information

The GPD program at Jefferson Lab: recent results and outlook

The GPD program at Jefferson Lab: recent results and outlook The GPD program at Jefferson Lab: recent results and outlook Carlos Muñoz Camacho IPN-Orsay, CNRS/INP3 (France) KITPC, Beijing July 17, 1 Carlos Muñoz Camacho (IPN-Orsay) GPDs at JLab KITPC, 1 1 / 3 Outline

More information

Latifa Elouadrhiri. Phone: X Jefferson Lab. Thomas Jefferson National Accelerator Facility Page 1

Latifa Elouadrhiri. Phone: X Jefferson Lab. Thomas Jefferson National Accelerator Facility Page 1 Deep Exclusive Processes Latifa Elouadrhiri Office: CC B121 Phone: X7303 E-mail: latifa@jlab.org Jefferson Lab Thomas Jefferson National Accelerator Facility Page 1 Outline Some basics about the proton

More information

Possible relations between GPDs and TMDs

Possible relations between GPDs and TMDs Possible relations between GPDs and TMDs Marc Schlegel, Theory Center, Jefferson Lab Hall C summer meeting: Physics opportunities in Hall C at 12 GeV Generalized Parton Distributions Exclusive processes

More information

The Jlab 12 GeV Upgrade

The Jlab 12 GeV Upgrade The Jlab 12 GeV Upgrade R. D. McKeown Jefferson Lab College of William and Mary 1 12 GeV Science Program The physical origins of quark confinement (GlueX, meson and baryon spectroscopy) The spin and flavor

More information

Hall B CLAS12 Physics Program. Latifa Elouadrhiri Jefferson Lab

Hall B CLAS12 Physics Program. Latifa Elouadrhiri Jefferson Lab Hall B CLAS12 Physics Program Latifa Elouadrhiri Jefferson Lab 1 Outline Introduction to 12 GeV Upgrade CLAS12 Detector CLAS12 Science Program Summary 2 Generalized Parton Distributions (GPDs) D. Mueller,

More information

Transverse Spin Effects and k T -dependent Functions

Transverse Spin Effects and k T -dependent Functions Transverse Spin Effects and k T -dependent Functions Daniël Boer Free University, Amsterdam Outline Left-right single spin asymmetries Azimuthal spin asymmetries; Sivers and Collins effects Transversity

More information

hermes Collaboration

hermes Collaboration Probes of Orbital Angular Momentum at HERMES - a drama with prologe, some slides, and a (not yet so) happy end - G Schnell Universiteit Gent gunarschnell@desyde For the hermes Collaboration Gunar Schnell,

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/27 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

Timelike Compton Scattering

Timelike Compton Scattering Timelike Compton Scattering Tanja Horn In collaboration with: Y. Illieva, F.J. Klein, P. Nadel-Turonski, R. Paremuzyan, S. Stepanyan 12 th Int. Conference on Meson-Nucleon Physics and the Structure of

More information

Experimental Program of the Future COMPASS-II Experiment at CERN

Experimental Program of the Future COMPASS-II Experiment at CERN Experimental Program of the Future COMPASS-II Experiment at CERN Luís Silva LIP Lisbon lsilva@lip.pt 24 Aug 2012 On behalf of the COMPASS Collaboration co-financed by THE COMPASS EXPERIMENT Common Muon

More information

Hall B Physics Program and Upgrade Plan

Hall B Physics Program and Upgrade Plan Hall B Physics Program and Upgrade Plan presented by Volker Burkert and Sebastian Kuhn Outline: Introduction Deeply Virtual Exclusive Processes and GPDs Structure Functions & Semi-Inclusive Processes Equipment

More information

Single and double polarization asymmetries from deeply virtual exclusive π 0 electroproduction

Single and double polarization asymmetries from deeply virtual exclusive π 0 electroproduction Single and double polarization asymmetries from deeply virtual exclusive π electroproduction University of Connecticut E-mail: kenjo@jlab.org Harut Avakian, Volker Burkert et al. (CLAS collaboration) Jefferson

More information

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Dipangkar Dutta Mississippi State University (with Dave Gaskell & Garth Huber) Polarized Target Workshop: June 17-18, 2010 Outline

