ELEN 610 Data Converters

Similar documents
ECEN 610 Mixed-Signal Interfaces

Design of Analog Integrated Circuits

Transistor Noise Lecture 10 High Speed Devices

University of Toronto. Final Exam

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Lecture 400 Discrete-Time Comparators (4/8/02) Page 400-1

Sample-and-Holds David Johns and Ken Martin University of Toronto

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

Electronic Circuits Summary

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

Chapter 4 Field-Effect Transistors

Lecture 10, ATIK. Data converters 3

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Lecture 320 Improved Open-Loop Comparators and Latches (3/28/10) Page 320-1

MOS Transistor Theory

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

EE247 Lecture 16. Serial Charge Redistribution DAC

EE 505. Lecture 27. ADC Design Pipeline

Lecture 340 Characterization of DACs and Current Scaling DACs (5/1/10) Page 340-1

Transistor Noise Lecture 14, High Speed Devices

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters

MOSFET: Introduction

Nyquist-Rate A/D Converters

MOS Transistor I-V Characteristics and Parasitics

Introduction to Switched Capacitor Circuits

Lecture 14: Electrical Noise

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

System on a Chip. Prof. Dr. Michael Kraft

6.012 Electronic Devices and Circuits Spring 2005

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

EE 230 Lecture 20. Nonlinear Op Amp Applications. The Comparator Nonlinear Analysis Methods

Homework Assignment 08

Discrete-Time Filter (Switched-Capacitor Filter) IC Lab

Chapter 2 Switched-Capacitor Circuits

6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers

ECE Branch GATE Paper The order of the differential equation + + = is (A) 1 (B) 2

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

Power Dissipation. Where Does Power Go in CMOS?

MOS Transistor Theory

ECE 546 Lecture 10 MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Nyquist-Rate D/A Converters. D/A Converter Basics.

EE247 Lecture 19. EECS 247 Lecture 19: Data Converters 2006 H.K. Page 1. Summary Last Lecture

Analog and Mixed-Signal Center, TAMU

Lecture 28 Field-Effect Transistors

The Physical Structure (NMOS)

Lecture 11: J-FET and MOSFET

Lecture 4: CMOS Transistor Theory

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

EE C245 ME C218 Introduction to MEMS Design

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Chapter 6: Field-Effect Transistors

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Analysis and Design of Analog Integrated Circuits Lecture 14. Noise Spectral Analysis for Circuit Elements

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Pipelined multi step A/D converters

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

EXAMPLE DESIGN PART 2

Lecture 4, Noise. Noise and distortion

Electronics and Communication Exercise 1

Chapter 13 Small-Signal Modeling and Linear Amplification

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

SWITCHED CAPACITOR AMPLIFIERS

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Homework Assignment 09

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Modeling All-MOS Log-Domain Σ A/D Converters

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

MOS Transistor Properties Review

Lecture 5: CMOS Transistor Theory

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

EE105 - Fall 2005 Microelectronic Devices and Circuits

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft

Summary Last Lecture

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

Lecture 3: CMOS Transistor Theory

Lecture 37: Frequency response. Context

EE 435. Lecture 22. Offset Voltages

EE105 - Fall 2006 Microelectronic Devices and Circuits

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

Switched Capacitor Circuits II. Dr. Paul Hasler Georgia Institute of Technology

Piecewise Nonlinear Approach to the Implementation of Nonlinear Current Transfer Functions

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

Advanced Current Mirrors and Opamps

Stability and Frequency Compensation

ECE 497 JS Lecture - 12 Device Technologies

Differential Amplifiers (Ch. 10)

EXAMPLE DESIGN PART 2

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues

Transcription:

Spring 04 S. Hoyos - EEN-60 ELEN 60 Data onverters Sebastian Hoyos Texas A&M University Analog and Mixed Signal Group

Spring 04 S. Hoyos - EEN-60 Electronic Noise Signal to Noise ratio SNR Signal Power Psignal ~ DD Noise Power Pnoise=kT/ SNR = Psignal / Pnoise Technology Scaling DD goes down goes up Power goes up Noise is critical in low power design

