EE155/255 Green Electronics

Similar documents
EE155/255 Green Electronics

EE155/255 Green Electronics

Electrical and Thermal Packaging Challenges for GaN Devices. Paul L. Brohlin Texas Instruments Inc. October 3, 2016

TO-247-3L Inner Circuit Product Summary I C) R DS(on)

Parasitic Capacitance E qoss Loss Mechanism, Calculation, and Measurement in Hard-Switching for GaN HEMTs

n-channel Solar Inverter Induction Heating G C E Gate Collector Emitter

Converter - Brake - Inverter Module (CBI 1) NPT IGBT

Converter - Brake - Inverter Module (CBI 1) NPT IGBT

IRGR3B60KD2PbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE. n-channel. Absolute Maximum Ratings Parameter Max.

Parameter Max. Units V CES Collector-to-Emitter Breakdown Voltage 600 I T C = 25 C Continuous Collector Current

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

1200 V 600 A IGBT Module

500V N-Channel MOSFET

10 23, 24 21, 22 19, , 14

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 3.5 Turn off safe operating area V CE 1200V, T j 150 C - 3.

IKW50N60TA q. Low Loss DuoPack : IGBT in TRENCHSTOP TM and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

IRGB4056DPbF. n-channel Lead Free Package INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

IRGB10B60KDPbF IRGS10B60KDPbF IRGSL10B60KDPbF

IRGIB15B60KD1P INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE. n-channel. Absolute Maximum Ratings

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

1.2 kv 16 mω 1.8 mj. Package. Symbol Parameter Value Unit Test Conditions Notes 117 V GS = 20V, T C

IRGS4062DPbF IRGSL4062DPbF

IRGP50B60PDPbF. n-channel SMPS IGBT WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE

IRGB30B60KPbF IRGS30B60KPbF IRGSL30B60KPbF

IRGPS40B120UP INSULATED GATE BIPOLAR TRANSISTOR UltraFast IGBT

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

CCS050M12CM2 1.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

IRGP4263PbF IRGP4263-EPbF

20MT120UF "FULL-BRIDGE" IGBT MTP. UltraFast NPT IGBT V CES = 1200V I C = 40A T C = 25 C. 5/ I27124 rev. D 02/03. Features.

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

IRGB30B60K IRGS30B60K IRGSL30B60K

Over Current Protection Circuits Voltage controlled DC-AC Inverters Maximum operating temperature of 175 C

SKP15N60 SKW15N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Absolute Maximum Ratings Parameter Max. Units

Limits and hints how to turn off IGBTs with unipolar supply

Converter System Modeling via MATLAB/Simulink

Converter - Brake - Inverter Module (CBI 1) Trench IGBT

IRGP20B60PDPbF SMPS IGBT. n-channel WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE

IRGP30B60KD-EP V CES = 600V I C = 30A, T C =100 C. t sc > 10µs, T J =150 C. V CE(on) typ. = 1.95V. Absolute Maximum Ratings. Thermal Resistance

Parasitics in Power Electronics Avoid them or Turn Enemies into Friends

PRELIMINARY TO-247. Conditions. T j = 100 C T j = 150 C T C = 25 C AC (2) 1/8" from case < 10 s. Symbol. R th JC R th JA

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

IRGB8B60KPbF IRGS8B60KPbF IRGSL8B60KPbF C

IKW40N120T2 TrenchStop 2 nd Generation Series

SCT10N120. Silicon carbide Power MOSFET 1200 V, 12 A, 520 mω (typ., T J = 150 C) in an HiP247 package. Datasheet. Features. Applications.

D1 D2 D3 T1 T2 T3 5 D4 D5 D6 T4 T5 T6 7

Six-Pack XPT IGBT MIXA30W1200TED. V CES = 1200 V I C25 = 43 A V CE(sat) = 1.8 V. Part name (Marking on product) MIXA30W1200TED

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSIII) 2SK2610

tentative X2PT IGBT Module 6-Pack + NTC MIXG120W1200TEH V CES = 1200 V I C25 = 186 A V CE(sat) = 1.7 V tentative Part number MIXG120W1200TEH

Section 4. Nonlinear Circuits

IRGP30B120KD-E. Motor Control Co-Pack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE. Features V CES = 1200V

