Covariant quark-diquark model for the N N electromagnetic transitions

Size: px
Start display at page:

Download "Covariant quark-diquark model for the N N electromagnetic transitions"

Transcription

1 Covariant quark-diquark model for the N N electromagnetic transitions Gilberto Ramalho CFTP, Instituto Superior Técnico, Lisbon In collaboration with F. Gross, M.T. Peña and K. Tsushima Nucleon Resonance Structure in Exclusive Electroproduction at High Photon Virtualities with the CLAS 12 Detector Workshop Jlab, Newport News, VA, USA May 16, 211 Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

2 1 Motivation 2 Covariant spectator quark model Quark current Baryon wave functions Transition current 3 Results Spin 1/2 resonances N(939), N(144), N(1535) Spin 3/2 resonances (1232), (16) 4 Conclusions Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

3 Nucleon Resonance Structure σ T (1232) P 33 γ p -> n π + N(144) P 11 N(152) D W (MeV) N(1535) S 11 (16) P 33 N(165) S 11 N(168) F 15 N(171) P 11 Q 2 = 1 GeV 2 Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

4 Frameworks to study γn N at high Q 2 Study the N electroproduction (Constituent) Quark Models... Coupled-channels reaction models (Dynamical models) baryon bare core structure (input) with meson dressing (meson-baryon interaction) [EBAC, Sato-Lee, Mainz (DMT), Julich, Bonn,... ] χ-perturbation Theory, χeft Baryons and pions as d.o.f. - low Q 2 regime [Pascalutsa, Vanderhaghen, Gail, Hermert,...] pqcd... very high Q 2 Hybrid models (CBM, soliton,...) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

5 Motivation and goals [γn N ] Challenge: Understand the electromagnetic structure of the Nucleon and Nucleon resonances Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

6 Motivation and goals [γn N ] Challenge: Understand the electromagnetic structure of the Nucleon and Nucleon resonances Low Q 2 [ Q 2 2 GeV 2 ] High Q 2 [ Q GeV 2 ] (not in pqcd regime) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

7 Motivation and goals [γn N ] Challenge: Understand the electromagnetic structure of the Nucleon and Nucleon resonances Low Q 2 [ Q 2 2 GeV 2 ] High Q 2 [ Q GeV 2 ] (not in pqcd regime) What do we know? Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

8 Motivation and goals [γn N ] Challenge: Understand the electromagnetic structure of the Nucleon and Nucleon resonances Low Q 2 [ Q 2 2 GeV 2 ] High Q 2 [ Q GeV 2 ] (not in pqcd regime) What do we know? Theory: Nucleon resonances (baryons): internal structure ruled by QCD Internal degrees of freedom: (light) quarks and gluons Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

9 Motivation and goals [γn N ] Challenge: Understand the electromagnetic structure of the Nucleon and Nucleon resonances Low Q 2 [ Q 2 2 GeV 2 ] High Q 2 [ Q GeV 2 ] (not in pqcd regime) What do we know? Theory: Nucleon resonances (baryons): internal structure ruled by QCD Internal degrees of freedom: (light) quarks and gluons Experiments: We detect baryons and mesons possible decays: πn, ηn, ρn, π,... Effective degrees of freedom: mesons resonant core (N ) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

10 Framework for high Q 2 : Spectator quark model Covariant Spectator Quark Model c - Franz Gross (CST) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

11 Framework for high Q 2 : Spectator quark model Covariant Spectator Quark Model c - Franz Gross (CST) Why a quark model? Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

12 Framework for high Q 2 : Spectator quark model Covariant Spectator Quark Model c - Franz Gross (CST) Why a quark model? N as a qqq system Simple way of describing N quantum numbers: charge, spin, flavor, parity, decays,... Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

13 Framework for high Q 2 : Spectator quark model Covariant Spectator Quark Model c - Franz Gross (CST) Why a quark model? N as a qqq system Simple way of describing N quantum numbers: charge, spin, flavor, parity, decays,... Falloff of meson cloud (q q states configuration) high Q 2 Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

14 Framework for high Q 2 : Spectator quark model Covariant Spectator Quark Model c - Franz Gross (CST) Why a quark model? N as a qqq system Simple way of describing N quantum numbers: charge, spin, flavor, parity, decays,... Falloff of meson cloud (q q states configuration) high Q 2 Why covariant? Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

15 Framework for high Q 2 : Spectator quark model Covariant Spectator Quark Model c - Franz Gross (CST) Why a quark model? N as a qqq system Simple way of describing N quantum numbers: charge, spin, flavor, parity, decays,... Falloff of meson cloud (q q states configuration) high Q 2 Why covariant? Relativity fundamental at high Q 2 Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

16 Framework for high Q 2 : Spectator quark model Covariant Spectator Quark Model c - Franz Gross (CST) Why a quark model? N as a qqq system Simple way of describing N quantum numbers: charge, spin, flavor, parity, decays,... Falloff of meson cloud (q q states configuration) high Q 2 Why covariant? Relativity fundamental at high Q 2 Ingredients: Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

17 Framework for high Q 2 : Spectator quark model Covariant Spectator Quark Model c - Franz Gross (CST) Why a quark model? N as a qqq system Simple way of describing N quantum numbers: charge, spin, flavor, parity, decays,... Falloff of meson cloud (q q states configuration) high Q 2 Why covariant? Relativity fundamental at high Q 2 Ingredients: Wave functions (qqq) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

18 Framework for high Q 2 : Spectator quark model Covariant Spectator Quark Model c - Franz Gross (CST) Why a quark model? N as a qqq system Simple way of describing N quantum numbers: charge, spin, flavor, parity, decays,... Falloff of meson cloud (q q states configuration) high Q 2 Why covariant? Relativity fundamental at high Q 2 Ingredients: Wave functions (qqq) Quark current [constituent quarks e.m. form factors]: [dressing by gluons interactions and some quark-antiquark states] Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

19 Program to study γn N reactions Goal: Study Valence Quark content of N structure N = N(939), N(144), N(1535), (1232), (16),... Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

20 Program to study γn N reactions Goal: Study Valence Quark content of N structure N = N(939), N(144), N(1535), (1232), (16),... Input: Nucleon elastic form factor data Lattice QCD data (N = N,,...) Dynamical Model information (valence form factors) Callibration of the model [Quark current & wave functions] Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

21 Program to study γn N reactions Goal: Study Valence Quark content of N structure N = N(939), N(144), N(1535), (1232), (16),... Input: Nucleon elastic form factor data Lattice QCD data (N = N,,...) Dynamical Model information (valence form factors) Callibration of the model [Quark current & wave functions] Output: Valence quark contributions for the γn N form factors Dominant at high Q 2 Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

22 Program to study γn N reactions Goal: Study Valence Quark content of N structure N = N(939), N(144), N(1535), (1232), (16),... Input: Nucleon elastic form factor data Lattice QCD data (N = N,,...) Dynamical Model information (valence form factors) Callibration of the model [Quark current & wave functions] Output: Valence quark contributions for the γn N form factors Dominant at high Q 2 Using complementar information: estimate of meson cloud [Low Q 2 data; large-n c relations for meson cloud,...] Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

23 Quark structure and electromagnetic interaction (I) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

24 Quark structure and electromagnetic interaction (II) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

25 Quark structure and electromagnetic interaction (II) Not important at high Q 2 [pqcd: supression 1/Q 4 ] Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

26 Quark structure and electromagnetic interaction (II) Not important at high Q 2 [pqcd: supression 1/Q 4 ] Assume NO interference with quark dressing processes G X = G B X + G mc X Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

27 Spectator QM: Baryon wave functions Baryon: 3 constituent quark system Covariant Spectator Theory c : wave function Ψ defined in terms of a 3-quark vertex Γ with 2 on-mass-shell quarks «1 Ψ α(p, k 3) = Γ β (P, k 1, k 2) m q k 3 iε αβ Confinement insures that vertex Γ vanishes when the 3 quarks are on-shell [Γ cancels the quark propagator singularity] Stadler, Gross and Frank PRC 56, 2396 (1998); Savkli and Gross PRC 63, 3528 (21) Ψ free of singularities Instead of modulate Γ modulate directly Ψ Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

