Stochastic prediction of train delays with dynamic Bayesian networks. Author(s): Kecman, Pavle; Corman, Francesco; Peterson, Anders; Joborn, Martin

Size: px
Start display at page:

Download "Stochastic prediction of train delays with dynamic Bayesian networks. Author(s): Kecman, Pavle; Corman, Francesco; Peterson, Anders; Joborn, Martin"

Transcription

1 Research Collection Other Conference Item Stochastic prediction of train delays with dynamic Bayesian networks Author(s): Kecman, Pavle; Corman, Francesco; Peterson, Anders; Joborn, Martin Publication Date: 2015 Permanent Link: Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library

2 Stochastic prediction of train delays in real-time using Bayesian networks P. Kecman 1 F. Corman 2 A. Peterson 1 M. Joborn 1 1 Department of Science and Technology, Linköping University 2 Section Transport Engineering & Logistics, Maritime and Transport Technology, Delft University of Technology 21 July 2015 Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

3 Outline 1 Introduction 2 Stochastic model based on Bayesian networks 3 Computational experiments 4 Current research 5 Conclusions Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

4 Outline 1 Introduction 2 Stochastic model based on Bayesian networks 3 Computational experiments 4 Current research 5 Conclusions Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

5 Uncertainty in railway traffic Railway traffic typically operates according to a timetable, however... Source: D Ariano, PhD thesis Delay [s] LEDN LAA GV DT SDM RTD RTB RLB DDR Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

6 Importance of tackling uncertainty Quality of railway service depends on accurate predictions of future train movements on many levels: Traffic can be controlled pro-actively by taking actions that prevent delays and delay propagation Timetable, passenger transfer plans, rolling-stock and crew circulation plans can be kept up-to-date Passengers can be provided with accurate information: in-vehicle, on-platform, online Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

7 Existing approaches Deterministic models require frequent updates of train positions and detailed data Stochastic models are based on fixed distributions and do not exploit information available in real time Predictionn error (sec) Dwell time Running time Source: Medeossi et al (2011) JRTPM Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

8 Research objective How can incoming real-time information stream be used to reduce uncertainty? Develop a model that captures dynamics of uncertainty over time and gives predictions that are: Accurate and reliable Dynamic and responsive Stable over longer prediction horizons Source: xkcd.com/612 Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

9 The first step - train delay evolution as a Markov process Realised arrival time Expected arrival time Expected arrival time Expected arrival time Station A Station B Station C Station D Realised arrival time Realised arrival time Expected arrival time Expected arrival time Station A Station B Station C Station D Prediction error [min] Dynamic Static Prediction horizon [min] Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

10 The second step - stochastic delay propagation Station C EET EET EET EET Station B EET EET Realised arrival time EET Station A Realised departure time Time EET Realised departure time Time EET Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

11 Outline 1 Introduction 2 Stochastic model based on Bayesian networks 3 Computational experiments 4 Current research 5 Conclusions Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

12 Bayesian networks Definition Bayesian networks are graphical models for reasoning under uncertainty Variables and the conditional dependencies between them are represented with a directed acyclic graph G = (N, A) Direction of an arc reflects the causality relationship between two variables (nodes) Conditional probability distributions are computed for each node Var 1 Var 2 Var 2 F T T F Var 1 Var 2 T F Var 3 Var 1 F F T T Var 2 F T F T Var 3 T F Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

13 Bayesian networks Properties Compact representation of a joint probability distribution The structure of the network, i.e., the directed arcs between the nodes and conditional probability distributions, can either be learned from the data or determined by expert knowledge Markov property Inference - Probabilistic beliefs updated automatically as new information about a variable becomes available Conditional probability updates - marginal posterior probability Maximum posterior density - configuration q of the variables in Q that has the highest posterior probability Inference P(future traffic state current traffic state) Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