SKP10N60 SKB10N60, SKW10N60

Final data. Maximum Ratings Parameter Symbol Value Unit Continuous drain current T C = 25 C T C = 100 C

SKP06N60 SKA06N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

IRGB4B60K IRGS4B60K IRGSL4B60K

OptiMOS TM Power-MOSFET

OptiMOS 3 Power-MOSFET

Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TSP10N60M / TSF10N60M

Six-Pack XPT IGBT MIXA80W1200TEH V CES I C25 = 1200 V. Part name (Marking on product) MIXA80W1200TEH

ECONO2 6PACK. Parameter Max. Units. Parameter Min Typical Maximum Units

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

± 20 Transient Gate-to-Emitter Voltage

Homework Assignment 09

SPB07N60C3. Cool MOS Power Transistor V T jmax 650 V. Operating and storage temperature T j, T stg C 6) Feature

TrenchStop Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

SMPS IGBT. n-channel. Thermal Resistance Parameter Min. Typ. Max. Units

OptiMOS 2 Power-Transistor

Product Summary V DS V. R DS(on),max V GS =10 V mw I D A. Parameter Symbol Conditions Value Unit T C =70 C, V GS =4.

IGP03N120H2 IGW03N120H2

Final data. Maximum Ratings Parameter Symbol Value Unit Continuous drain current T C = 25 C T C = 100 C

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

STARPOWER IGBT GD600SGK120C2S. General Description. Features. Typical Applications. Equivalent Circuit Schematic SEMICONDUCTOR

IGBT PIM Module, 15 A

2SJ182(L), 2SJ182(S)

AOT404 N-Channel Enhancement Mode Field Effect Transistor

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 40 Turn off safe operating area V CE 600V, T j 150 C - 40.

I C P tot 138 W

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62.

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

STARPOWER IGBT GD25FST120L2S_G8. General Description. Features. Typical Applications. Equivalent Circuit Schematic SEMICONDUCTOR

2SJ332(L), 2SJ332(S)

Preliminary data. Maximum Ratings, at T C = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current

TrenchT2 TM Power MOSFET

SGB02N120. Fast IGBT in NPT-technology. Power Semiconductors 1 Rev. 2_3 Jan 07

Final data. Maximum Ratings, at T C = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current

IRGB4062DPbF IRGP4062DPbF

LSIC1MO120E V N-channel, Enhancement-mode SiC MOSFET

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode

2SJ280(L), 2SJ280(S)

Six-Pack XPT IGBT MIXA20W1200MC. V CES = 1200 V I C25 = 28 A V CE(sat) = 2.1 V. Part name (Marking on product) MIXA20W1200MC

250 P C = 25 C Power Dissipation 160 P C = 100 C Power Dissipation Linear Derating Factor

50MT060ULS V CES = 600V I C = 100A, T C = 25 C. I27123 rev. C 02/03. Features. Benefits. Absolute Maximum Ratings Parameters Max Units.

Benefits of Stacked-Wafer Capacitors for High-Frequency Buck Converters

IXFR230N20T V DSS. GigaMOS TM Power MOSFET = 200V = 156A. 8.0m t rr. 200ns. (Electrically Isolated Tab)

400V N-Channel MOSFET GENERAL DESCRIPTION VDSS RDS(ON) ID. Features. Ordering Information 400V 0.55Ω 10.5A. This Power MOSFET is produced using

PS12038 Intellimod Module Application Specific IPM 25 Amperes/1200 Volts

IGBT Module H Bridge MIXA81H1200EH. = 1200 V = 120 A V CE(sat) = 1.8 V V CES I C25. Part name (Marking on product) MIXA81H1200EH.

Transcription:

EE155/255 Green Electronics Power Circuits 10/4/17 Prof. William Dally Computer Systems Laboratory Stanford University

HW2 due Monday 10/9 Lab groups have been formed Lab1 signed off this week Lab2 out Course Logistics