Spring 04 S. Hoyos - EEN-60 3 Thermal Noise Brownian Motion : Thermal agitation of particles Stochastic Process: Statistical model Noise Power : P N ktδf k=.3806503 0-3 J/K Noise power in bandwidth Δf deliver to a matched load For Δf= Hz P N =4*0 - W (or - 74 dbm ) (@T=90K) Reference: J.B Johnson : Thermal agitation of electrons in conductors July 98

Spring 04 S. Hoyos - EEN-60 4 Thermal Noise R en R P N ktδf en 4 R e n 4kTRΔf e n 4 n / Room temperature, R=KΩ rms spectral density Room temperature, R=50Ω rms spectral density e n 0. 9n / Hz Hz in R e R n in 4 ktδf R 4 ktgδf

Spring 04 S. Hoyos - EEN-60 5 Noise Bandwidth Δf H pk 0 H(f) df H pk is the peak value of the magnitude of the filter voltage transfer function H(f) For a single-pole R low-pass filter Δf π df f 0 db πfr 3 4 R.57 times the -3 db bandwidth HW: Find the noise bandwidth for critically damped second-order low-pass filter.

Noise in S ircuits Spring 04 S. Hoyos - EEN-60 6

Spring 04 S. Hoyos - EEN-60 7 Noise of T Integrator H (f) R R i o N o N H (f) on N f H f df f H f df N Output noise can be simulated with SPIE.

Spring 04 S. Hoyos - EEN-60 8 Noise of S Integrator i o S circuits are NOT noise-free! Switches and op amps introduce noise.

Spring 04 S. Hoyos - EEN-60 9 Sampling ( ) KT/ Noise N i R N R N H f f f 0 0 kt N 4kTR N 4kTR jf R df R df Noise indistinguishable from signal after sampling.

Integration ( ) H 34 (f) N3 N4 R 4 o R 3 N5 H 5 (f) N H f df f H f df f f N 3 N 4 34 N 5 5 on N N What techniques you know to simulate the aggregated output noise? K. Kundert, "Simulating switched-capacitor filters with SpectreRF," available at http://www.designers-guide.org/analysis/sc-filters.pdf. Spring 04 S. Hoyos - EEN-60 0

Spring 04 S. Hoyos - EEN-60 Sampling ( ) Noise Revisited N3 N4 R 4 N R ' N R 3 N5 R All switches and op amp contribute noise simultaneously. Finite op-amp BW and R time constant tend to limit the noise bandwidth, resulting in less overall KT/ noise (noise filtering). Output and load resistors also add noise.

Spring 04 S. Hoyos - EEN-60 Sampled Noise Spectrum T PSD 0 f s f s DT PSD Alias 0 f s / f s 3/f s Total integrated noise power remains constant. SNR remains constant.

Spring 04 S. Hoyos - EEN-60 3 harge-sampling Noise HW: Show that the total integrated noise for the charge sampling circuit is given by: N N T T kt s kt s G m s Δt for for Δt s Δt G m G s m

MOSFET- Active Filters Spring 04 S. Hoyos - EEN-60 4

Spring 04 S. Hoyos - EEN-60 5 MOSFET Resistor GS G S D I DS DS = GS - th GS S D 0 DS MOSFET in triode region is a variable resistor. ompact, small parasitics compared to passive resistors.

Spring 04 S. Hoyos - EEN-60 6 MOSFET Resistor In triode region, I DS ox W L GS th DS DS Small signal, R DS I DS DS ox W L ox for 0. GS W L th GS th DS DS But the large-signal response is quite nonlinear.