14 Structure of Bayesian network model a) both trains with scheduled stop Arrival Departure b) both trains with scheduled stop and overtaking Arrival Departure Arrival e) overtaking Departure Arrival Departure Arrival Departure Through c) second train without scheduled stop Arrival Departure d) first train without scheduled stop Through b) both trains with scheduled stop and connection Arrival Departure Through Arrival Departure Arrival Departure Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

15 Parameters learning and inference Network structure implication - a local distribution has only a small number parameters to estimate Local distributions are univariate normal random variables Local distributions are conditioned on incoming events Local distributions are in fact linear models in which the parents play the role of explanatory variables Y P(Z X,Y) Z Density X Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

16 Implementation setup Network structure is built based on the route plan and schedule assumed to be known during the prediction horizon The structure of the network is determined assuming that the train routes and orders are known Parameters of the network computed from the historical database (training set) Every train event message represents the new information that is propagated through the graph using statistical inference algorithms The prediction horizon moves, new trains are added to the model Events within prediction horizon Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

17 Outline 1 Introduction 2 Stochastic model based on Bayesian networks 3 Computational experiments 4 Current research 5 Conclusions Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

18 Case study Case study from a busy corridor between Stockholm and Norrköping in Sweden 180 km long double-track line with mixed traffic 27 stations and junctions, 10 of which accommodate scheduled stops of passenger and freight trains Approximately 300 hundred trains per day traverse the corridor (fully or partially). Stockholm Norrköping Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

19 Data set description The database contains the scheduled and realised times for departures, arrivals and through runs for all trains and stations All event times are rounded to full minutes Train position and delay update given only at stations with a frequency of 2 minutes on average Two months (1 January to 28 February 2015) of historical traffic realisation data has been made available by the Swedish infrastructure manager Trafikverket. Randomly selected weekday from the analysis used as a test day to evaluate the performance of the Bayesian network model (test set) Remaining data are used for calibration of network parameters (training set) Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

20 Experimental setup Prediction horizon is 60 minutes A real-time environment for model validation was created by sweeping through the chronologically sorted messages in the test set Every train event message represents the new information received by the monitoring system The graph size does not increase linearly in time as only the nodes representing the last events of all trains are kept in the model due to the inherent Markov property of Bayesian networks Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

21 Model structure, size and parameters The average network size is 137,12 nodes and arcs Arc type Coefficient RSE p value R 2 Headway 0,42 0,33 *** 0,52 Running 0,95 0,06 *** 0,90 Dwell 0,81 0,09 *** 0,79 Table: Average values of predictive power of local models Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

22 Model performance on the test set Model applied on the peak hours (6:30-9:00 and 16:30-19:00) of the test day In total the inference algorithm is executed 563 times The predicted values are compared against the realised event times Prediction error [min] Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

23 Model performance on the test set Mean absolute error Prediction horizon [min] Standad deviation of error Prediction horizon [min] Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

24 Dynamic updates of the marginal distribution An example of how the distribution of arrival time of a train to the final station evolves over time in six discrete steps H =72 min H = 60 min H = 41 min Density Density Density H = 33 min H = 14 min H = 5 min Density Density Density Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

25 Dynamic updates of probability An example of how the probability that the arrival time will be larger than 16 min changes in six discrete steps Probability Time horizon [min] Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

26 Outline 1 Introduction 2 Stochastic model based on Bayesian networks 3 Computational experiments 4 Current research 5 Conclusions Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

27 Stochastic modelling of traffic control decisions Bayesian classification approach How to overcome the assumption that traffic train sequences (orders) are known? Delay train 1 Delay train 2 Secondary delay Classifier Train 1 -> Train 2 Train 2 -> Train 1 Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

28 Stochastic modelling of traffic control decisions Initial results Analysis of traffic control actions when secondary delays occur One point of conflict analysed 1110 delays that may cause secondary delays considered 77 % of cases resulted in reordering Changed order No reordering Frequency Frequency Delay effect of reordering [min] Delay effect of reordering [min] Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