More information

Neutrons in a Spin: Nucleon Structure at Jefferson Lab

Neutrons in a Spin: Nucleon Structure at Jefferson Lab Neutrons in a Spin: Nucleon Structure at Jefferson Lab Daria Sokhan University of Glasgow, UK on behalf of the CLAS Collaboration IoP Nuclear Physics Group Conference, York 8 th April 2013 Nucleon structure

More information

A glimpse of gluons through deeply virtual Compton scattering

A glimpse of gluons through deeply virtual Compton scattering A glimpse of gluons through deeply virtual Compton scattering M. Defurne On behalf of the DVCS Hall A collaboration CEA Saclay - IRFU/SPhN June 1 st 017 June 1 st 017 1 / 7 The nucleon: a formidable lab

More information

Opportunities in Hadron Structure. Guided by Key Questions

Opportunities in Hadron Structure. Guided by Key Questions Opportunities in Hadron Structure Overarching Goal: Explore and Understand QCD Guided by Key Questions 1. What is the role of gluons in nucleons and nuclei? Gluons 2. What is the internal spin and flavor

More information

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline Nuclear GPDs and DVCS in Collider kinematics Vadim Guzey Theory Center, Jefferson Lab Introduction Outline Nuclear PDFs Nuclear GPDs Predictions for DVCS Conclusions Introduction e(k ) Deeply Virtual Compton

More information

Exclusive Physics with the HERMES Recoil Detector

Exclusive Physics with the HERMES Recoil Detector Exclusive Physics with the HERMES Recoil Detector Erik Etzelmüller on behalf of the HERMES Collaboration!!! workshop on! Exploring Hadron Structure with Tagged Structure Functions! Thomas Jefferson National

More information

Experimental Studies of Hadron Structure via Generalized Parton Distributions

Experimental Studies of Hadron Structure via Generalized Parton Distributions Experimental Studies of Hadron Structure via Generalized Parton Distributions IPN Orsay E-mail: niccolai@ipno.inp.fr Generalized Parton Distributions (GPDs) provide a unified description of hadronic structure

More information

Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES

Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES David Mahon On behalf of the HERMES Collaboration DIS 2010 - Florence, Italy Overview Mahon DIS

More information

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration Hall A SIDIS Hall A/C collaboration Meeting June 24 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle [X. Ji, 1997] DIS DΣ 0.30 RHIC + DIS Dg

More information

The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production

The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production Garth Huber SoLID Collaboration, Jefferson Lab, May 15, 2015. Complementarity of Different Reactions Deep

More information

hunting the OAM Delia Hasch a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM conclusion

hunting the OAM Delia Hasch a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM conclusion INT workshop on gluons and the quark sea at high energies, INT Seattle, Sep-Nov, 2010 Delia Hasch hunting the OAM a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM

More information

Deeply Virtual Compton JLab

Deeply Virtual Compton JLab Deeply Virtual Compton Scattering @ JLab Franck Sabatié CEA Saclay For the Hall A and Hall B collaborations Exclusive 07 - JLab May 1 st 007 Introduction Non-dedicated measurements E00-110 experiment in

More information

Two Photon Exchange in Inclusive and Semi Inclusive DIS

Two Photon Exchange in Inclusive and Semi Inclusive DIS Two Photon Exchange in Inclusive and Semi Inclusive DIS Marc Schlegel Theory Center, Jefferson Lab In collaboration with Christian Weiss, Andrei Afanasev, Andreas Metz Two Photon Exchange in elastic scattering

More information

Nucleon Spin Structure: Overview

Nucleon Spin Structure: Overview Nucleon Spin Structure: Overview Jen-Chieh Peng University of Illinois at Urbana-Champaign Workshop on Spin Structure of Nucleons and Nuclei from Low to High Energy Scales EINN2015, Paphos, Cyprus, Nov.