Course at a Glance No Date Topic HW out HW in Lab out Lab ck Lab HW 1 9/25/17 Intro (basic converters) 1 1 Intro to ST32F3 Periodic Steady State 2 9/27/17 Embedded Prog/Power Elect. 3 10/2/17 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/4/17 Power Electronics - 2 (circuits) 5 10/9/17 Photovoltaics 3 2 3 2 PV MPPT Motor control Matlab 6 10/11/17 Feedback Control 7 10/16/17 Electric Motors 4 3 4 3 Motor control - Lab/ Feedback 8 10/18/17 Isolated Converters 9 10/23/17 Solar Day 5/PP 4 5 4 PS Isolated Converters 10 10/25/17 Magnetics 11 10/30/17 Soft Switching 6 5/PP 6 5 Magnetics Magnetics and Inverters 12 11/1/17 Project Discussions 13 11/6/17 Inverters, Grid, PF, and Batteries 6 P 6 Project 14 11/8/17 Thermal & EMI 15 11/13/17 Quiz Review C1 16 11/15/17 Grounding, and Debugging Q 11/15/17 Quiz - in the evening 11/20/17 Thanksgiving Break C2 11/22/17 Thanksgiving Break 17 11/27/17 Wrapup 18 11/29/17 Guest Lecture C3 19 12/4/17 Guest Lecture 20 12/6/17 No Class TBD Project presentations P 12/15/17 Project webpage due

Multi-Level PV System Test Setup

Primary and Secondary PCBs

Course to Date We need sustainable energy systems At the core they are voltage converters Periodic steady-state analysis, buck and boost Intelligent control + power path Intelligent control done with event-driven embedded software Real devices have switching and conduction loss and parasitics

Last Time DC and AC characteristics of MOSFETs, Diodes, and IGBTs Switches in pairs One switch does the work Turn on transient Diode reverse recovery Parasitics Gate drive and Miller capacitance

Turn-On and Turn-Off Loss

Turn-On Loss I P I D I L Q RR Q D s V DS t 1 t 2 t 3

Turn-Off Buck with Diode I L I D I 1 Excess current charges drain node. Integrate to get switching energy V DS t r t c! 1 E = V DD t r 6 I L + 1 3 I $ # 1& " %

Turn-Off Buck with Diode I D I L If current ramps faster than voltage nearly ZVS t c E = 1 6 V 1I L t c V DS V 1 t r

Parasitic Losses L P C L M 1 C 1 L 1 D 1 C 2

Gate Drive

Gate Driver drain S H R GH in V GH + - Control & Protection Gate-driver IC S L R GL M 1 source

Effect of Miller Cap on Rise Time C DG M1 i G

Effect of Miller Cap on Rise Time dv D dt = i G C DG C DG M1 Δt = ΔV DC DG i G i G Example: i = 0.5A, C = 100pF, DV = 400V

Bootstrap Supply R B D B V inh C B High-Side Gate Drive G2 M2 V 1 + - X i inl Low-Side Gate Drive G1 M1 GND V GL + -

Dead Time

Too Little Dead Time (11.6kW loss) 110KW ix(1:h:1)*(v(d)-v(m1)) ix(1:l:1)*v(m1) 100KW 90KW 80KW 70KW 60KW 50KW 40KW 30KW 4mJ 3.4mJ 3.7mJ 3.4mJ 20KW 10KW 0KW -10KW 3.0KA 2.5KA 2.0KA 2500A Ix(1:h:1) Ix(1:l:3) 1.5KA 1.0KA 0.5KA 0.0KA -0.5KA -1.0KA -1.5KA -2.0KA -2.5KA -3.0KA 16V V(p1l) v(p1h)-v(m1) V(1:gl) V(1:gh)-v(m1) 14V 12V 10V 8V 6V 4V 2V 0V 50V V(m1) 45V 40V 35V 30V 25V 20V 15V 10V 5V 0V -5V 1.6µs 1.7µs 1.8µs 1.9µs 2.0µs 2.1µs 2.2µs 2.3µs 2.4µs 2.5µs 2.6µs 2.7µs 2.8µs 2.9µs 3.0µs 3.1µs 3.2µs

v G (V) The Real Gate Signal 10 0 0.6 0.8 1 1.2 1.4 1.6 1.8 15 10 5 0 v X (V) 40 20 0 0.6 0.8 1 1.2 1.4 1.6 1.8 3 i M1 (ka) 100 2 1 0 0.6 0.8 1 1.2 1.4 1.6 1.8 P M1 (kw) 50 0 0.6 0.8 1 1.2 1.4 1.6 1.8 t (µ s)