28 Spectator QM: Baryon wave functions (II) Integrating over the on-mass-shell quark momenta: k = k 1 + k 2, r = 1 2 (k 1 k 2 ); reduce current integrals to the integration in k and s = (k 1 + k 2 ) 2 Gross and Agbakpe, PRC 73, 1523 (26); PRC 77, 1522 (28): d 3 k 1 2E k1 d 3 k 2 = π 2E k2 4 dωˆr + 4m 2 q ds s 4m 2 q s d 3 k 2E k with E k = s + k 2 as the energy of the diquark. Mean value theorem: average in diquark mass s m D d 3 k 1 d 3 k 2 d 3 k 2E k1 2E k2 2 m 2 D + k2 m D =eff. mass; covariant integration in diquark on-shell momentum Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

29 Spectator QM: Baryon wave functions (III) Baryon wave functions: B = diquark quark Combination of diquark (12) and single quark (3) states, using SU(6) O(3): Ψ B = (flavor) (spin) (orbital) ψ B (P, k) }{{} radial Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

30 Spectator QM: Baryon wave functions (III) Baryon wave functions: B = diquark quark Combination of diquark (12) and single quark (3) states, using SU(6) O(3): Ψ B = (flavor) (spin) (orbital) ψ B (P, k) }{{} radial Ψ B in rest frame using quark states Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

31 Spectator QM: Baryon wave functions (III) Baryon wave functions: B = diquark quark Combination of diquark (12) and single quark (3) states, using SU(6) O(3): Ψ B = (flavor) (spin) (orbital) ψ B (P, k) }{{} radial Ψ B in rest frame using quark states Covariant generalization of Ψ B in terms baryon properties Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

32 Spectator QM: Baryon wave functions (III) Baryon wave functions: B = diquark quark Combination of diquark (12) and single quark (3) states, using SU(6) O(3): Ψ B = (flavor) (spin) (orbital) ψ B (P, k) }{{} radial Ψ B in rest frame using quark states Covariant generalization of Ψ B in terms baryon properties Ψ B can be used on any frame and/or Q 2 regime Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

33 Spectator QM: Photon-Quark coupling Quark current [f i± quark form factors] [ j µ 1 I = 6 f ] ) 2 f 1 τ 3 (γ µ qqµ q 2 + [ 1 6 f ] iσ µν 2 f q ν 2 τ 3 2M N Quarks with anomalous magnetic moments κ u, κ d fixed by nucleon magnetic moments: µ p, µ n Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

34 Spectator QM: Photon-Quark coupling Quark current [f i± quark form factors] [ j µ 1 I = 6 f ] ) 2 f 1 τ 3 (γ µ qqµ q 2 + [ 1 6 f ] iσ µν 2 f q ν 2 τ 3 2M N Quarks with anomalous magnetic moments κ u, κ d fixed by nucleon magnetic moments: µ p, µ n Vector meson dominance parameterization: 2 poles: Light vector meson: m v = m ρ Effective heavy meson: M h (=2M N ): 4 adjustable coefficients Nucleon data Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

35 Spectator QM: Transition currents (γn N ) Quark current j µ I Baryon wave function Ψ B J µ Transition current J µ in spectator formalism Franz Gross et al PR 186 (1969); PRC 45, 294 (1992) Relativistic impulse approximation: J µ = 3 λ k Ψ f (P +, k)j µ I Ψ i(p, k) P + N Ψ f k Ψ i P N diquark on-shell q = P + P, P = 1 2 (P + + P ), Q 2 = q 2 Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

36 Spin 1/2 resonances: transition currents Nucleon: [ J µ = ū(p + ) F 1 γ µ iσ µν ] q ν + F 2 u(p ) 2M N γn N(144) (R): J µ = ū R (P + ) γn N(1535) (S): J µ = ū S (P + ) [ F 1 [ F 1 ) (γ µ qqµ q 2 + F2 ) (γ µ qqµ q 2 + F2 iσ µν q ν M R + M N iσ µν q ν M S + M N Form factors - exclusive functions of Q 2 ] u(p ) ] γ 5 u(p ) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

37 Spin 1/2 resonances: wave functions Nucleon: S-state approximation (quark-diquark) Ψ N (P, k) = 1 2 [ Φ I Φ S + Φ 1 IΦ 1 S] ψn (P, k) N(144): Ψ R (P, k) = 1 2 [ Φ I Φ S + Φ 1 IΦ 1 S] ψr (P, k) N(1535): Ψ S11 (P, k) = 1 2 [ Φ I X ρ Φ 1 IX λ ] ψs11 (P, k) Φ,1 I : isospin states; Φ,1 S, X ρ, X λ : spin states Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

38 Scalar wave function: Nucleon Scalar wave functions deppendent of (P k) 2 = (quark momentum) 2 χ B = (M B m D ) 2 (P k) 2 M B m D Nucleon scalar wave function: ψ N (P, k) = Position space: NR k2 m 2 D M B = baryon mass; m D = diquark mass N 1 m D (β 1 + χ N )(β 2 + χ N ) = N 1 m D β 2 β NR N 1 m D β 2 β 1 ψ N (P, k) 6 4 FT 1 β 1 + k2 m 2 D e m D β1 r 1 7 β 2 + k2 5 m 2 D " 1 β 1 + χ N e m D β2 r r r β 1, β 2 momentum range parameters; β 2 > β 1 : β 1 long spatial range; β 2 short spatial range 1 β 2 + χ N # Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

39 Nucleon form factors (I) F Gross, GR and MT Peña, PRC 77, 1522 (28) model II Nucleon form factors: G E = F 1 τf 2, G M = F 1 + F 2 ; τ = Q2 4M 2 N G Mp /G D /µ p G Mn /G D /µ n G Ep /G Mp /µ p.5 G En Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

40 Nucleon form factors (II) [PRC 77, 1522 (28)] G Mp /G D /µ p G Mn /G D /µ n G Ep /G Mp /µ p G En Quark current fix 4 parameters; Scalar wave function [2] Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

41 Nucleon form factors (II) [PRC 77, 1522 (28)] G Mp /G D /µ p G Mn /G D /µ n G Ep /G Mp /µ p.5 G En Quark current fix 4 parameters; Scalar wave function [2] No pion cloud (explicit)... but VMD Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

42 Nucleon form factors (II) [PRC 77, 1522 (28)] G Mp /G D /µ p G Mn /G D /µ n G Ep /G Mp /µ p.5 G En Quark current fix 4 parameters; Scalar wave function [2] No pion cloud (explicit)... but VMD How can we test the valence quark parametrizarion? Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

43 Nucleon form factors (II) [PRC 77, 1522 (28)] G Mp /G D /µ p G Mn /G D /µ n G Ep /G Mp /µ p.5 G En Quark current fix 4 parameters; Scalar wave function [2] No pion cloud (explicit)... but VMD How can we test the valence quark parametrizarion? Lattice Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

44 Extension of the model for lattice QCD regime GR and MT Peña JPG 36, (29) Quark current: j µ I (M N; m ρ, M h = 2M N ) j µ I (Mlatt N ; mlatt ρ, 2M latt N ) Wave functions: Ψ B ({M B }) Ψ B ({M latt B }) Implicit m π dependence in G X [Form factors] G X include only valence quark (bare) contributions G B X Meson cloud effects suppressed for large m π : Compare G B X with lattice data Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

45 Nucleon form factors on lattice [JPG 36, (29)] G p n X Lattice nucleon form factors v G.6 E.4.2 m π =.646 GeV 4 3 v G M v G.6 E.4.2 m π =.615 GeV 4 3 v G M v G.6 E.4.2 m π =.54 GeV 4 3 v G M Data from Gockeler at al, PRD 71, 3458 (25) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

46 N(144) wave function [N(144) R] (Roper) N(144) is the 1st radial excitation of the nucleon Same spin a isospin structure Ψ R orthogonal to Ψ N Orthogonality given by scalar wave functions ψ R (P +, k)ψ N (P, k) = Q 2 = Wave function: k ( ) (P k) 2 ψ R m D M R excitation {}}{ β (P k)2 3 2 ( ) m = N D M R (P k) 2 1 ψ N m S M R β 1 + 2(P k)2 m D M R β 1 fixed by ψ N; β 3 determined by the orthogonality condition No adjustable parameters predictions Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