More information

Hall C SIDIS Program basic (e,e p) cross sections

Hall C SIDIS Program basic (e,e p) cross sections Hall C SIDIS Program basic (e,e p) cross sections Linked to framework of Transverse Momentum Dependent Parton Distributions Validation of factorization theorem needed for most future SIDIS experiments

More information

Hall B Physics Program and Upgrade Plan

Hall B Physics Program and Upgrade Plan Hall B Physics Program and Upgrade Plan Volker D. Burkert Jefferson Lab Introduction The Equipment Plan The 12 GeV Physics Program Conclusions PAC23 Meeting on the 12 GeV Upgrade, January 20, 2003 Physics

More information

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE rhtjhtyhy EINN 2017 NOVEMBER 1, 2017 PAPHOS, CYPRUS THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE KAWTAR HAFIDI Argonne National Laboratory is a U.S. Department of Energy laboratory

More information

Generalized Parton Distributions Program at COMPASS. QCD Evolution 2015

Generalized Parton Distributions Program at COMPASS. QCD Evolution 2015 Generalized Parton Distributions Program at COMPASS Eric Fuchey (CEA Saclay) On behalf of COMPASS Collaboration QCD Evolution 2015 Thomas Jefferson National Accelerator Facility (May 26-30 2014) Generalized

More information

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois Helicity: Experimental Status Matthias Grosse Perdekamp, University of Illinois Content o The Experimental Effort o Quark and Sea Quark Helicity è DIS, SIDIS, pp è new FFs for global analysis è results

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

Bessel Weighted Asymmetries Alexei Prokudin

Bessel Weighted Asymmetries Alexei Prokudin Bessel Weighted Asymmetries May 29, 2015 Unified View of Nucleon Structure Wigner WignerDistribution Distribution 5D Transverse Momentum Distributions Generalized Parton Distributions 3D GPDs DVCS TMDs

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/24 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

Nucleon Valence Quark Structure

Nucleon Valence Quark Structure Nucleon Valence Quark Structure Z.-E. Meziani, S. Kuhn, O. Rondon, W. Melnitchouk Physics Motivation Nucleon spin and flavor structure High-x quark distributions Spin-flavor separation Moments of structure

More information

Deep Exclusive π " Production with transversely polarized He3 using SoLID

Deep Exclusive π  Production with transversely polarized He3 using SoLID Deep Exclusive π " Production with transversely polarized He3 using SoLID A run-group proposal with E12-10-006 Zhihong Ye, ANL On behalf of Co-Spokespeople: Garth Huber (contact), Zafar Ahmed, from Univ.

More information

Deeply Virtual Compton Scattering on the neutron

Deeply Virtual Compton Scattering on the neutron Deeply Virtual Compton Scattering on the neutron Malek MAZOUZ For JLab Hall A & DVCS collaborations Physics case n-dvcs experimental setup Analysis method Results and conclusions Exclusive Reactions at

More information

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin,

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin, Quark/gluon orbital motion and nucleon spin Alexei Prokudin JLab December 8, 20 EIC Golden Topic # 2 talk Bob McKeown @ INT workshop Map the spin and spatial quark-gluon structure of nucleons Image the

More information

Measuring the gluon Sivers function at a future Electron-Ion Collider

Measuring the gluon Sivers function at a future Electron-Ion Collider Measuring the gluon Sivers function at a future Electron-Ion Collider Speaker: Liang Zheng Central China Normal University In collaboration with: E.C. Aschenauer (BNL) J.H.Lee (BNL) Bo-wen Xiao (CCNU)

More information

Distribution Functions

Distribution Functions Distribution Functions Also other distribution functions f 1 = g = 1L g 1T = h 1T = f 1T = h 1 = h 1L = h 1T = Full list of PDF at Twist-2 (Mulders et al) Dirk Ryckbosch, Feldberg, Oct.2006 p.1/33 Factorization

More information

The Neutral-Particle Spectrometer

The Neutral-Particle Spectrometer The Neutral-Particle Spectrometer White Paper outlining the Science and Path to Realization of the NPS The Neutral-Particle Spectrometer (NPS) Collaboration at Jefferson Lab November 26, 2014 The two-arm

More information

GPDs and TMDs at Electron-Ion Collider. Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN)

GPDs and TMDs at Electron-Ion Collider. Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN) GPDs and TMDs at Electron-Ion Collider Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN) Electron-Ion Collider World s first polarized electron +

More information

Outline. Generalized Parton Distributions. Elastic Form Factors and Charge Distributions in Space. From Form Factors to Quark Spin Distributions

Outline. Generalized Parton Distributions. Elastic Form Factors and Charge Distributions in Space. From Form Factors to Quark Spin Distributions Outline Generalized Parton Distributions in lepton scattering and antiproton annihilation experiments Michael DürenD Universität Gießen en The structure of the proton: From form factors to uark spin distributions