40KW 36KW Too Much Dead-Time (340W loss) ix(2:h:1)*(v(d)-v(m2)) (Still pretty good) ix(2:l:1)*v(m2) 32KW 28KW 24KW 20KW 16KW 12KW 8KW 0.27mJ 4KW 0KW -4KW 800A 700A 600A 500A 400A 300A 200A 100A 0A -100A -200A -300A -400A -500A -600A -700A 16V Ix(2:h:1) Ix(2:l:3) 740A V(p2l) V(p2h)-v(m2) V(2:gl) V(2:gh)-v(m2) 14V 12V 10V 8V 6V 4V 2V 0V -2V 50V V(m2) 45V 40V 35V 30V 25V 20V 15V 10V 5V 0V -5V 1.6µs 1.7µs 1.8µs 1.9µs 2.0µs 2.1µs 2.2µs 2.3µs 2.4µs 2.5µs 2.6µs 2.7µs 2.8µs 2.9µs 3.0µs 3.1µs 3.2µs 700mV diode drop

Just Right (310W loss) 2.7KW IX(4:l:1)*v(m4) ix(4:h:1)*(v(d)-v(m1)) 2.4KW 2.1KW 1.8KW 1.5KW 1.2KW 0.9KW 0.6KW 3uJ 0.19mJ 0.3KW 0.0KW -0.3KW 420A Ix(4:h:1) Ix(4:l:3) 350A 280A 210A 140A 70A 0A -70A -140A -210A -280A -350A 16V V(p4l) v(p4h)-v(m4) v(4:gh)-v(m4) V(4:gl) 14V 12V 10V 8V Slower gate rise 6V 4V 2V 0V -2V 50V V(m4) 45V 40V 35V 30V 25V 20V 15V 10V 5V Short duration diode drop 0V -5V 1.6µs 1.7µs 1.8µs 1.9µs 2.0µs 2.1µs 2.2µs 2.3µs 2.4µs 2.5µs 2.6µs 2.7µs 2.8µs 2.9µs 3.0µs 3.1µs 3.2µs Conduction loss is I 2 R = 50 2 x 1m ~ 25W

Too much dead time is better than too little

Snubbers

Dampen Ringing Nodes 40A C j D L D and C j resonate when M is on Parallel R S dampens tank L D R S Series C S limits dissipation G M C S + - 50V

Inductance on Drain 42uJ turn-off 8uJ turn-on

With Snubber (1nF, 5W) 2uJ in snubber 8uJ turn-on 42uJ turn-off

Design Procedure C j Pick R S ~ 1/wC j 40A D Pick C S so t >= p/w Or E s = C S V 2 /2 L D R S G M C S + - 50V

Example Cycle

IGBT Half Bridge L S CH C X C CGH Q H D H V S + - GD X R X I L C CGL Q L D L GD SL L SL

1 One Switching Cycle 400 i QH (A) 50 200 v CEH (V) 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 40 i DL (A) 20 0 2 20 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 400 v x (V) 300 200 100 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 t (µs)

i QH (A) 50 Turn-On Transient400 200 v CEH (V) 0 0 60 80 100 120 140 160 180 i DL (A) 40 20 0 1 2 40 20 0 i QL (A) High-Side Turn On v X (V) v CH (V) v GEH (V) 20 20 60 80 100 120 140 160 180 400 200 410 400 0 0 60 80 100 120 140 160 180 390 60 80 100 120 140 160 180 15 15 10 10 5 5 0 0 5 2 5 10 10 60 80 100 120 140 160 180 t (ns) 20 10 P QH (kw) v GEL (V) 60ns 22kW E~ 2 E = 773µJ L di dt = 660µJ

40 1 400 i QH (A) 20 200 v CEH (V) 0 1.55 1.6 1.65 1.7 1.75 0 40 30 i DL (A) 20 10 High-Side Turn Off v X (V) v CH (V) 0 1.55 1.6 1.65 1.7 1.75 400 200 0 0 1.55 1.6 1.65 1.7 1.75 415 410 405 400 1.55 1.6 1.65 1.7 1.75 t (µs) 2 8 6 4 2 P QH (kw) E = 230μJ L di dt

Lab Half-Bridge Module

The Half-Bridge Module V12 Hin 1 2 Hin IRS21834 U1 V B HO S 13 12 11 V B CSupply D2 15V C2 1 F R3 1 D1 R1 4.7 M1 V D CFilter V D Out GND 4 3 DT Vss V CC LO Com 7 6 5 R2 4.7 C1 4.7 F M2 C3 2.2 F 200V D3 56V 5W COM