47 γn N(144) on lattice [PRD 81, 742 (21)] Lattice Spectator (lattice regime) Spectator (valence) F 1 *(Q 2 ).2 Lattice Spectator (lattice regime) Spectator (valence) F 2 *(Q 2 ) Data: H.W. Lin et al PRD 78, (28) Good agreement with Lattice data GR and K Tsushima, PRD 81, 742 (21) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

48 γn N(144) form factors [PRD 81, 742 (21)].2.15 CLAS data Spectator (valence) MAID.2 F 1 *(Q 2 ).1.5 F 2 *(Q 2 ) CLAS data Spectator (valence) MAID CLAS data - Aznauryan et al PRC 8, 5523 (29), MAID fit Good agreement for Q 2 > 1.5 GeV 2 Difference for Q 2 < 1.5 GeV 2 manifestation of meson cloud Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

49 γn N(144) helicity amplitudes R = A 1/2 (Q 2 ) = R [ F 1 (Q 2 ) + F 2 (Q 2 ) ] S 1/2 (Q 2 ) = R 2 M R + M Q 2 q [ F 1 (Q 2 ) τf 2 (Q 2 ) ] πα [(M R M) 2 + Q 2 ], K = M2 R M2, τ = M R MK 2M R q = photon momentum in Roper rest frame Q 2 (M R + M) 2 Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

50 γn N(144) helicity amplitudes [PRD 81, 742 (21)] A 1/2 (Q 2 ) CLAS data Spectator (valence) MAID S 1/2 (Q 2 ) CLAS data Spectator (valence) MAID GR and K Tsushima PRD 81, 742 (21) Good description of the data (Q 2 > 1.5 GeV 2 ) N(1535) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

51 N(1535) wave function [N(1535) = S11 S] Approximations: See NSTAR211 Pointlike diquark k ρ = 1 2 (k 1 k 2 ) [no internal diquark P-states] Pure spin 1/2 core: N(1535) = cos θ S S = 1/2 sin θ S S = 3/2 S = 1/2 [Karl-Isgur model: cos θ S.85] Spin states (diquark-quark system with L = 1, P = 1): X X ρ `+1 2 1m; 1, , 1 Y1m(ˆk 2 2 λ ) m 1 2 ρ [MA] ψ S11 (P,k) = m X X λ `+1 2 1m; 1, , 1 Y1m(ˆk 2 2 λ ) m 1 2 λ m N S [MS] m D (β P k m DM S ) ( β P k m DM S ) ψ N (P,k) No adjustable parameters predictions Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

52 γn N(1535) form factors [arxiv: [hep-ph]] Form factors: F 1, F 2 I (Q 2 ) Overlap integral (S11 rest frame): q = M2 S M2 2M S : photon moment I (Q 2 k z ) = k ψ S11 (P S11, k)ψ N (P N, k) k = const q (Q 2 ) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

53 γn N(1535) form factors [arxiv: [hep-ph]] Form factors: F 1, F 2 I (Q 2 ) Overlap integral (S11 rest frame): q = M2 S M2 2M S : photon moment I (Q 2 k z ) = k ψ S11 (P S11, k)ψ N (P N, k) k = const q (Q 2 ) If M S = M I () = N, S11 orthogonal states Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

54 γn N(1535) form factors [arxiv: [hep-ph]] Form factors: F 1, F 2 I (Q 2 ) Overlap integral (S11 rest frame): q = M2 S M2 2M S : photon moment I (Q 2 k z ) = k ψ S11 (P S11, k)ψ N (P N, k) k = const q (Q 2 ) If M S = M I () = N, S11 orthogonal states If M S M I () No orthogonality [Consequence of relativistic generalization (boost of a state)] Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

55 γn N(1535) form factors [arxiv: [hep-ph]] Form factors: F 1, F 2 I (Q 2 ) Overlap integral (S11 rest frame): q = M2 S M2 2M S : photon moment I (Q 2 k z ) = k ψ S11 (P S11, k)ψ N (P N, k) k = const q (Q 2 ) If M S = M I () = N, S11 orthogonal states If M S M I () No orthogonality [Consequence of relativistic generalization (boost of a state)] Range of application of the model? (I () ) q defines the momentum scale Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

56 γn N(1535) form factors [arxiv: [hep-ph]] Form factors: F 1, F 2 I (Q 2 ) Overlap integral (S11 rest frame): q = M2 S M2 2M S : photon moment I (Q 2 k z ) = k ψ S11 (P S11, k)ψ N (P N, k) k = const q (Q 2 ) If M S = M I () = N, S11 orthogonal states If M S M I () No orthogonality [Consequence of relativistic generalization (boost of a state)] Range of application of the model? (I () ) q defines the momentum scale If Q 2 q 2 =.23 GeV2 I () Model valid for Q 2 > 2.3 GeV 2 Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

57 γn N(1535) form factors [arxiv: [hep-ph]] F 1 * (Q 2 ) CLAS data MAID analysis Dalton et al F 2 * (Q 2 ) CLAS data MAID analysis Dalton et al PDG Model compared with CLAS and MAID data Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

58 γn N(1535) form factors [arxiv: [hep-ph]] F 1 * (Q 2 ) CLAS data MAID analysis Dalton et al F 2 * (Q 2 ) CLAS data MAID analysis Dalton et al PDG Model compared with CLAS and MAID data F 1 OK; F 2 wrong sign Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

59 γn N(1535) form factors [arxiv: [hep-ph]] F 1 * (Q 2 ) CLAS data MAID analysis Dalton et al F 2 * (Q 2 ) CLAS data MAID analysis Dalton et al PDG Model compared with CLAS and MAID data F1 OK; F 2 wrong sign... Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

60 γn N(1535) form factors [arxiv: [hep-ph]] F 1 * (Q 2 ) CLAS data MAID analysis Dalton et al F 2 * (Q 2 ) CLAS data MAID analysis Dalton et al PDG Model compared with CLAS and MAID data F1 OK; F 2 wrong sign... There is also estimates of valence contributions (EBAC) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

61 γn N(1535) form factors [arxiv: [hep-ph]] F 1 * (Q 2 ) CLAS data MAID analysis Dalton et al EBAC (bare) F 2 * (Q 2 ) CLAS data MAID analysis Dalton et al EBAC (bare) PDG Model compared with EBAC: J. Diaz et al PRC 6, 2527 (29) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

62 γn N(1535) form factors [arxiv: [hep-ph]] F 1 * (Q 2 ) CLAS data MAID analysis Dalton et al EBAC (bare) F 2 * (Q 2 ) CLAS data MAID analysis Dalton et al EBAC (bare) PDG Model compared with EBAC: J. Diaz et al PRC 6, 2527 (29) F 1 close to EBAC (valence quark core) (Q2 < 2 GeV 2 ) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

63 γn N(1535) form factors [arxiv: [hep-ph]] F 1 * (Q 2 ) CLAS data MAID analysis Dalton et al EBAC (bare) F 2 * (Q 2 ) CLAS data MAID analysis Dalton et al EBAC (bare) PDG Model compared with EBAC: J. Diaz et al PRC 6, 2527 (29) F 1 close to EBAC (valence quark core) (Q2 < 2 GeV 2 ) F 2 close to valence estimate (Q2 1 GeV 2 ) (F 2 )Sp (F 2 )QM Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

64 γn N(1535) helicity amplitudes 15 A 1/2 (1-3 GeV -1/2 ) 1 5 CLAS data MAID analysis Dalton et al EBAC (bare) PDG S 1/2 (1-3 GeV -1/2 ) CLAS data MAID analysis EBAC (bare) [ A 1/2 = 2b F1 + M ] S M M S + M F 2, S 1/2 = 2b(M S + M) q [ ] MS M Q 2 M S + M F 1 τf2 p v [(MS M) 2 + Q 2 ][(M S + M) 2 + Q 2 ] u q =, b = et (M S M) 2 + Q 2 2 2M S 8M(M S 2 M2 ), τ = Q (M S + M) 2 Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