More information

Hadron Physics with Real and Virtual Photons at JLab

Hadron Physics with Real and Virtual Photons at JLab Hadron Physics with Real and Virtual Photons at JLab Elton S. Smith Jefferson Lab Virtual photons shape of the nucleon Elastic scattering (form factors) Inelastic scattering (uark distributions) Exclusive

More information

Information Content of the DVCS Amplitude

Information Content of the DVCS Amplitude Information Content of the DVCS Amplitude DVCS? GPDs Matthias Burkardt burkardt@nmsu.edu New Mexico State University & Jefferson Lab Information Content of the DVCS Amplitude p.1/25 Generalized Parton

More information

Generalized parton distributions in the context of HERA measurements

Generalized parton distributions in the context of HERA measurements arxiv:1107.3423v1 [hep-ph] 18 Jul 2011 Generalized parton distributions in the context of HERA measurements Laurent SCHOEFFEL CEA Saclay/Irfu-SPP, 91191 Gif-sur-Yvette, France July 2, 2013 Abstract We

More information

Present and Future of Polarized Target Experiment at CLAS12. Harut Avakian (JLab)

Present and Future of Polarized Target Experiment at CLAS12. Harut Avakian (JLab) Present and Future of Polarized Target Experiment at CLAS12 Harut Avakian (JLab) CLAS Collaboration Meeting February 20th 1 QCD: from testing to understanding 0h DIS Testing stage: pqcd predictions observables

More information

Status report of Hermes

Status report of Hermes Status report of Hermes Delia Hasch Physics Research Committee, DESY Oct 27/28 2004 Spin physics: finalised and new results on: inclusive, semi-inclusive and exclusive measurements nuclear effects data

More information

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives Deeply Virtual Compton Scattering off 4 He: New results and future perspectives M. Hattawy (On behalf of the CLAS collaboration) 2016 JLab Users Group Workshop and Annual Meeting June 20-22, Jefferson

More information

Physics Prospects with the JLab 12 GeV Upgrade

Physics Prospects with the JLab 12 GeV Upgrade Physics Prospects with the JLab 12 GeV Upgrade Gluonic Excitations 3-dim view of the Nucleon Valence Structure of the Nucleon Elton S. Smith Jefferson Lab PANIC02 Osaka 1 CEBAF @ JLab Today Main physics

More information

DVCS and DVMP: results from CLAS and the experimental program of CLAS12

DVCS and DVMP: results from CLAS and the experimental program of CLAS12 DVCS and DVMP: results from CLAS and the eperimental program of CLAS12 e e g N N GPDs Accessing GPDs via DVCS and DVMP Recent results from Jefferson Lab Silvia Niccolai IPN Orsay & CLAS Collaboration What

More information

SSA and polarized collisions

SSA and polarized collisions SSA and polarized collisions Matthias Burkardt New Mexico State University August 20, 2012 Outline 2 Deeply virtual Compton scattering (DVCS) Generalized parton distributions (GPDs) transverse imaging

More information

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is essential. Light quarks (up and down) are nearly massless,

More information

GENERALIZED PARTON DISTRIBUTIONS

GENERALIZED PARTON DISTRIBUTIONS Exploring fundamental questions of NUCLEON STRUCTURE with GENERALIZED PARTON DISTRIBUTIONS Florian Herrmann 16.9.2012 Corfu Summer School LHC COMPASS SPS Versatile facility for hadron structure studies

More information

TCS with transversally polarized target at NPS

TCS with transversally polarized target at NPS TCS with transversally polarized target at NPS Observables Fits of Compton Form Factors Simulations PAC theoretical review in 2015 for LOI Marie Boër NPS collaboration meeting, JLab, Jan 21, 2016. TCS

More information

Neutron DVCS. Carlos Muñoz Camacho. IPN-Orsay, CNRS/IN2P3 (France)

Neutron DVCS. Carlos Muñoz Camacho. IPN-Orsay, CNRS/IN2P3 (France) Neutron DVCS Carlos Muñoz Camacho IPN-Orsay, CNRS/IN2P3 (France) Next generation of nuclear physics with JLab12 and EIC Florida International University February 10 13, 2016 Carlos Muñoz Camacho (IPN-Orsay)

More information

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS Overview of Jefferson Lab Physics Program David Richards 1 st June, 2008 HUGS Why are we here? Describe how the fundamental building blocks of the nucleus, the protons and neutrons, are built from the