29 Stochastic modelling of traffic control decisions Initial results Analysis of traffic control actions when secondary delays occur One point of conflict analysed 1110 delays that may cause secondary delays considered 77 % of cases resulted in reordering Changed order No reordering Frequency Frequency Delay effect of reordering [min] Delay effect of reordering [min] Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

30 Stochastic modelling of traffic control decisions Bayesian classification approach How to overcome the assumption that traffic train sequences (orders) are known? Delay train 1 Delay train 2 Secondary delay Train priorities Classifier Equity Train 1 -> Train 2 Train 2 -> Train 1 Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

31 Outline 1 Introduction 2 Stochastic model based on Bayesian networks 3 Computational experiments 4 Current research 5 Conclusions Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

32 Summary and conclusions Analysis of train delays and their evolution in real time with respect to the dynamic stochastic phenomena The goal was to determine the impact of real-time information on reducing uncertainty Bayesian networks turned out to be an appropriate method to concisely represent the complex interdependencies between train events The model was evaluated in a simulated real time environment and the computational results indicate that the predictions are reliable for horizons of up to 30 minutes Potential applications include integration in robust rescheduling framework, online traffic control an delay management models and passenger information systems A strong assumption of the model is that there is a perfect knowledge of train orders and routes within the prediction horizon - overcoming this will be in the focus of future research in this direction Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

33 Thank you for your attention Pavle Kecman (LiU) Stochastic prediction of train delays 21 July / 31

Improved Railway Timetable Robustness for Reduced Traffic Delays a MILP approach

Improved Railway Timetable Robustness for Reduced Traffic Delays a MILP approach Improved Railway Timetable Robustness for Reduced Traffic Delays a MILP approach Emma V. Andersson 1, Anders Peterson, Johanna Törnquist Krasemann Department of Science and Technology, Linköping University

More information

Traffic Modelling for Moving-Block Train Control System

Traffic Modelling for Moving-Block Train Control System Commun. Theor. Phys. (Beijing, China) 47 (2007) pp. 601 606 c International Academic Publishers Vol. 47, No. 4, April 15, 2007 Traffic Modelling for Moving-Block Train Control System TANG Tao and LI Ke-Ping

More information

Distributed model predictive control for railway traffic management

Distributed model predictive control for railway traffic management Delft University of Technology Delft Center for Systems and Control Technical report 16-013 Distributed model predictive control for railway traffic management B. Kersbergen, T. van den Boom, and B. De

More information

Research Collection. Basics of structural reliability and links with structural design codes FBH Herbsttagung November 22nd, 2013.

Research Collection. Basics of structural reliability and links with structural design codes FBH Herbsttagung November 22nd, 2013. Research Collection Presentation Basics of structural reliability and links with structural design codes FBH Herbsttagung November 22nd, 2013 Author(s): Sudret, Bruno Publication Date: 2013 Permanent Link:

More information

Delay-Robust Event-Scheduling In Memoriam of A. Caprara

Delay-Robust Event-Scheduling In Memoriam of A. Caprara Delay-Robust Event-Scheduling In Memoriam of A. Caprara A. Caprara 1 L. Galli 2 S. Stiller 3 P. Toth 1 1 University of Bologna 2 University of Pisa 3 Technische Universität Berlin 17th Combinatorial Optimization

More information

A Re-optimization Approach for Train Dispatching

A Re-optimization Approach for Train Dispatching Zuse Institute Berlin Takustr. 7 14195 Berlin Germany FRANK FISCHER 1 BORIS GRIMM 2 TORSTEN KLUG 2 THOMAS SCHLECHTE 2 A Re-optimization Approach for Train Dispatching 1 University of Kassel, Algorithmic

More information

6.867 Machine learning, lecture 23 (Jaakkola)

6.867 Machine learning, lecture 23 (Jaakkola) Lecture topics: Markov Random Fields Probabilistic inference Markov Random Fields We will briefly go over undirected graphical models or Markov Random Fields (MRFs) as they will be needed in the context