Spring 04 S. Hoyos - EEN-60 7 A Linear MOSFET Resistor MOSFET resistor is linear when driven by balanced differential signals!. i ic th G ox i i i ic th G ox th G ox DS DS th GS ox DS L W L W L W L W I In triode region, G, i ic i ic

Spring 04 S. Hoyos - EEN-60 8 MOSFET- Integrator M i+ o+ i- o- M = i+ o- i- o+ Sources of M and M are always equal-potential due to virtual ground. The linearity is not surprising as the fully-differential circuit rejects the ndorder harmonic (also all even-order distortions). Triode resistance strongly depends on process (threshold, mobility, etc.), temperature, and DD. Filter response needs to be tuned.

Spring 04 S. Hoyos - EEN-60 9 G m - Active Integrator I G m i i I T i i o G s o m i Differential input with programmable gain constant G m /.

Spring 04 S. Hoyos - EEN-60 0 Nonideal Effects in S ircuits

Spring 04 S. Hoyos - EEN-60 Nonzero On-Resistance GS R on PMOS NMOS out S Tp Tn S R MOS 0 out DD on ox W L DD th out FET channel resistance depends on signal level. Usually (R on S ) - (3-5) ω -3dB for settling purpose.

Spring 04 S. Hoyos - EEN-60 lock Bootstrapping S DD In M Out MOS Bootstrapped NMOS Small on-resistance leads to large switches, which have large parasitics and need large clock buffers. lock bootstrapping keeps GS of the switch constant, thus constant onresistance; also less parasitics w/o the PMOS.

Simplified lock Bootstrapper DD In M Out DD M Better linearity for S/H. Device reliability. M Out omplexity. In SS Ref: A. M. Abo and P. R. Gray, "A.5-, 0-bit, 4.3-MS/s MOS pipeline AD," IEEE Journal of Solid-State ircuits, vol. 34, pp. 599-606, issue 5, 999. Spring 04 S. Hoyos - EEN-60 3

Spring 04 S. Hoyos - EEN-60 4 Switch-Induced Errors Z i gs gd out lock feedthrough in Q ch S harge injection hannel charge injection and clock feedthrough (on the drain side) result in charge trapped on S after switch is turned off.

Spring 04 S. Hoyos - EEN-60 5 lock Feedthrough and harge Injection Z i gs gd out DD 0 in + th in Q ch S Switch on Switch off Both phenomena are sensitive functions of Z i, S, and clock SR. Nonlinear signal-dependent errors introduce distortion. lock feedthrough can be simulated. harge injection cannot be simulated with lumped transistor models.

lock SR Dependence Z i gs gd out DD 0 in + th in Q ch S Switch on Switch off Fast turn-off Slow turn-off lock feedthrough gs gs gs S S DD harge injection Spring 04 S. Hoyos - EEN-60 6 ox WL gs in th 0 DD gs th S in

Spring 04 S. Hoyos - EEN-60 7 Switch Size Optimization To minimize switch-induced error voltages, small transistor size, slow turn-off, low source impedance should be used. Always use minimum channel length for switches. For fast settling (high-speed design), large (W/L) should be used, which implies that the error voltages tend to be large also. For a given speed, switch sizes can be optimized through simulation. minimum size transistors should be used to meet the speed spec. Be aware of the limitations of the simulator (SPIE etc.) that uses lumped device models.

Spring 04 S. Hoyos - EEN-60 8 Dummy Switch in W L W L S out The nonlinear dependence of Δ on Z i, S, and clock SR makes it difficult to achieve a precise cancellation. Sensitive to phase alignment between and _.

Spring 04 S. Hoyos - EEN-60 9 MOS Switch in S out Same size for P and N FETs ery sensitive to phase alignment between and _. Subject to threshold mismatch between PMOS and NMOS. Exact cancellation occurs only for one specific in.

Spring 04 S. Hoyos - EEN-60 30 Differential Signaling ip M op Sp Balanced diff. input in M on Sn Signal-independent errors will be cancelled. Even-order distortions will be cancelled.

Leakage Spring 04 S. Hoyos - EEN-60 3

Spring 04 S. Hoyos - EEN-60 3 Junction Leakage I o (t) S i o i leak 0 t Reverse-biased D/S leakage at summing node introduces charge loss. Leakage current sets the lower limit of the clock frequency. More problematic with high temperature (leakage doubles every 0º) or short-channel switches.