Bootstrap Supply V12 Hin 1 2 Hin IRS21834 U1 V B HO S 13 12 11 V B CSupply D2 15V C2 1 F R3 1 D1 R1 4.7 M1 V D CFilter V D Out GND 4 3 DT Vss V CC LO Com 7 6 5 R2 4.7 C1 4.7 F M2 C3 2.2 F 200V D3 56V 5W COM

Bootstrap Supply

Drain Voltage Filter V12 Hin 1 2 Hin IRS21834 U1 V B HO S 13 12 11 V B CSupply D2 15V C2 1 F R3 1 D1 R1 4.7 M1 V D CFilter V D Out GND 4 3 DT Vss V CC LO Com 7 6 5 R2 4.7 C1 4.7 F M2 C3 2.2 F 200V D3 56V 5W COM

Drain Voltage Filter 300nH Input Inductance

SPICE

SPICE Example A Voltage Doubler

A Voltage Doubler * Simple voltage "doubler".include "gel.lib".param td=100n tr=100n tf=100n tw=2.5u tcy=5u ncy=2.param l1=22uh c1=10uf r1=10 * call half-bridge subcircuit xhb vd mid g g 0 v12 gel_hb * circuit l1 vin mid {l1} c1 vd 0 {c1} r1 vd 0 {r1} * supplies v12 v12 0 12 vin vin 0 24 * stimulus VG g 0 PULSE(0 5 {td} {tr} {tf} {tw} {tcy} {ncy}).ic i(l1)=9.2.ic v(vd)=42.8.tran {ncy*tcy}

Turn-On Transient

Steady State

Close up of Drain Current

With PID Control

A Warning SPICE (or any simulator) is a Verification tool, not a Design tool Design your circuit first Use Excel, Matlab, a calculator etc to calculate component values Then simulate your circuit to check operation and fine-tune parameters Don t try to design your circuit using SPICE Simulation is not a substitute for thinking

Real switches have limitations Summary of Power Circuits Conduction losses (R ON for FETs, V CE for IGBTs, Diode drop) Switching losses (finite t on, t off, t rr ) With current source load, current ramps, then voltage falls And voltage rises before current falls May be dominated by reverse recovery time Complicated by inductance Parasitic L and C Power MOSFETs Switch quickly, have linear I-V, integral diode IGBTs Diode-like I-V, slower switching Diodes Have reverse recovery time Switches operate in pairs For one-way converters, one switch may be a diode Synchronous rectification make both switches FETs to reduce loss Need dead time to avoid shoot through current Gate-drive circuits control rise and fall times Supply Miller capacitance Bootstrap supply needed for high-side driver Snubbers dampen voltage and current transients Use SPICE as a verification tool, not a design tool

Course at a Glance No Date Topic HW out HW in Lab out Lab ck Lab HW 1 9/25/17 Intro (basic converters) 1 1 Intro to ST32F3 Periodic Steady State 2 9/27/17 Embedded Prog/Power Elect. 3 10/2/17 Power Electronics - 1 (switches) 2 1 2 1 AC Energy Meter Power Devices 4 10/4/17 Power Electronics - 2 (circuits) 5 10/9/17 Photovoltaics 3 2 3 2 PV MPPT Motor control Matlab 6 10/11/17 Feedback Control 7 10/16/17 Electric Motors 4 3 4 3 Motor control - Lab/ Feedback 8 10/18/17 Isolated Converters 9 10/23/17 Solar Day 5/PP 4 5 4 PS Isolated Converters 10 10/25/17 Magnetics 11 10/30/17 Soft Switching 6 5/PP 6 5 Magnetics Magnetics and Inverters 12 11/1/17 Project Discussions 13 11/6/17 Inverters, Grid, PF, and Batteries 6 P 6 Project 14 11/8/17 Thermal & EMI 15 11/13/17 Quiz Review C1 16 11/15/17 Grounding, and Debugging Q 11/15/17 Quiz - in the evening 11/20/17 Thanksgiving Break C2 11/22/17 Thanksgiving Break 17 11/27/17 Wrapup 18 11/29/17 Guest Lecture C3 19 12/4/17 Guest Lecture 20 12/6/17 No Class TBD Project presentations P 12/15/17 Project webpage due