65 γn N(1535) form factors F 2 * (Q 2 ) CLAS data MAID analysis Dalton et al EBAC (bare) PDG What if we use F 2? (Q2 > 1.5 GeV 2 ) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

66 γn N(1535) helicity amplitudes [arxiv: [hep-ph]] 15 A 1/2 (1-3 GeV -1/2 ) 1 5 CLAS data MAID analysis Dalton et al EBAC (bare) PDG S 1/2 (1-3 GeV -1/2 ) CLAS data MAID analysis EBAC (bare) F 2 = (data), F 1 from Spectator model Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

67 γn N(1535) helicity amplitudes [arxiv: [hep-ph]] 15 A 1/2 (1-3 GeV -1/2 ) 1 5 CLAS data MAID analysis Dalton et al EBAC (bare) PDG S 1/2 (1-3 GeV -1/2 ) CLAS data MAID analysis EBAC (bare) F2 = (data), F 1 from Spectator model Very good description of A 1/2 and S 1/2 for Q 2 > 2.3 GeV 2 Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

68 γn N(1535) helicity amplitudes [arxiv: [hep-ph]] Implication of F 2 = : Model with valence quark meson cloud: Cancelation of valence quark contributions and meson cloud contributions F B 2 (Q 2 ) + F mc 2 F2 B = valence quarks; F mc 2 = meson cloud Consequence: for Q 2 > 1.8 GeV 2 [ q Q 1 + τ ]: 1 + τ M S 1/2 S 2 M2 2 2M S Q A 1/2 S 1/2 scales with A 1/2 GR and K Tsushima arxiv: [hep-ph] Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

69 Relation between A 1/2 and S 1/2 (MAID) 15 A 1/2 (1-3 GeV -1/2 ) 1 5 CLAS data MAID analysis Dalton et al PDG MAID fit S 1/2 (1-3 GeV -1/2 ) -1-2 CLAS data MAID analysis MAID fit Scaling (MAID) MAID parametrization A 1/2 : 1 + τ M S 1/2 S 2 M2 2 2M S Q A 1/2 Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

70 γn N (1535) asymptotic behavior [arxiv: [hep-ph]] 15 F 1 * (Q 2 ) CLAS data MAID analysis Dalton et al pqcd A 1/2 (1-3 GeV -1/2 ) 1 5 CLAS data MAID analysis Dalton et al PDG pqcd Comparing with pqcd, Carlson et al. PRL 81, 2646 (1998) Model and Data overestimates pqcd result Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

71 Spin 3/2 resonances: transition currents γn (1232) or (16): [ J µ = ū β (P + ) G 1 q β γ µ + G 2 q β P µ + G 3 q β q µ G 4 g βµ] γ 5 u(p ) u β Rarita-Schwinger spinor q µ J µ = G 4 = (M + M N )G (M2 M 2 N)G 2 Q 2 G 3 G M = G E = G C = M N nˆ(3m 3(M N +M + M ) N)(M + M) + Q 2 G o 1 +(M 2 MN)G 2 2 2Q 2 G 3 M n M N 3(M N +M ) M N 3(M N +M ) A 1/2 = N o (M 2 MN 2 Q 2 ) G1 (M 2 MN)G 2 2 2Q 2 G 3 M o n4m G 1 + (3M 2 + MN 2 + Q 2 )G 2 + 2(M 2 MN 2 Q 2 )G [G M 3G E], A 3/2 = N 2 [G M + G E], S 1/2 G C Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

72 Spin 3/2 resonances: wave functions wave function: EPJA 36, 329 (28); PRD 78, (28); PRD 8, 138 (29) Ψ = N [Ψ S + aψ D3 + bψ D1 ] S = 3 2, D3 = 2 3 2, D1 = Wave functions fited to form factor data [G M, G E, G C ] S-state model: good description of G M data EPJA, 36, 329 (28) With D-states: S-state G M Fit physical data EBAC (core) G E, G C Fit lattice QCD data (bare contribution) Extracting valence quark contributions from lattice QCD: G latt X (m latt π Model {}}{ ) G B X(m latt π ) mlatt π m phys π G B X(physical) GR and MT Peña PRD 8, 138 (29) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

73 Lattice: Alexandrou et al, PRD 77, 8512 (28) EBAC: J. Diaz et al, PRC 75, 1525 (27) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5 γn : G M (Q2 ) on lattice [PRD 8, 138 (29)] Lattice m π = 563 MeV Physical Point Lattice m π = 411 MeV Physical Point G M * 1 G M * G M * Lattice m π = 49 MeV Physical point B G M 1 Core contributions (EBAC model) m π =.138 GeV

74 γn : G M (Q2 ) (valence) GR and MT Peña PRD 8, 138 (29) G M */(3G D ) Data Core Bare Bare EBAC model Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

75 γn : G M (Q2 ) (valence + pion cloud [phenomenological]) GR and MT Peña PRD 8, 138 (29) G M */(3G D ) Data Core Bare Bare + Pion cloud Bare EBAC model G π M = λ π Λ 2 π Λ 2 π +Q2 2 (3GD) G B M () 3G D.7 Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

76 γn : G E (Q2 ), G C (Q2 ) on lattice [PRD 8, 138 (29)] Fit to lattice QCD data (bare contribution) Alexandrou et al, PRD, 77, 8512 (28) G E * (Q 2 ) Lattice m π = 563 MeV Lattice m π = 49 MeV Lattice m π = 411 MeV Physical point G C * (Q 2 ) Lattice m π = 563 MeV Lattice m π = 49 MeV Lattice m π = 411 MeV Physical Point Q 2 ( GeV 2 ) D3 state:.72% D1 state:.72% Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

77 γn : G E (Q2 ), G C (Q2 ) (bare) [PRD 8, 138 (29)] G E * (Q 2 ) Lattice m π = 563 MeV Lattice m π = 49 MeV Lattice m π = 411 MeV Experimental data G C * (Q 2 ) Lattice m π = 563 MeV Lattice m π = 49 MeV Lattice m π = 411 MeV Experimental data Compare with Physical data Small valence quark contributions GR, MT Peña PRD 8, 138 (29) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

78 γn : G E (Q2 ), G C (Q2 ) (bare + pion cloud) G E * (Q 2 ) Lattice m π = 563 MeV Lattice m π = 49 MeV Lattice m π = 411 MeV Experimental data G C * (Q 2 ) Lattice m π = 563 MeV Lattice m π = 49 MeV Lattice m π = 411 MeV Experimental data Pion cloud [Large N c ; no additional parameters] Pion cloud dominant; Good global description (Q 2 < 1.5 GeV 2 ) callibration valence quark contribution (all Q 2 ) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

79 γn (16) [PRD 82, 737 (21)].5 (16) as the 1st radial excitation of (1232) EPJA, 36, 329 (28) [S-state] G E, G C G M * -.5 Bare Bare : G B M() = Effects of π cloud? Decay BR (16) πn.153±.19 (16) π.59±.1 (16) πn(144).13±.4 G M * Bare Bare + pion cloud Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

80 γn (16): pion cloud GR and K.Tsushima, PRD 82, 737 (21) B 1 B 2 B B B B B (a) (b) Dominance of diagram (a): leading order in χpt Pion cloud generalization of γn (1232) Including channels: πn, π, πn, π Assuming equal masses in the loops: G π M = (λ N π + λ N π λ B π f πb B + λ π + λ π ) ( ) Λ 2 2 π Λ 2 π + Q 2 (3G D ) determined by the Data (Γ and BR) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

81 γn (16) form factors [PRD 82, 737 (21)] G M * Bare Bare + π N Bare + π N + π N* Bare + π N + π N*+ π Bare + π N + π N*+ π + π * G M * Bare Bare + pion cloud Valence quark dominance for high Q 2 GR and K.Tsushima, PRD 82, 737 (21) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

82 γn (16) helicity amplitudes [PRD 82, 737 (21)] 1 2 A 1/2 (1-3 GeV -1/2 ) 5-5 Bare Bare + pion cloud A 3/2 (1-3 GeV -1/2 ) Bare Bare + pion cloud Valence quark dominance for high Q 2 GR and K.Tsushima, PRD 82, 737 (21) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