Spring 04 S. Hoyos - EEN-60 33 Gate Leakage I GS WL exp t exp ox GS Direct tunneling through the thin gate oxide. Short-channel MOSFET behaves increasingly like BJT s. iolates the high-impedance assumption of the summing node. Gate + D/S leakage sets the lower limit of the clock frequency.

Spring 04 S. Hoyos - EEN-60 34 Nonideal Effects of Op-Amps

Spring 04 S. Hoyos - EEN-60 35 Offset oltage i o Q i n onos os Q os on os o (t) o z z z i z os 0 t i = 0

Spring 04 S. Hoyos - EEN-60 36 Autozeroing Q i nos os Q os onos i o os H z o i z z Also eliminates low-frequency noise, e.g., /f noise. Also called the correlated double sampling (DS).

Spring 04 S. Hoyos - EEN-60 37 hopper Stabilization n A B i A A o - f Ref: K.. Hsieh, P. R. Gray, D. Senderowicz, and D. G. Messerschmitt, "A low-noise chopper-stabilized differential switched-capacitor filtering technique," IEEE Journal of Solid-State ircuits, vol. 6, pp. 708-75, issue 6, 98.

Spring 04 S. Hoyos - EEN-60 38 hopper Stabilization i i n A A B A o 0 S N (f) f f - f 0 A f f Also eliminates D offset voltage of A. 0 B 0 f f f f

Spring 04 S. Hoyos - EEN-60 39 Implementation i+ o+ o- i- hopper-stabilized two-stage differential operational amplifier. Integrators can be built using these amplifiers.

Thermal Noise vs. Quantization Noise

Spring 04 S. Hoyos - EEN-60 4 Quantization ref A/D... b n b Analog input Digital output N bits used to quantize input signal.

Spring 04 S. Hoyos - EEN-60 4 Quantization Error D out FS 0 3 4 5 6 7 FS in D out FS N in 0, D LSB in FS out FS N in ε -3Δ -Δ -Δ 0 Δ N = 3 Δ 3Δ Δ/ 0 -Δ/ -3Δ -Δ -Δ 0 Δ Δ 3Δ in Random quantization error is regarded as noise.

Spring 04 S. Hoyos - EEN-60 43 Quantization Noise Δ/ 0 -Δ/ ε Δ Δ 3Δ 4Δ 5Δ 6Δ 7Δ FS in Assumptions: N is large. 0 in FS and in >> Δ. in is active. P ε ε is Uniformly distributed. /Δ Spectrum of ε is white. -Δ/ 0 Δ/ ε / / d Ref: W. R. Bennett, Spectra of quantized signals, Bell Syst. Tech. J., vol. 7, pp. 446-47, July 948.

Spring 04 S. Hoyos - EEN-60 44 Signal-to-Quantization Noise Ratio (SQNR) Assume in is sinusoidal with p-p = FS, SQNR FS N / 8 N.5, / 8 SQNR 6.0N.76dB. N (bits) SQNR (db) 8 49.9 0 6.0 74.0 4 86.0 SQNR depicts the theoretical performance of an ideal AD. In reality, AD performance is limited by many other factors: Electronic noise (thermal, /f, coupling, and etc.) Distortion (measured by THD, SFDR)

Spring 04 S. Hoyos - EEN-60 45 Thermal Noise Limited ircuit bit 6dB 4 x SNR 4 x SNR 4 x ircuit bandwidth ~gm/ Keeping gs constant 4 x gm 4xI D, 4x W Each additional bit quadruples power dissipation

Analog ircuit Dynamic Range Assume an analog signal: max, rms DD The noise rms values is: n, rms n f kt B The dynamic range in db is: DR max, rms DD 8n k T n, rms f B DD <3 DR<0dB <nf (8 bits) DD <30 DR<40dB <00nF (3 bits) DRdB 0 log0 DD 75 db with in pf n f Spring 04 S. Hoyos - EEN-60 46