More information

Passenger-oriented railway disposition timetables in case of severe disruptions

Passenger-oriented railway disposition timetables in case of severe disruptions Passenger-oriented railway disposition timetables in case of severe disruptions Stefan Binder Yousef Maknoon Michel Bierlaire STRC 2015, April 17th Outline Motivation Problem description Research question

More information

Belief Update in CLG Bayesian Networks With Lazy Propagation

Belief Update in CLG Bayesian Networks With Lazy Propagation Belief Update in CLG Bayesian Networks With Lazy Propagation Anders L Madsen HUGIN Expert A/S Gasværksvej 5 9000 Aalborg, Denmark Anders.L.Madsen@hugin.com Abstract In recent years Bayesian networks (BNs)

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

DOI /HORIZONS.B P40 UDC (71) MODELLING METRO STATION BOARDING AND ALIGHTING TIMES 1

DOI /HORIZONS.B P40 UDC (71) MODELLING METRO STATION BOARDING AND ALIGHTING TIMES 1 DOI 1.2544/HORIZONS.B.3.1.16.P4 UDC 625.42.25.6(71) MODELLING METRO STATION BOARDING AND ALIGHTING TIMES 1 Nikola Krstanoski Department of Transportation and Traffic Engineering Faculty for Technical Sciences

More information

Microscopic Models and Network Transformations for Automated Railway Traffic Planning

Microscopic Models and Network Transformations for Automated Railway Traffic Planning Computer-Aided Civil and Infrastructure Engineering 00 (2016) 1 18 Microscopic Models and Network Transformations for Automated Railway Traffic Planning Nikola Bešinović & Rob M.P. Goverde* Faculty of

More information

Abstract. 1 Introduction

Abstract. 1 Introduction The max-plus algebra approach to railway timetable design R.M.P. Goverde Faculty of Civil Engineering and Geo Sciences, Delft University o/ Tec/mob^ f 0 Boz ^% ggoo G^ De% 7/^e A^e^er/a^^ email: goverde@ct.tudelft.nl

More information

The prediction of passenger flow under transport disturbance using accumulated passenger data

The prediction of passenger flow under transport disturbance using accumulated passenger data Computers in Railways XIV 623 The prediction of passenger flow under transport disturbance using accumulated passenger data T. Kunimatsu & C. Hirai Signalling and Transport Information Technology Division,

More information

Markov localization uses an explicit, discrete representation for the probability of all position in the state space.

Markov localization uses an explicit, discrete representation for the probability of all position in the state space. Markov Kalman Filter Localization Markov localization localization starting from any unknown position recovers from ambiguous situation. However, to update the probability of all positions within the whole

More information

The multi-objective railway timetable rescheduling problem

The multi-objective railway timetable rescheduling problem The multi-objective railway timetable rescheduling problem Stefan Binder Yousef Maknoon Michel Bierlaire May 30, 2016 Report TRANSP-OR 160530 Transport and Mobility Laboratory École Polytechnique Fédérale

More information

Machine learning: lecture 20. Tommi S. Jaakkola MIT CSAIL

Machine learning: lecture 20. Tommi S. Jaakkola MIT CSAIL Machine learning: lecture 20 ommi. Jaakkola MI CAI tommi@csail.mit.edu opics Representation and graphical models examples Bayesian networks examples, specification graphs and independence associated distribution

More information

Inference in Bayesian Networks

Inference in Bayesian Networks Andrea Passerini passerini@disi.unitn.it Machine Learning Inference in graphical models Description Assume we have evidence e on the state of a subset of variables E in the model (i.e. Bayesian Network)

More information

A control strategy to prevent propagating delays in high-frequency railway systems

A control strategy to prevent propagating delays in high-frequency railway systems A control strategy to prevent propagating delays in high-frequency railway systems Kentaro Wada* Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan Takashi Akamatsu Graduate