83 Conclusions Conclusions: Quark model (calibrated by Nucleon and γn data) Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

84 Conclusions Conclusions: Quark model (calibrated by Nucleon and γn data) Good description of N(939),N(144),N(1535) data [No extra parameters] Large Q 2 lattice data Valence quark degrees of freedom under control Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

85 Conclusions Conclusions: Quark model (calibrated by Nucleon and γn data) Good description of N(939),N(144),N(1535) data [No extra parameters] Large Q 2 lattice data Valence quark degrees of freedom under control Good description of (1232), (16) data Including pion cloud effects (important) Lattice data [ (1232)] Dominance of valence quark for Q 2 > 2 GeV 2 Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

86 Conclusions Conclusions: Quark model (calibrated by Nucleon and γn data) Good description of N(939),N(144),N(1535) data [No extra parameters] Large Q 2 lattice data Valence quark degrees of freedom under control Good description of (1232), (16) data Including pion cloud effects (important) Lattice data [ (1232)] Dominance of valence quark for Q 2 > 2 GeV 2 Prespective of extension to other resonances P 11 (171), D 13 (152), S 11 (165),... Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

87 Nucleon Resonance Structure σ T (1232) P 33 γ p -> n π + N(144) P 11 N(152) D W (MeV) N(1535) S 11 (16) P 33 N(165) S 11 N(168) F 15 N(171) P 11 Q 2 = 1 GeV 2 Gilberto Ramalho (IST, Lisbon) Covariant quark-diquark model May 16, / 5

Valence quark contributions for the γn P 11 (1440) transition

Valence quark contributions for the γn P 11 (1440) transition Valence quark contributions for the γn P 11 (144) transition Gilberto Ramalho (Instituto Superior Técnico, Lisbon) In collaboration with Kazuo Tsushima 12th International Conference on Meson-Nucleon Physics

More information

A covariant model for the negative parity resonances of the nucleon

A covariant model for the negative parity resonances of the nucleon Journal of Physics: Conference Series PAPER OPEN ACCESS A covariant model for the negative parity resonances of the nucleon To cite this article: G. Ramalho 6 J. Phys.: Conf. Ser. 76 45 View the article

More information

What do g 1 (x) and g 2 (x) tell us about the spin and angular momentum content in the nucleon?

What do g 1 (x) and g 2 (x) tell us about the spin and angular momentum content in the nucleon? What do g 1 (x) and g (x) tell us about the spin and angular momentum content in the nucleon? Franz Gross -- JLab cake seminar, Dec. 7 011 Introduction DIS hadronic tensor Spin puzzle in DIS Part I - covariant

More information

Highlights on hadron physics at CLAS. K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011

Highlights on hadron physics at CLAS. K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011 Highlights on hadron physics at CLAS K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011 Outline Meson-Baryon Cloud (MBC) Effects New results on baryon photocouplings Need for coupled-channels analysis

More information

Meson-baryon interaction in the meson exchange picture

Meson-baryon interaction in the meson exchange picture Meson-baryon interaction in the meson exchange picture M. Döring C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, K. Nakayama, D. Rönchen, Forschungszentrum Jülich, University of Georgia, Universität Bonn

More information

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron Ralf W. Gothe Nucleon Resonances: From Photoproduction to High Photon October 12-16, 2015, ECT*, Trento, Italy

More information

Jacopo Ferretti Sapienza Università di Roma

Jacopo Ferretti Sapienza Università di Roma Jacopo Ferretti Sapienza Università di Roma NUCLEAR RESONANCES: FROM PHOTOPRODUCTION TO HIGH PHOTON VIRTUALITIES ECT*, TRENTO (ITALY), -6 OCTOBER 05 Three quark QM vs qd Model A relativistic Interacting

More information

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD Why? to test strong QCD! How? SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD Cornelius Bennhold George Washington University Excitation

More information

Stability of P 11 Resonances Extracted from πn data. Satoshi Nakamura. [Phys. Rev. C 81, (2010)] (Excited Baryon Analysis Center, JLab)

Stability of P 11 Resonances Extracted from πn data. Satoshi Nakamura. [Phys. Rev. C 81, (2010)] (Excited Baryon Analysis Center, JLab) Stability of P 11 Resonances Extracted from πn data [Phys. Rev. C 81, 065207 (2010)] Satoshi Nakamura (Excited Baryon Analysis Center, JLab) Collaborators H. Kamano (Osaka City U.) T. S.-H. Lee (ANL) T.

More information

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS Volker Credé Florida State University, Tallahassee, FL JLab Users Group Workshop Jefferson Lab 6/4/24 Outline Introduction

More information

γnn Electrocouplings in Dyson-Schwinger Equations

γnn Electrocouplings in Dyson-Schwinger Equations γnn Electrocouplings in Dyson-Schwinger Equations Jorge Segovia Technische Universität München Physik-Department T30f T30f Theoretische Teilchenund Kernphysik Main collaborators: Craig D. Roberts (Argonne),

More information

Satoshi Nakamura (EBAC, JLab)

Satoshi Nakamura (EBAC, JLab) Extraction of P 11 resonances from πn data and its stability (arxiv:11.583) Satoshi Nakamura (EBAC, JLab) EBAC Collaborators H. Kamano (JLab) T. S.-H. Lee (ANL) T. Sato (Osaka U.) Introduction Extraction

More information

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Volker Credé Florida State University, Tallahassee, FL Spring Meeting of the American Physical Society Atlanta, Georgia,

More information

A Dyson-Schwinger equation study of the baryon-photon interaction.

A Dyson-Schwinger equation study of the baryon-photon interaction. A Dyson-Schwinger equation study of the baryon-photon interaction. Diana Nicmorus in collaboration with G. Eichmann A. Krassnigg R. Alkofer Jefferson Laboratory, March 24, 2010 What is the nucleon made

More information

arxiv: v1 [hep-ex] 22 Jun 2009

arxiv: v1 [hep-ex] 22 Jun 2009 CPC(HEP & NP), 29, 33(X): 1 7 Chinese Physics C Vol. 33, No. X, Xxx, 29 Recent results on nucleon resonance electrocouplings from the studies of π + π p electroproduction with the CLAS detector V. I. Mokeev

More information

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University A meson-exchange model for π N scattering up to energies s 2 GeV Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) Guan Yeu Chen (Taipei) 18th International Conference on Few-body

More information

Overview of N* Physics

Overview of N* Physics N* analysis white paper mtg. 11/4/06-1 Overview of N* Physics Why study excited states of the nucleon? What do we know about N* states? What are the goals of the N* program? What developments are required

More information

Unquenching the quark model

Unquenching the quark model Unquenching the quark model E. Santopinto (INFN Genoa) and R.Bijker (UNAM). Critical Stability, 9-15 october 2011 Outline of the talk Quark models Spectrum Strong decays e.m. Elastic Form Factors e.m.