More information

Lessons from Lepton-Nucleon and Lepton-Nuclei Interactions Probing the structure of the atomic nucleus

Lessons from Lepton-Nucleon and Lepton-Nuclei Interactions Probing the structure of the atomic nucleus Lessons from Lepton-Nucleon and Lepton-Nuclei Interactions Probing the structure of the atomic nucleus Raphaël Dupré Disclaimer This will be only a selection of topics Like any review of a field I encourage

More information

Central Questions in Nucleon Structure

Central Questions in Nucleon Structure Central Questions in Nucleon Structure Werner Vogelsang BNL Nuclear Theory QCD and Hadron Physics Town Meeting, 01/13/2007 Exploring the nucleon: Of fundamental importance in science Know what we are made

More information

Transverse SSA Measured at RHIC

Transverse SSA Measured at RHIC May 21-24, 2007 Jefferson Lab Transverse SSA Measured at RHIC Jan Balewski, IUCF Exclusive Reactions Where does the proton s spin come from? p is made of 2 u and 1d quark S = ½ = Σ S q u u Explains magnetic

More information

Realistic parameterization of GPDs and its applications. Simonetta Liuti University of Virginia. Jlab Theory Group Seminar November 10th, 2008.

Realistic parameterization of GPDs and its applications. Simonetta Liuti University of Virginia. Jlab Theory Group Seminar November 10th, 2008. Realistic parameterization of GPDs and its applications Simonetta Liuti University of Virginia Jlab Theory Group Seminar November 10th, 2008. Collaborations Gary Goldstein (Tufts University) Leonard Gamberg

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

Coherent and Incoherent Nuclear Exclusive Processes

Coherent and Incoherent Nuclear Exclusive Processes Coherent and Incoherent Nuclear Exclusive Processes Vadim Guzey Electron-Ion Collider Workshop: Electron-Nucleon Exclusive Reactions Rutgers University, March 14-15, 2010 Outline Coherent and incoherent

More information

GPDs. -- status of measurements -- a very brief introduction prerequisites and methods DVCS & DVMP: selected results on the way to an EIC

GPDs. -- status of measurements -- a very brief introduction prerequisites and methods DVCS & DVMP: selected results on the way to an EIC Delia Hasch GPDs -- status of measurements -- a very brief introduction prerequisites and methods & DVMP: selected results on the way to an EIC see additional slides for results not covered POETIC 01,

More information

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target University of Illinois E-mail: rsheitz2@illinois.edu On behalf

More information

Progress on the DVCS program at Compass E. Burtin CEA Saclay Irfu/SPhN GDR nucléon, Ecole Polytechnique, 12 décembre 2008

Progress on the DVCS program at Compass E. Burtin CEA Saclay Irfu/SPhN GDR nucléon, Ecole Polytechnique, 12 décembre 2008 Progress on the DVCS program at Compass E. Burtin CEA Saclay Irfu/SPhN GDR nucléon, Ecole Polytechnique, 12 décembre 2008 Today and tomorrow 2010 and beyond 2008 (Today) : Target region Ring B Ring A 2008

More information

Recent results on DVCS from Hall A at JLab

Recent results on DVCS from Hall A at JLab Recent results on DVCS from Hall A at JLab Carlos Muñoz Camacho IPN-Orsay, CNRS/IN2P3 (France) Spatial and Momentum Tomography of Hadrons and Nuclei INT-17-3 Sep 5, 2017 Carlos Muñoz Camacho (IPN-Orsay)

More information

arxiv: v3 [hep-ph] 20 May 2013

arxiv: v3 [hep-ph] 20 May 2013 REVIEW ARTICLE arxiv:133.66v3 [hep-ph] 2 May 213 Generalized Parton Distributions in the valence region from Deeply Virtual Compton Scattering Michel Guidal Institut de Physique Nucléaire Orsay, CNRS-IN2P3,

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

Target single- and double-spin asymmetries in DVCS off a longitudinal polarized hydrogen target at HERMES

Target single- and double-spin asymmetries in DVCS off a longitudinal polarized hydrogen target at HERMES Target single- and double-spin asymmetries in DVCS off a longitudinal polarized hydrogen target at HERMES David Mahon University of Glasgow E-mail: d.mahon@physics.gla.ac.uk Caroline Riedl DESY, Zeuthen

