A Multi-Gate CMOS Compact Model BSIMMG

Similar documents
BSIM: Industry Standard Compact MOSFET Models

Physics and Modeling of FinFET and UTB-SOI MOSFETs

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

BSIM-CMG Model. Berkeley Common-Gate Multi-Gate MOSFET Model

FinFET Modeling for 10nm and beyond - Si, Ge and III-V channel

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

EECS130 Integrated Circuit Devices

Lecture 11: MOSFET Modeling

Recent Development of FinFET Technology for CMOS Logic and Memory

Characteristics Optimization of Sub-10 nm Double Gate Transistors

Simple and accurate modeling of the 3D structural variations in FinFETs

The Devices: MOS Transistors

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The PSP compact MOSFET model An update

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild)

Compact Modeling of Semiconductor Devices: MOSFET

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Nanoscale CMOS Design Issues

Nanometer Transistors and Their Models. Jan M. Rabaey

ECE-305: Fall 2017 MOS Capacitors and Transistors

Lecture #27. The Short Channel Effect (SCE)

EE5311- Digital IC Design

VLSI Design The MOS Transistor

MOS Transistor I-V Characteristics and Parasitics

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Lecture 12: MOSFET Devices

Lecture 5: CMOS Transistor Theory

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices

ECE 342 Electronic Circuits. 3. MOS Transistors

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout

Chapter 5 MOSFET Theory for Submicron Technology

The Devices. Devices

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

MOSFET: Introduction

SOI/SOTB Compact Models

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Ultimately Scaled CMOS: DG FinFETs?

MOS Transistor Theory

Practice 3: Semiconductors

EE410 vs. Advanced CMOS Structures

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

FIELD-EFFECT TRANSISTORS

Modeling and Computation of Gate Tunneling Current through Ultra Thin Gate Oxides in Double Gate MOSFETs with Ultra Thin Body Silicon Channel

The Devices. Jan M. Rabaey

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

Technische Universität Graz. Institute of Solid State Physics. 11. MOSFETs

Physics-based compact model for ultimate FinFETs

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

Quantum-size effects in sub-10 nm fin width InGaAs finfets

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Lecture 4: CMOS Transistor Theory

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ]

Long Channel MOS Transistors

Quarter-micrometre surface and buried channel PMOSFET modelling for circuit simulation

Multiple Gate CMOS and Beyond

This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented.

Integrated Circuits & Systems

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Advanced Compact Models for MOSFETs

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Microelectronics Part 1: Main CMOS circuits design rules

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC)

Device Models (PN Diode, MOSFET )

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Lecture 3: CMOS Transistor Theory

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

MOSFET Physics: The Long Channel Approximation

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components

Enhanced Mobility CMOS

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Semiconductor Physics Problems 2015

A study on modeling and simulation of Multiple- Gate MOSFETs

Lecture 9. Strained-Si Technology I: Device Physics

The HV-EKV MOSFET Model

MOS Transistor Properties Review

ASYMMETRICAL DOUBLE GATE (ADG) MOSFETs COMPACT MODELING. M. Reyboz, O. Rozeau, T. Poiroux, P. Martin

N Channel MOSFET level 3

Lecture 11: MOS Transistor

ECE 305: Fall MOSFET Energy Bands

Lecture 12: MOS Capacitors, transistors. Context

Device Models (PN Diode, MOSFET )

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

Part 5: Quantum Effects in MOS Devices

ECE 497 JS Lecture - 12 Device Technologies

Long-channel MOSFET IV Corrections

Lecture 6: 2D FET Electrostatics

Semiconductor Integrated Process Design (MS 635)

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

Modeling and Analysis of Total Leakage Currents in Nanoscale Double Gate Devices and Circuits

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

RFIC2017 MO2B-2. A Simplified CMOS FET Model using Surface Potential Equations For Inter-modulation Simulations of Passive-Mixer-Like Circuits

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

The Intrinsic Silicon

Carbon Nanotube Electronics

Transcription:

A Multi-Gate CMOS Compact Model BSIMMG Darsen Lu, Sriramkumar Venugopalan, Tanvir Morshed, Yogesh Singh Chauhan, Chung-Hsun Lin, Mohan Dunga, Ali Niknejad and Chenming Hu University of California, Berkeley

Acknowledgments Support Semiconductor Research Corporation IMPACT, UC Discovery and its industrial sponsors SOITEC Test Chip Fabrication Texas Instrument and ATDF TSMC Technical Discussions Wade Xiong (TI) 2