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University Spin Structure Functions of the Deuteron from CLAS/EGB Data Nevzat Guler (for the CLAS Collaboration) Old Dominion University OULINE Formalism Experimental setup Data analysis Results and Conclusion Motivation

More information

V.I. Mokeev. Nucleon Resonance Structure in Exclusive Electroproduction at High Photon Virtualities, August 13-15, 2012

V.I. Mokeev. Nucleon Resonance Structure in Exclusive Electroproduction at High Photon Virtualities, August 13-15, 2012 g v NN* Electrocouplings: from the CLAS to the CLAS12 Data V.I. Mokeev Nucleon Resonance Structure in Exclusive Electroproduction at High Photon Virtualities, August 13-15, 2012 The 6 GeV era came to successful

More information

Dynamical coupled channel calculation of pion and omega meson production

Dynamical coupled channel calculation of pion and omega meson production Dynamical coupled channel calculation of pion and omega meson production INT-JLab Workshop on Hadron Spectroscopy 2009/11/11 Mark Paris Center for Nuclear Studies Data Analysis Center George Washington

More information

Nucleon Transition Form Factors and New Perspectives

Nucleon Transition Form Factors and New Perspectives Nucleon Transition Form Factors and New Perspectives R W Gothe Department of Physics and Astronomy, University of South Carolina, Columbia, SC 2928, USA gothe@sc.edu Abstract. The status of the electro-excitation

More information

Nucleon Form Factors Measured with BLAST. John Calarco - University of New Hampshire

Nucleon Form Factors Measured with BLAST. John Calarco - University of New Hampshire Nucleon Form Factors Measured with BLAST John Calarco - University of New Hampshire HUGS June, 2006 Outline - Overview and Motivation - Introduction - Existing Methods & Data - Phenomenological Fits -

More information

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University Chiral Dynamics with Pions, Nucleons, and Deltas Daniel Phillips Ohio University Connecting lattice and laboratory EFT Picture credits: C. Davies, Jefferson Lab. What is an Effective Field Theory? M=f(p/Λ)

More information

L. David Roper

L. David Roper The Heavy Proton L. David Roper mailto:roperld@vt.edu Introduction The proton is the nucleus of the hydrogen atom, which has one orbiting electron. The proton is the least massive of the baryons. Its mass

More information

Pion-Nucleon P 11 Partial Wave

Pion-Nucleon P 11 Partial Wave Pion-Nucleon P 11 Partial Wave Introduction 31 August 21 L. David Roper, http://arts.bev.net/roperldavid/ The author s PhD thesis at MIT in 1963 was a -7 MeV pion-nucleon partial-wave analysis 1. A major

More information

Wave functions and compositeness for hadron resonances from the scattering amplitude

Wave functions and compositeness for hadron resonances from the scattering amplitude Wave functions and compositeness for hadron resonances from the scattering amplitude Takayasu SEKIHARA (RCNP, Osaka Univ.) 1. Introduction 2. Two-body wave functions and compositeness 3. Applications:

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

Richard Williams. Hèlios Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz Richard Williams Hèlios Sanchis-Alepuz Introduction 2 Idea: Information on hadron properties encoded in Green s functions EM form-factors Dyson-Schwinger Approach Nonpert. Covariant Multi-scale Symmetries

More information

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab N and (1232) masses and the γn transition Marc Vanderhaeghen College of William & Mary / Jefferson Lab Hadron Structure using lattice QCD, INT, April 4, 2006 Outline 1) N and masses : relativistic chiral

More information

Hadronic Cross Section Measurements for New Aspects of Hadron Spectroscopy. K. Hicks (Ohio U.) and H. Sako (JAEA) J-PARC PAC July 14, 2012

Hadronic Cross Section Measurements for New Aspects of Hadron Spectroscopy. K. Hicks (Ohio U.) and H. Sako (JAEA) J-PARC PAC July 14, 2012 Hadronic Cross Section Measurements for New Aspects of Hadron Spectroscopy K. Hicks (Ohio U.) and H. Sako (JAEA) J-PARC PAC July 14, 2012 Goals of this proposal Understanding the spectrum of excited states

More information

arxiv: v1 [hep-ph] 31 Jan 2018

arxiv: v1 [hep-ph] 31 Jan 2018 Noname manuscript No. (will be inserted by the editor) Polarization and dilepton angular distribution in pion-nucleon collisions Miklós Zétényi Enrico Speranza Bengt Friman Received: date / Accepted: date

More information

Baryon Spectroscopy: what do we learn, what do we need?

Baryon Spectroscopy: what do we learn, what do we need? Baryon Spectroscopy: what do we learn, what do we need? E. Klempt Helmholtz-Institut für Strahlen und Kernphysik Universität Bonn Nußallee 14-16, D-53115 Bonn, GERMANY e-mail: klempt@hiskp.uni-bonn.de

More information

Extracting Resonance Parameters from γ p nπ + at CLAS. Kijun Park

Extracting Resonance Parameters from γ p nπ + at CLAS. Kijun Park Extracting Resonance Parameters from γ p nπ + at CLAS Kijun Park Nov. 13-18, 2016 Overview 1 Introduction 2 Physics Result Highlight 3 New Interesting Results! 4 Summary K. Park (JLAB) INT 2016 Nov. 13-18,

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

Photoexcitation of N* Resonances

Photoexcitation of N* Resonances Photoexcitation of N* Resonances Universita di Roma Tor Vergata and INFN Sezione di Roma II Baryonic resonances - N* The existence of N* resonances was observed for the first time in πn scattering, as

More information

Currents and scattering

Currents and scattering Chapter 4 Currents and scattering The goal of this remaining chapter is to investigate hadronic scattering processes, either with leptons or with other hadrons. These are important for illuminating the

More information

πn Multi-πN Scattering in the 1/N c Expansion (HJK, Richard Lebed, Phys.Rev.D75:016002,2007)

πn Multi-πN Scattering in the 1/N c Expansion (HJK, Richard Lebed, Phys.Rev.D75:016002,2007) N Multi-N Scattering in the 1/N c Expansion (HJK, Richard Lebed, Phys.Rev.D75:01600,007) Herry Kwee Arizona State University JLAB, May 3, 007 1 Outline 1. Introduction. Scattering Amplitudes and N c power

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

New results on N* spectrum/structure with CLAS and preparation for the CLAS12 era

New results on N* spectrum/structure with CLAS and preparation for the CLAS12 era New results on N* spectrum/structure with CLAS and preparation for the CLAS12 era V.I. Mokeev, Jefferson Laboratory INT Workshop ``Spectrum and Structure of Excited Nucleons from Exclusive Electroproduction,

More information

Exclusive N KY Studies with CLAS12

Exclusive N KY Studies with CLAS12 Exclusive N KY Studies with CLAS12 Daniel S. Carman (contact person, spokesperson), Victor Mokeev (spokesperson), Harut Avakian, Volker Burkert, Eugene Pasyuk Jefferson Laboratory, Newport News, VA 2366,

More information

Recent Results from Jefferson Lab

Recent Results from Jefferson Lab Recent Results from Jefferson Lab Strange quarks in the nucleon N- Deformation Latest on Pentaquarks Elton S. Smith Jefferson Lab XI International Conference on Hadron Spectroscopy Centro Brasilero Pesquisas

More information

Charm baryon spectroscopy from heavy quark symmetry

Charm baryon spectroscopy from heavy quark symmetry Charm baryon spectroscopy from heavy quark symmetry Phys. Rev. D91, 014031 (2015) Tokyo Institute of Technology Shigehiro YASUI Hadrons and Hadron Interaction in QCD (HHIQCD 2015)@YITP, 16 Feb. 20 Mar.

More information

The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron

The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron FACULTY OF SCIENCES The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron L. De Cruz, D.G. Ireland, P. Vancraeyveld, T. Vrancx Department of Physics and Astronomy, Ghent

More information

Distribution Amplitudes of the Nucleon and its resonances

Distribution Amplitudes of the Nucleon and its resonances Distribution Amplitudes of the Nucleon and its resonances C. Mezrag Argonne National Laboratory November 16 th, 2016 In collaboration with: C.D. Roberts and J. Segovia C. Mezrag (ANL) Nucleon DA November

More information

Role of the N (2080) resonance in the γp K + Λ(1520) reaction

Role of the N (2080) resonance in the γp K + Λ(1520) reaction Role of the N (2080) resonance in the γp K + Λ(1520) reaction Ju-Jun Xie ( ) IFIC, University of Valencia, Spain Collaborator: Juan Nieves Phys. Rev. C 82, 045205 (2010). @ Nstar2011, Jlab, USA, 05/19/2011

More information

Nucleon resonances from dynamical coupled channel approach of meson production reactions T. Sato Osaka U

Nucleon resonances from dynamical coupled channel approach of meson production reactions T. Sato Osaka U Nucleon resonances from dynamical coupled channel approach of meson production reactions T. Sato Osaka U Report on our extended analysis of meson production reactions (ANL-Osaka) H. Kamano, S. Nakamura,

More information

Light Baryon Spectroscopy What have we learned about excited baryons?