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012 CSE 573: Artificial Intelligence Autumn 2012 Reasoning about Uncertainty & Hidden Markov Models Daniel Weld Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer 1 Outline

More information

p L yi z n m x N n xi

p L yi z n m x N n xi y i z n x n N x i Overview Directed and undirected graphs Conditional independence Exact inference Latent variables and EM Variational inference Books statistical perspective Graphical Models, S. Lauritzen

More information

Introduction to Mobile Robotics Probabilistic Robotics

Introduction to Mobile Robotics Probabilistic Robotics Introduction to Mobile Robotics Probabilistic Robotics Wolfram Burgard 1 Probabilistic Robotics Key idea: Explicit representation of uncertainty (using the calculus of probability theory) Perception Action

More information

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine CS 484 Data Mining Classification 7 Some slides are from Professor Padhraic Smyth at UC Irvine Bayesian Belief networks Conditional independence assumption of Naïve Bayes classifier is too strong. Allows

More information

Sum-Product Networks. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017

Sum-Product Networks. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017 Sum-Product Networks STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 17, 2017 Introduction Outline What is a Sum-Product Network? Inference Applications In more depth

More information

THE VINE COPULA METHOD FOR REPRESENTING HIGH DIMENSIONAL DEPENDENT DISTRIBUTIONS: APPLICATION TO CONTINUOUS BELIEF NETS

THE VINE COPULA METHOD FOR REPRESENTING HIGH DIMENSIONAL DEPENDENT DISTRIBUTIONS: APPLICATION TO CONTINUOUS BELIEF NETS Proceedings of the 00 Winter Simulation Conference E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds. THE VINE COPULA METHOD FOR REPRESENTING HIGH DIMENSIONAL DEPENDENT DISTRIBUTIONS: APPLICATION

More information

A new delay forecasting system for the Passenger Information Control system (PIC) of the Tokaido-Sanyo Shinkansen

A new delay forecasting system for the Passenger Information Control system (PIC) of the Tokaido-Sanyo Shinkansen Computers in Railways X 199 A new delay forecasting system for the Passenger Information Control system (PIC) of the Tokaido-Sanyo Shinkansen K. Fukami, H. Yamamoto, T. Hatanaka & T. Terada Central Japan

More information

Estimation of train dwell time at short stops based on track occupation event data: A study at a Dutch railway station

Estimation of train dwell time at short stops based on track occupation event data: A study at a Dutch railway station JOURNAL OF ADVANCED TRANSPORTATION J. Adv. Transp. 2016; 50:877 896 Published online 14 April 2016 in Wiley Online Library (wileyonlinelibrary.com)..1380 Estimation of train dwell time at short stops based

More information

Probabilistic Graphical Networks: Definitions and Basic Results

Probabilistic Graphical Networks: Definitions and Basic Results This document gives a cursory overview of Probabilistic Graphical Networks. The material has been gleaned from different sources. I make no claim to original authorship of this material. Bayesian Graphical

More information

Directed Probabilistic Graphical Models CMSC 678 UMBC

Directed Probabilistic Graphical Models CMSC 678 UMBC Directed Probabilistic Graphical Models CMSC 678 UMBC Announcement 1: Assignment 3 Due Wednesday April 11 th, 11:59 AM Any questions? Announcement 2: Progress Report on Project Due Monday April 16 th,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

Bayesian belief networks. Inference.

Bayesian belief networks. Inference. Lecture 13 Bayesian belief networks. Inference. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Midterm exam Monday, March 17, 2003 In class Closed book Material covered by Wednesday, March 12 Last

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

CHAPTER-17. Decision Tree Induction

CHAPTER-17. Decision Tree Induction CHAPTER-17 Decision Tree Induction 17.1 Introduction 17.2 Attribute selection measure 17.3 Tree Pruning 17.4 Extracting Classification Rules from Decision Trees 17.5 Bayesian Classification 17.6 Bayes

More information

Delay management with capacity considerations.