Difficult to suppress leakage in scaled transistors Source L Gate Oxide Path of I off Drain Need thinner oxide to suppress leakage in scaled CMOS Gate leakage is an issue! 3

Solution: Multi-gate MOSFETs Source L Gate Oxide Oxide Gate Drain Leakage is suppressed by multiple-gates Scale body thickness instead of oxide thickness 4

Multi-gate Examples FinFET UT2B T si =7nm T box =10nm L g = 5 nm X Huang et al., IEDM 1999 (UC Berkeley) F.-L. Yang et al., VLSI 2004 (TSMC) F. Andrieu et al. VLSI 2010 (LETI / ST / IBM / SOITEC) 5

65nm 45nm 32nm 22nm CMOS Solutions ENHANCED MOBILITY (Strained Si) HIGH -k / METAL GATE Multi-gate MG-FET Multi-gate FETs can extend CMOS scaling. BSIM-MG compact model has been developed. 6

Outline BSIM-CMG: Common Multi-gate MOSFET Model BSIM-IMG: Independent Multi-gate MOSFET Model Modeling of Real Device Effects Experimental Verification Summary 7

Common-Multi-Gate Modeling Common Multi-gate (BSIM-CMG): All gates tied together Surface-potential-based core I-V and C-V model Supports double-gate, triple-gate, quadruple-gate, cylindrical-gate; Bulk and SOI substrates Physics-based model verified against TCAD and measurements 8

Surface Potential Calculation (DG) Surface potential obtained by solving the 1D Poisson s equation V s V g n+ y x N n+ A V d 2 qψ qφb qvch qφb ψ qn i kt kt kt kt = e e e e 2 + x ε { 1 4 44 2 4 4 43 Si Inversion Carriers Body Doping A Perturbation approach is used to handle finite body doping M. V. Dunga et al.,ted 2006 ψ { = ψ { inv + ψ { Net Surface Potential Inversion Carriers only Perturbation due to finite doping pert V g 9

Surface Potential Calculation Surface Potential (V) 0.8 0.4 0.0-0.4 Symbols : TCAD Lines : Model 0.0 0.4 0.8 1.2 Gate Voltage (V) Na = 1x10 15 Na = 1x10 18 Na = 3x10 18 Na = 5x10 18 Model matches 2D TCAD very well without fitting parameters in both fully-depleted and partially- depleted regimes. 10

I-V Model & Verification Drain current derived from drift diffusion Drain Current (A) Na = 3e18cm -3 1m Vg = 1.5V 500µ Vg = 1.2V Vg = 0.9V 0 0.0 0.5 1.0 1.5 Drain Voltage (V) Drain Current (A) 1m 500µ Na = 3e18 cm -3 Vd = 0.1 Vd = 0.2 Vd = 0.4 Vd = 0.6 0 0.0 0.5 1.0 1.5 Gate Voltage (V) M. V. Dunga, UCB Ph.D. Thesis 11

Drain Current in Volume Inversion Drain Current (A) 10µ Vds = 0.2V 10µ 10n 10p Na = 1e15 cm -3 Tsi = 5nm Tsi = 10nm Tsi = 20nm 10f 0.00 0.25 0.50 0.75 Gate Voltage (V) Lines: Model Symbols: TCAD In volume inversion I d T Si in sub-threshold. M. V. Dunga, VLSI 2007 12

Normalized Capacitance 1.0 0.5 Na = 3e18cm -3 Vds = 1.5V C-V Model Verification Symbols : TCAD Lines : Model Cgg Csg Cdg 0.0 0.5 1.0 1.5 Gate Voltage (V) Na = 3e18 Cdg Vg = 1.5V Cgd 0.0 0.0 0.5 1.0 1.5 C-V model agrees well with TCAD without any fitting parameters. The transcapacitances exhibit the correct symmetry behaviors. Normalized Capacitance 1.0 0.5 Cgg Model Symmetry Symbols : TCAD Lines : Model Cgs Drain Voltage (V) Csg 13

Independent Multi-Gate Modeling Independent Multi-gate (BSIM-IMG): Separate Front- and Back-Gates Asymmetric gate stacks: workfunction, T ox, BOX P+ back-gate p-sub Target device: BG-ETSOI or UTBB Physical surface-potential-based core I-V and C-V model agrees with TCAD without fitting parameters. 14