Light Baryon Spectroscopy What have we learned about excited baryons? Light Baryon Spectroscopy What have we learned about excited baryons? Volker Credé Florida State University, Tallahassee, FL The 9th Particles and Nuclei International Conference MIT, Cambridge, USA, 7/27/2

More information

Covariance, dynamics and symmetries, and hadron form factors

Covariance, dynamics and symmetries, and hadron form factors Covariance, dynamics and symmetries, and hadron form factors Craig D. Roberts cdroberts@anl.gov Physics Division Argonne National Laboratory Exclusive Reactions at High Momentum Transfer, 21-24May/07,

More information

Calculations of γz corrections

Calculations of γz corrections Calculations of γz corrections Carl E. Carlson William and Mary γz box(ing) workshop, Dec. 16-17, 2013, JLab Our relevant papers Contributions from γz box diagrams to parity violating elastic ep scattering,

More information

Light and strange baryon spectrum from functional methods

Light and strange baryon spectrum from functional methods Light and strange baryon spectrum from functional methods Christian S. Fischer Justus Liebig Universität Gießen Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer, CF, PPNP 91, 1-100 [1606.09602] Christian

More information

Cornelius Bennhold George Washington University

Cornelius Bennhold George Washington University Cornelius Bennhold George Washington University The past 7 years Low-lying baryon resonances Missing and exotic (hybrid) resonances How many N* do we need? How many do we have? Resonance form factors The

More information

Overview of Light-Hadron Spectroscopy and Exotics

Overview of Light-Hadron Spectroscopy and Exotics Overview of Light-Hadron Spectroscopy and Eotics Stefan Wallner Institute for Hadronic Structure and Fundamental Symmetries - Technical University of Munich March 19, 018 HIEPA 018 E COMPASS 1 8 Introduction

More information

The N-tο- (1232) transition from Lattice QCD :

The N-tο- (1232) transition from Lattice QCD : The N-tο-(13) transition from Lattice QCD : Electromagnetic, Axial and Pseudoscalar Form Factors with N F = +1 domain wall fermions Antonios Tsapalis Hellenic Naval Academy & National Technical University

More information

Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory

Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory Volker Crede on behalf of the CLAS Collaboration Department of Physics Florida State University Tallahassee, FL 3236, USA Baryons

More information

Bare propagator poles in coupled-channel. channel models (Possible link between microscopic theories and phenomenological models)

Bare propagator poles in coupled-channel. channel models (Possible link between microscopic theories and phenomenological models) Bare propagator poles in coupled-channel channel models (Possible link between microscopic theories and phenomenological models) Alfred Švarc varc Ruđer Boškovi ković Institute Croatia 1 The short history:

More information

Covariant effective field theory (EFT!)

Covariant effective field theory (EFT!) Outline Covariant effective field theory (EFT!) (or, can the dinosaur learn anything from the cockroach?) Part I: The Covariant Spectator approach for two and three nucleon interactions at JLab momentum

More information

Production and Searches for Cascade Baryons with CLAS

Production and Searches for Cascade Baryons with CLAS Production and Searches for Cascade Baryons with CLAS Photoproduction Cross sections Ground State Ξ (1320) Excited State Ξ 0 (1530) Search for Cascade Pentaquarks Elton S. Smith CLAS Collaboration Jefferson

More information

Hadronic light-by-light from Dyson-Schwinger equations

Hadronic light-by-light from Dyson-Schwinger equations Hadronic light-by-light from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen 23rd of October 2014 Together with Richard Williams, Gernot Eichmann, Tobias Goecke, Jan Haas

More information

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1 6. QED Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 6. QED 1 In this section... Gauge invariance Allowed vertices + examples Scattering Experimental tests Running of alpha Dr. Tina Potter

More information

Dynamical coupled-channels channels study of meson production reactions from

Dynamical coupled-channels channels study of meson production reactions from Dynamical coupled-channels channels study of meson production reactions from EBAC@JLab Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) MENU2010, May 31th - June 4th, 2010 Outline Motivation

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

Challenges of the N* Program

Challenges of the N* Program Challenges of the N* Program Ralf W. Gothe The 8 th International Workshop on the Physics of Excited Nucleons May 17-20, 2011 Jefferson Lab, Newport News, VA gnn* Experiments: A Unique Window into the

More information

Electromagnetic and spin polarisabilities from lattice QCD

Electromagnetic and spin polarisabilities from lattice QCD Lattice Hadron Physics 2006 Electromagnetic and spin polarisabilities from lattice QCD William Detmold [ WD, BC Tiburzi and A Walker-Loud, PRD73, 114505] I: How to extract EM and spin polarisabilities

More information

Nucleon structure near the physical pion mass

Nucleon structure near the physical pion mass Nucleon structure near the physical pion mass Jeremy Green Center for Theoretical Physics Massachusetts Institute of Technology January 4, 2013 Biographical information Undergraduate: 2003 2007, University

More information

Shape and Structure of the Nucleon

Shape and Structure of the Nucleon Shape and Structure of the Nucleon Volker D. Burkert Jefferson Lab Science & Technology Peer Review June 25-27, 2003 8/7/2003June 25, 2003 Science & Technology Review 1 Outline: From form factors & quark

More information

Charmed Baryon spectroscopy at Belle 1. Y. Kato KMI topics. Mainly based on the paper recently accepted by PRD ( arxiv: )

Charmed Baryon spectroscopy at Belle 1. Y. Kato KMI topics. Mainly based on the paper recently accepted by PRD ( arxiv: ) Charmed Baryon spectroscopy at Belle 1 Y. Kato KMI topics Mainly based on the paper recently accepted by PRD ( arxiv:1312.1026) Introduction 2 The mass of matter is almost made of nucleons. But they are

More information

Compositeness of the Δ(1232) resonance in πn scatterings

Compositeness of the Δ(1232) resonance in πn scatterings Compositeness of the Δ(1232) resonance in πn scatterings Takayasu SEKIHARA (RCNP, Osaka Univ.) in collaboration with Takashi ARAI (KEK), Junko YAMAGATA-SEKIHARA (Oshima National Coll. of Maritime Tech.)

More information

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz Richard Williams Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz 2 baryons mesons glueballs hybrids tetraquarks pentaquarks Extracting hadron poles from Green s functions 3 Extracting

More information

Hadron Phenomenology and QCDs DSEs

Hadron Phenomenology and QCDs DSEs Hadron Phenomenology and QCDs DSEs Lecture 3: Relativistic Scattering and Bound State Equations Ian Cloët University of Adelaide & Argonne National Laboratory Collaborators Wolfgang Bentz Tokai University

More information

Light Meson Decays at BESIII

Light Meson Decays at BESIII Light Meson Decays at BESIII Liqing QIN (for the Collaboration ) Shandong University XVI International Conference on Hadron Spectroscopy Sep. 13-18, 2015, Newport News, VA OUTLINE n Introduction n Recent

More information

A NEW RESONANCE IN K + Λ ELECTROPRODUCTION: THE D 13 (1895) AND ITS ELECTROMAGNETIC FORM FACTORS. 1 Introduction

A NEW RESONANCE IN K + Λ ELECTROPRODUCTION: THE D 13 (1895) AND ITS ELECTROMAGNETIC FORM FACTORS. 1 Introduction A NEW RESONANCE IN K + Λ ELECTROPRODUCTION: THE D 13 (1895) AND ITS ELECTROMAGNETIC FORM FACTORS C. BENNHOLD, H. HABERZETTL Center for Nuclear Studies, Department of Physics, The George Washington University,

More information

Hadron Spectroscopy at COMPASS

Hadron Spectroscopy at COMPASS Hadron Spectroscopy at Overview and Analysis Methods Boris Grube for the Collaboration Physik-Department E18 Technische Universität München, Garching, Germany Future Directions in Spectroscopy Analysis

More information

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs TMDs and Azimuthal Spin Asymmetries in Light-Cone Quark Models Barbara Pasquini (Uni Pavia & INFN Pavia, Italy) in collaboration with: S. Boffi (Uni Pavia & INFN Pavia) A.V. Efremov (JINR, Dubna) P. Schweitzer

More information

Two photon exchange: theoretical issues

Two photon exchange: theoretical issues Two photon exchange: theoretical issues Peter Blunden University of Manitoba International Workshop on Positrons at JLAB March 25-27, 2009 Proton G E /G M Ratio Rosenbluth (Longitudinal-Transverse) Separation