Delay management with capacity considerations. Bachelor Thesis Econometrics Delay management with capacity considerations. Should a train wait for transferring passengers or not, and which train goes first? 348882 1 Content Chapter 1: Introduction...

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 16, 6/1/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Uncertainty & Bayesian Networks

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Overview of probability, Representing uncertainty Propagation of uncertainty, Bayes Rule Application to Localization and Mapping Slides from Autonomous Robots (Siegwart and Nourbaksh),

More information

Timetabling and Robustness Computing Good and Delay-Resistant Timetables

Timetabling and Robustness Computing Good and Delay-Resistant Timetables Timetabling and Robustness Computing Good and Delay-Resistant Timetables Rolf Möhring GK MDS, 24 Nov 2008 DFG Research Center MATHEON mathematics for key technologies Overview The Periodic Event Scheduling

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Models for rescheduling train timetables when passenger s arrivals follow dynamic patterns

Models for rescheduling train timetables when passenger s arrivals follow dynamic patterns Introduction Problem description Problem formulation Computational experience Conclusions Models for rescheduling train timetables when passenger s arrivals follow dynamic patterns Juan A. Mesa 1, Francisco

More information

Sampling Algorithms for Probabilistic Graphical models

Sampling Algorithms for Probabilistic Graphical models Sampling Algorithms for Probabilistic Graphical models Vibhav Gogate University of Washington References: Chapter 12 of Probabilistic Graphical models: Principles and Techniques by Daphne Koller and Nir

More information

Recall from last time: Conditional probabilities. Lecture 2: Belief (Bayesian) networks. Bayes ball. Example (continued) Example: Inference problem

Recall from last time: Conditional probabilities. Lecture 2: Belief (Bayesian) networks. Bayes ball. Example (continued) Example: Inference problem Recall from last time: Conditional probabilities Our probabilistic models will compute and manipulate conditional probabilities. Given two random variables X, Y, we denote by Lecture 2: Belief (Bayesian)

More information

Queueing Theory and Simulation. Introduction

Queueing Theory and Simulation. Introduction Queueing Theory and Simulation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Hiroyuki Ohsaki Graduate School of Information Science & Technology, Osaka University, Japan

More information

Inferring Passenger Boarding and Alighting Preference for the Marguerite Shuttle Bus System

Inferring Passenger Boarding and Alighting Preference for the Marguerite Shuttle Bus System Inferring Passenger Boarding and Alighting Preference for the Marguerite Shuttle Bus System Adrian Albert Abstract We analyze passenger count data from the Marguerite Shuttle system operating on the Stanford

More information

Outline. CSE 573: Artificial Intelligence Autumn Bayes Nets: Big Picture. Bayes Net Semantics. Hidden Markov Models. Example Bayes Net: Car

Outline. CSE 573: Artificial Intelligence Autumn Bayes Nets: Big Picture. Bayes Net Semantics. Hidden Markov Models. Example Bayes Net: Car CSE 573: Artificial Intelligence Autumn 2012 Bayesian Networks Dan Weld Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer Outline Probabilistic models (and inference)

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

Modelling and Simulation for Train Movement Control Using Car-Following Strategy

Modelling and Simulation for Train Movement Control Using Car-Following Strategy Commun. Theor. Phys. 55 (2011) 29 34 Vol. 55, No. 1, January 15, 2011 Modelling and Simulation for Train Movement Control Using Car-Following Strategy LI Ke-Ping (Ó ), GAO Zi-You (Ô Ð), and TANG Tao (»

More information

Published in: Tenth Tbilisi Symposium on Language, Logic and Computation: Gudauri, Georgia, September 2013

Published in: Tenth Tbilisi Symposium on Language, Logic and Computation: Gudauri, Georgia, September 2013 UvA-DARE (Digital Academic Repository) Estimating the Impact of Variables in Bayesian Belief Networks van Gosliga, S.P.; Groen, F.C.A. Published in: Tenth Tbilisi Symposium on Language, Logic and Computation:

More information

K. Nishijima. Definition and use of Bayesian probabilistic networks 1/32

K. Nishijima. Definition and use of Bayesian probabilistic networks 1/32 The Probabilistic Analysis of Systems in Engineering 1/32 Bayesian probabilistic bili networks Definition and use of Bayesian probabilistic networks K. Nishijima nishijima@ibk.baug.ethz.ch 2/32 Today s

More information

T-12 / Informed Traveller

T-12 / Informed Traveller T-12 Informed Traveller Paul McMahon Route Managing Director, Freight & National Passenger Operators Transport Focus Board 15 May 2018 1 A brief recap on context Network Rail offered May 2018 TT in November

More information

Predicting flight on-time performance

Predicting flight on-time performance 1 Predicting flight on-time performance Arjun Mathur, Aaron Nagao, Kenny Ng I. INTRODUCTION Time is money, and delayed flights are a frequent cause of frustration for both travellers and airline companies.

More information

arxiv: v1 [math.oc] 8 Mar 2018

arxiv: v1 [math.oc] 8 Mar 2018 A discrete event traffic model explaining the traffic phases of the train dynamics on a linear metro line with demand-dependent control Florian Schanzenbächer 1, Nadir Farhi 2, Fabien Leurent 3, Gérard

More information

Efficient real-time train scheduling for urban rail transit systems using iterative convex programming

Efficient real-time train scheduling for urban rail transit systems using iterative convex programming Delft University of Technology Delft Center for Systems and Control Technical report 15-023 Efficient real-time train scheduling for urban rail transit systems using iterative convex programming Y. Wang,

More information

OPPA European Social Fund Prague & EU: We invest in your future.

OPPA European Social Fund Prague & EU: We invest in your future. OPPA European Social Fund Prague & EU: We invest in your future. Bayesian networks exercises Collected by: Jiří Kléma, klema@labe.felk.cvut.cz ZS 2012/2013 Goals: The text provides a pool of exercises

More information

MULTIOBJECTIVE EVOLUTIONARY ALGORITHM FOR INTEGRATED TIMETABLE OPTIMIZATION WITH VEHICLE SCHEDULING ASPECTS

MULTIOBJECTIVE EVOLUTIONARY ALGORITHM FOR INTEGRATED TIMETABLE OPTIMIZATION WITH VEHICLE SCHEDULING ASPECTS MULTIOBJECTIVE EVOLUTIONARY ALGORITHM FOR INTEGRATED TIMETABLE OPTIMIZATION WITH VEHICLE SCHEDULING ASPECTS Michal Weiszer 1, Gabriel Fedoro 2, Zdene Čujan 3 Summary:This paper describes the implementation

More information

Probabilistic Graphical Models for Image Analysis - Lecture 1

Probabilistic Graphical Models for Image Analysis - Lecture 1 Probabilistic Graphical Models for Image Analysis - Lecture 1 Alexey Gronskiy, Stefan Bauer 21 September 2018 Max Planck ETH Center for Learning Systems Overview 1. Motivation - Why Graphical Models 2.

More information

2 : Directed GMs: Bayesian Networks

2 : Directed GMs: Bayesian Networks 10-708: Probabilistic Graphical Models 10-708, Spring 2017 2 : Directed GMs: Bayesian Networks Lecturer: Eric P. Xing Scribes: Jayanth Koushik, Hiroaki Hayashi, Christian Perez Topic: Directed GMs 1 Types

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Disaggregation in Bundle Methods: Application to the Train Timetabling Problem

Disaggregation in Bundle Methods: Application to the Train Timetabling Problem Disaggregation in Bundle Methods: Application to the Train Timetabling Problem Abderrahman Ait Ali a,1, Per Olov Lindberg a,2, Jan-Eric Nilsson 3, Jonas Eliasson a,4, Martin Aronsson 5 a Department of