Surface Potential Analytical Solution for Ψs is known T OX1 V FG Φ M1 Y. Taur, TED 2001 H. Lu et al., TED 2006 S D T OX2 Newton iteration needed for Ψ s calculation V BG Φ M2 Approximation for front-, back-surface potential and charge developed Better computational efficiency D. Lu, UCB Master s Report 15

Surface Potential Verification Surface Potential (V) 1.0 0.5 0.0 Vch = 0.0V Vch = 0.3V Vch = 0.6V 0.00-0.5 0.0 0.5 1.0 Front Gate Voltage (V) 0.04 0.02 Symbols: Exact Poisson Lines: Model Charge Density (C/m 2 ) Surface Potential (V) 0.6 0.3 0.0 Tox1=Tox2=1.2nm Tsi=10nm Vbg=0 Tsi = 5 nm Tsi = 10 nm Tsi = 15 nm Tsi = 20 nm -0.5 0.0 0.5 1.0 Front Gate Voltage (V) Symbols: TCAD Lines: Model Analytical Q S, Ψ SF agrees with Exact Poisson Solution & TCAD without fitting parameters. Scalability of the model is demonstrated. 16

Core I-V and C-V Model Physical I-V and C-V model agrees well with TCAD Transcapacitances exhibit correct symmetry Drain Current (A) 1E-4 1E-6 1E-8 1E-10 1E-12 Symbols: TCAD Lines: Model Vds = 50mV Tox2 = 40nm Tox2 = 20nm Tox2 = 10nm Tox2 = 5nm Tox2 = 2.5nm -0.3 0.0 0.3 0.6 Front Gate Voltage (V) Capacitance (ff) 300 200 100 0-100 D. Lu et al., IEDM 2007 Cfg,d Cfg,s Cfg,fg Vfg = 0.5V Symbols: TCAD Lines: Model -200 0.0 0.3 0.6 0.9 Drain Voltage (V) Tox1=1.2nm Tsi=15nm Tox2=40nm Vbg=0 Model Symmetry 17

Real-Device Effects Modeled Quantum effects (charge centroid model) Short Channel Effects -- V th roll-off, Sub-threshold swing degradation, DIBL, CLM Mobility Degradation Velocity Saturation GIDL, GISL and Junction Leakage Gate Tunneling Current Temperature effects Parasitic Capacitance Series Resistance Etc. 18

Short Channel Effects Symbols: Measurements Lines: Model Threshold Voltage (V) 0.0-0.1-0.2-0.3-0.4 - Z. Liu et al., TED 1993 V d s = -5 0 m V V d s = -1.0 V 0.1 1 G a te L e n g th ( µ m ) V th Definition: I th = 300nA * W / L SS (mv/dec) SS (mv/dec) 110 100 90 80 70 60 120 110 100 90 80 70 60 SS: Subthreshold Swing Vds = -50mV 0.1 1 Gate Length (µm) Vds = -1.0V 0.1 1 Gate Length (µm) 19

Scale Length for Various Modes Double-gate Triple-gate - K. Suzuki et al., TED 1993 Cylindrical-gate Independent-gate Leakage path at front surface Leakage path in the center 20

Temperature Effects Temperature dependence are well-modeled Mobility temperature dependence: U0(T), UA(T) Saturation Velocity temperature dependence: VSAT(T) Subthreshold Swing = nkt/q GIDL Leakage: BGIDL(T) A few others Drain Current (µa) 1400 1200 1000 800 600 400 200-5 0C --> 200C in steps of 5 0C Increasing T L G =60nm 20 fins 0 0.0 0.2 0.4 0.6 0.8 1.0 G a te V o lta g e (V ) 1E-3 1E-6 1E-9 1E-12 Symbols: SOI FinFET data Lines: Model -50C --> 200C in steps of 50C Increasing T L G =60nm 20 fins -0.4-0.2 0.0 0.2 0.4 Gate Voltage (V) Vds=1.0 21

Length Dependent γ Model for Independent-gate Gamma definition: Capacitance network analysis: C ox1 C si C ox2 Front Gate Back Gate C d1 (L eff ) C d2 (L eff ) Source / Drain γ degradation for short channel: Gamma (γ) Threshold Voltage (V) 0.24 0.22 0.20 0.18 0.8 0.6 0.4 0.2 0.0 V DS = 50mV Symbols: TCAD Lines: Model L FG = 45 nm L FG = 22 nm L FG = 13nm -3.0-2.0-1.0 0.0 Back Gate Bias (V) Vds = 1V TCAD Model 0.01 0.1 1 Gate Length (µm) Tsi=8nm Tbox=4nm 22