More information

Dynamical understanding of baryon resonances

Dynamical understanding of baryon resonances Dynamical understanding of baryon resonances T. Sato Osaka U Report on our extended analysis of meson production reactions (ANL-Osaka) H. Kamano, S. Nakamura, T. S. H. Lee, T. Sato Phys. Rev. C88 035209(2013)

More information

Excited Nucleons Spectrum and Structure

Excited Nucleons Spectrum and Structure b y (fm) Excited Nucleons Spectrum and Structure Volker D. Burkert Jefferson Laboratory Julia-Aurora 11/21/2016 V. Burkert INT Workshop N* Spectrum and Structure 1 Excited nucleons some markers 1952: First

More information

Models of the Nucleon & Parton Distribution Functions

Models of the Nucleon & Parton Distribution Functions 11th CTEQ Summer School on QCD Analysis and Phenomenology Madison, Wisconsin, June 22-30, 2004 Models of the Nucleon & Parton Distribution Functions Wally Melnitchouk Jefferson Lab Outline Introduction

More information

Nucleon Form Factors. Vina Punjabi Norfolk State University JLab Users Group Meeting June 4-6, 2012 Jefferson Lab, Newport News, VA

Nucleon Form Factors. Vina Punjabi Norfolk State University JLab Users Group Meeting June 4-6, 2012 Jefferson Lab, Newport News, VA Nucleon Form Factors Vina Punjabi Norfolk State University 2012 JLab Users Group Meeting June 4-6, 2012 Jefferson Lab, Newport News, VA Outline Nucleon Form Factors (FF) two methods to obtain G E and G

More information

N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam) Hiroyuki Kamano (RCNP, Osaka U.)

N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam) Hiroyuki Kamano (RCNP, Osaka U.) N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam) Hiroyuki Kamano (RCNP, Osaka U.) Mini workshop on Structure and productions of charmed baryons II KEK Tokai Campus, Tokai, Aug.

More information

Baryon Resonances in a Coupled Analysis of Meson and Photon induced Reactions

Baryon Resonances in a Coupled Analysis of Meson and Photon induced Reactions Baryon Resonances in a Coupled Analysis of Meson and Photon induced Reactions Deborah Rönchen HISKP, Bonn University INT workshop Spectrum and Structure of Excited Nucleons from Exclusive Electroproduction

More information

Exotic and excited-state radiative transitions in charmonium from lattice QCD

Exotic and excited-state radiative transitions in charmonium from lattice QCD Exotic and excited-state radiative transitions in charmonium from lattice QCD Christopher Thomas, Jefferson Lab Hadron Spectroscopy Workshop, INT, November 2009 In collaboration with: Jo Dudek, Robert

More information

Spin Densities and Chiral Odd Generalized Parton Distributions

Spin Densities and Chiral Odd Generalized Parton Distributions Spin Densities and Chiral Odd Generalized Parton Distributions Harleen Dahiya Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, PUNJAB 144011 XVI International Conference on Hadron Spectroscopy

More information

Tetraquarks and Goldstone boson physics

Tetraquarks and Goldstone boson physics Tetraquarks and Goldstone boson physics Christian S. Fischer Justus Liebig Universität Gießen February 2017 Eichmann, CF, Heupel, PLB 753 (2016) 282-287 Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

Nucleon Valence Quark Structure

Nucleon Valence Quark Structure Nucleon Valence Quark Structure Z.-E. Meziani, S. Kuhn, O. Rondon, W. Melnitchouk Physics Motivation Nucleon spin and flavor structure High-x quark distributions Spin-flavor separation Moments of structure

More information

arxiv:hep-ph/ v1 13 Dec 2006

arxiv:hep-ph/ v1 13 Dec 2006 1 arxiv:hep-ph/061163v1 13 Dec 006 Electromagnetic form factors of the nucleon in spacelike and timelike regions J. P. B. C. de Melo Centro de Ciências Exatas e Tecnológicas, Universidade Cruzeiro do Sul,

More information

Nucleon EM Form Factors in Dispersion Theory

Nucleon EM Form Factors in Dispersion Theory Nucleon EM Form Factors in Dispersion Theory H.-W. Hammer, University of Bonn supported by DFG, EU and the Virtual Institute on Spin and strong QCD Collaborators: M. Belushkin, U.-G. Meißner Agenda Introduction

More information

x(1 x) b 2 dζ 2 m 2 1 x dζ 2 d dζ 2 + V (ζ) ] + k2 + m2 2 1 x k2 + m2 1 dζ 2 + m2 1 x + m2 2 LF Kinetic Energy in momentum space Holographic Variable

x(1 x) b 2 dζ 2 m 2 1 x dζ 2 d dζ 2 + V (ζ) ] + k2 + m2 2 1 x k2 + m2 1 dζ 2 + m2 1 x + m2 2 LF Kinetic Energy in momentum space Holographic Variable [ d dζ + V (ζ) ] φ(ζ) = M φ(ζ) m 1 de Teramond, sjb x ζ = x(1 x) b m b (1 x) Holographic Variable d dζ k x(1 x) LF Kinetic Energy in momentum space Assume LFWF is a dynamical function of the quark-antiquark

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

Pion photoproduction in a gauge invariant approach

Pion photoproduction in a gauge invariant approach Pion photoproduction in a gauge invariant approach F. Huang, K. Nakayama (UGA) M. Döring, C. Hanhart, J. Haidenbauer, S. Krewald (FZ-Jülich) Ulf-G. Meißner (FZ-Jülich & Bonn) H. Haberzettl (GWU) Jun.,

More information

Electroexcitation of Nucleon Resonances BARYONS 02

Electroexcitation of Nucleon Resonances BARYONS 02 Electroexcitation of Nucleon Resonances Volker D. Burkert Jefferson Lab BARYONS 02 9th International Conference on the Structure of Baryons March 3-8, 2002 1 Why N* s are important (Nathan Isgur, N*2000

More information

Exciting Baryons. with MAMI and MAID. Lothar Tiator (Mainz)

Exciting Baryons. with MAMI and MAID. Lothar Tiator (Mainz) Exciting Baryons with MAMI and MAID Lothar Tiator (Mainz) Nucleon Resonances: From Photoproduction to High Photon Virtualities Trento, October, 12-16, 2015 The Roper Resonance first baryon resonance discovered

More information

High t form factors & Compton Scattering - quark based models. Gerald A. Miller University of Washington

High t form factors & Compton Scattering - quark based models. Gerald A. Miller University of Washington High t form factors & Compton Scattering - quark based models Gerald A. Miller University of Washington Basic Philosophy- model wave function Ψ Given compute form factors, densities, Compton scattering...

More information

Report on NSTAR 2005 Workshop

Report on NSTAR 2005 Workshop Report on NSTAR 2005 Workshop V. Credé 1 1 Florida State University Tallahassee, FL Cascade Workshop at JLab, 12/03/2005 Outline Introduction 1 Introduction 2 What are the problems? The NSTAR 2005 Workshop

More information

Nucleon resonances from coupled channel reaction model

Nucleon resonances from coupled channel reaction model Nucleon resonances from coupled channel reaction model T. Sato Osaka U Collaborators H. Kamano, S. Nakamura, T. S. H. Lee Purpose of analyzing meson production reaction in coupled channel reaction model

More information

2007 Section A of examination problems on Nuclei and Particles

2007 Section A of examination problems on Nuclei and Particles 2007 Section A of examination problems on Nuclei and Particles 1 Section A 2 PHYS3002W1 A1. A fossil containing 1 gramme of carbon has a radioactivity of 0.03 disintegrations per second. A living organism

More information

Nucleon Resonance Electro-couplings in Dyson-Schwinger Equations

Nucleon Resonance Electro-couplings in Dyson-Schwinger Equations Nucleon Resonance Electro-couplings in Dyson-Schwinger Equations Jorge Segovia Technische Universität München Physik-Department T30f T30f Theoretische Teilchenund Kernphysik Seminar Theoretical Hadron

More information