More information

HERMES Status Report

HERMES Status Report HERMES Status Report Sergey Yaschenko for the Collaboration DESY PRC, Hamburg, April 1, 008 Outline Introduction Physics Highlights from HERMES Isoscalar extraction of ΔS Model-dependent constraint on

More information

The ew pin hysics rogram of the COMPASS xperiment

The ew pin hysics rogram of the COMPASS xperiment EPJ Web of Conferences 95, 04063 (2015) DOI: 10.1051/ epjconf/ 2015950406 3 C Owned by the authors, published by EDP Sciences, 2015 he ew pin hysics rogram of the COMPASS xperiment Luís Silva 1,a,b 1 LIP

More information

3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider

3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider Workshop on Precision Radiative Corrections for Next Generation Experiments 6 9 May 6, Jefferson Lab, Newport News VA 3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider

More information

Proposal submitted to the SPS comittee (May 17,2010)

Proposal submitted to the SPS comittee (May 17,2010) Proposal for GPD studies at COMPASS E. Bur9n CEA- Saclay Irfu/SPhN On behalf of the COMPASS Collabora9on MENU 2010 College of William & Mary Williamsburg - June 2 nd, 2010 Proposal submitted to the SPS

More information

Transversity experiment update

Transversity experiment update Transversity experiment update Hall A collaboration meeting, Jan 20 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle 1 2 = 1 2 ΔΣ + L q + J

More information

Spin Structure of the Nucleon: quark spin dependence

Spin Structure of the Nucleon: quark spin dependence Spin Structure of the Nucleon: quark spin dependence R. De Vita Istituto Nazionale di Fisica Nucleare Electromagnetic Interactions with Nucleons and Nuclei EINN005 Milos September, 005 The discovery of

More information

Partonic Structure of Light Nuclei

Partonic Structure of Light Nuclei Partonic Structure of Light Nuclei M. Hattawy - Physics motivations - Recent results from CLAS - Proposed measurements with CLAS12 INT 17-3, Thursday, August 31st 2017 EMC Effect EMC effect: the modification

More information

Spin-Orbit Correlations and SSAs

Spin-Orbit Correlations and SSAs Spin-Orbit Correlations and SSAs Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Spin-Orbit Correlations and SSAs p.1/38 Outline GPDs: probabilistic interpretation

More information

Recent Development in Proton Spin Physics

Recent Development in Proton Spin Physics Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,USA RIKEN BNL Research Center, Building 510A, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: fyuan@lbl.gov

More information

Gluon TMDs and Heavy Quark Production at an EIC

Gluon TMDs and Heavy Quark Production at an EIC Gluon TMDs and Heavy Quark Production at an EIC Cristian Pisano INT-7-3 Workshop Hadron imaging at Jefferson Lab and at a future EIC September 25-29 27 Seattle (USA) Quark TMDs Angeles-Martinez et al.,

More information

Strange Sea Contribution to the Nucleon Spin

Strange Sea Contribution to the Nucleon Spin Strange Sea Contribution to the Nucleon Spin Fatiha Benmokhtar Carnegie ellon University USA with A. l Alaoui Alaoui (LPC renoble France H. Avakian (JlabUSA K. Hafidi (ANL USA F. Benmokhtar RICH workshop

More information

Toward the QCD Theory for SSA

Toward the QCD Theory for SSA Toward the QCD Theory for SSA Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory 5/6/2009 1 Outline Introduction Great progress has been made recently Transverse momentum

More information

Exciting opportunities at JLab GeV!

Exciting opportunities at JLab GeV! Exciting opportunities at JLab 25-75 GeV! JLab users town meeting, Newport News! March 16 2012! Kawtar Hafidi! Develop a common vision for the future! The future starts today! 40 - Today (2012), we are

More information

Subleading-twist effects in single-spin asymmetries in semi-inclusive DIS on a longitudinally polarized hydrogen target

Subleading-twist effects in single-spin asymmetries in semi-inclusive DIS on a longitudinally polarized hydrogen target Subleading-twist effects in single-spin asymmetries in semi-inclusive DIS on a longitudinally polarized hydrogen target G Schnell, H Ohsuga, H Tanaka, T Hasegawa, T Kobayashi, Y Miyachi, T-A Shibata Tokyo

More information