SOI FinFET Global Parameter Extraction Drain Current (ma) 0.25 0.20 0.15 0.10 0.05 Vds = -50mV Decreasing L 0.00-1.0-0.8-0.6-0.4-0.2 0.0 Gate Voltage (V) Drain Current (ma) 0.25 0.20 0.15 0.10 0.05 Vds = 50mV Decreasing L 0.00 0.0 0.2 0.4 0.6 0.8 1.0 Gate Voltage (V) Drain Current (ma) 1.5 1.2 0.9 0.6 0.3 Vds = -1.0 V Decreasing L 0.0-1.0-0.8-0.6-0.4-0.2 0.0 Gate Voltage (V) 0.0 0.0 0.2 0.4 0.6 0.8 1.0 FinFET with L G = 1µm, 235nm, 95nm, 85nm, 75nm H fin =60, T fin =22, 20 lightly-doped fins D. Lu et al., SISPAD 2009 23 Drain Current (ma) 1.2 0.9 0.6 0.3 Vds = 1.0 V Decreasing L Gate Voltage (V)

Analog metrics (SOI FinFETs) Analog metrics (g m /I d and g ds ) for the long channel are also captured well. g m Efficiency (g m /I d ) Output Conductance g m Efficiency, g m /I d (V -1 ) 60 40 20 0 Lg = 1µm Vd = 1 V Vd = 50mV 0.5 1.0 Gate Voltage (V) Dunga et al., VLSI 2007 Output Conductance (S) 1m 1µ 1n L g = 1 µm V g = 1.0-0.2V 1p 0 0.5 1.0 D rain V o ltage (V ) 24

Short Channel Bulk FinFETs Model is used to describe bulk FinFET technology also. Substrate Current: Impact Ionization Drain Current (A) 50µ 25µ Id-Vg Lg = 50nm Vd = 50mV Vd = 1.2V 0 1p 0.0 0.4 0.8 1.2 Gate Voltage (V) 1m 1µ 1n Drain Current (µa) 50 Lg = 50nm Vg = 1.2-0.4V 25 Dunga et al., VLSI 2007 Id-Vd 0 0.0 0.4 0.8 1.2 Drain Voltage (V) 25 Bulk Current (A) 100p 10p Ib-Vg Lg = 50nm Vd = 1.2V 1p 0.0 0.4 0.8 1.2 G ate Voltage (V)

Validation of BSIM-IMG Model Global parameter extraction 22nm ETSOI technology (IBM) I ds for NMOS and PMOS L g = 24.5nm 66nm Model extracted using ICCAP Parasitic capacitances calibrated to mixed-mode TCAD ETSOI K. Cheng et al. IEDM 2009 (IBM / ST) 26

Gummel Symmetry Test I ds continuity at V ds =0 is verified through the Gummel symmetry test. Both BSIM-CMG and BSIM-IMG passes this test di d / dv x (ms) 60 40 20 Vfg = 0.0 Vfg = 0.2 Vfg = 0.4 Vfg = 0.6 Vfg = 0.8 Vfg = 1.0 0-0.2-0.1 0.0 0.1 0.2 Gummel Test Voltage Vx (V) Results shown here are 1 st & 3 rd order derivatives of I ds for BSIM-IMG d 3 I d / dv x 3 (A / V 3 ) 2.0 1.5 1.0 0.5 0.0-0.5 Vfg = 0.0 Vfg = 0.2 Vfg = 0.4 Vfg = 0.6 Vfg = 0.8 Vfg = 1.0-1.0-0.2-0.1 0.0 0.1 0.2 Gummel Test Voltage Vx (V) 27

Summary Core I-V and C-V models for common and independent multi-gate FETs are developed and verified with TCAD without using fitting parameters Volume inversion and the effect of finite body doping are captured. BSIM-like real device effects are implemented. BSIM-CMG is calibrated to an SOI FinFET technology and a bulk FinFET technology. Short channel effects, temperature dependence, GIDL leakage, substrate current and analog metrics agree well with data. BSIM-IMG is also calibrated to an ETSOI technology with good agreements. 28