More information

CS491/691: Introduction to Aerial Robotics

CS491/691: Introduction to Aerial Robotics CS491/691: Introduction to Aerial Robotics Topic: State Estimation Dr. Kostas Alexis (CSE) World state (or system state) Belief state: Our belief/estimate of the world state World state: Real state of

More information

Chapter 8 - Forecasting

Chapter 8 - Forecasting Chapter 8 - Forecasting Operations Management by R. Dan Reid & Nada R. Sanders 4th Edition Wiley 2010 Wiley 2010 1 Learning Objectives Identify Principles of Forecasting Explain the steps in the forecasting

More information

CS839: Probabilistic Graphical Models. Lecture 2: Directed Graphical Models. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 2: Directed Graphical Models. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 2: Directed Graphical Models Theo Rekatsinas 1 Questions Questions? Waiting list Questions on other logistics 2 Section 1 1. Intro to Bayes Nets 3 Section

More information

Uncertainty and Bayesian Networks

Uncertainty and Bayesian Networks Uncertainty and Bayesian Networks Tutorial 3 Tutorial 3 1 Outline Uncertainty Probability Syntax and Semantics for Uncertainty Inference Independence and Bayes Rule Syntax and Semantics for Bayesian Networks

More information

Bicriterial Delay Management

Bicriterial Delay Management Universität Konstanz Bicriterial Delay Management Csaba Megyeri Konstanzer Schriften in Mathematik und Informatik Nr. 198, März 2004 ISSN 1430 3558 c Fachbereich Mathematik und Statistik c Fachbereich

More information

On max-algebraic models for transportation networks

On max-algebraic models for transportation networks K.U.Leuven Department of Electrical Engineering (ESAT) SISTA Technical report 98-00 On max-algebraic models for transportation networks R. de Vries, B. De Schutter, and B. De Moor If you want to cite this

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

Hidden Markov Models (recap BNs)

Hidden Markov Models (recap BNs) Probabilistic reasoning over time - Hidden Markov Models (recap BNs) Applied artificial intelligence (EDA132) Lecture 10 2016-02-17 Elin A. Topp Material based on course book, chapter 15 1 A robot s view

More information

Machine learning: lecture 20. Tommi S. Jaakkola MIT CSAIL

Machine learning: lecture 20. Tommi S. Jaakkola MIT CSAIL Machine learning: lecture 20 ommi. Jaakkola MI AI tommi@csail.mit.edu Bayesian networks examples, specification graphs and independence associated distribution Outline ommi Jaakkola, MI AI 2 Bayesian networks

More information

Train rescheduling model with train delay and passenger impatience time in urban subway network

Train rescheduling model with train delay and passenger impatience time in urban subway network JOURNAL OF ADVANCED TRANSPORTATION J. Adv. Transp. 2016; 50:1990 2014 Published online 9 February 2017 in Wiley Online Library (wileyonlinelibrary.com)..1441 Train rescheduling model with train delay and

More information

SOLVING STOCHASTIC PERT NETWORKS EXACTLY USING HYBRID BAYESIAN NETWORKS

SOLVING STOCHASTIC PERT NETWORKS EXACTLY USING HYBRID BAYESIAN NETWORKS SOLVING STOCHASTIC PERT NETWORKS EXACTLY USING HYBRID BAYESIAN NETWORKS Esma Nur Cinicioglu and Prakash P. Shenoy School of Business University of Kansas, Lawrence, KS 66045 USA esmanur@ku.edu, pshenoy@ku.edu

More information

Probabilistic Graphical Models Homework 2: Due February 24, 2014 at 4 pm

Probabilistic Graphical Models Homework 2: Due February 24, 2014 at 4 pm Probabilistic Graphical Models 10-708 Homework 2: Due February 24, 2014 at 4 pm Directions. This homework assignment covers the material presented in Lectures 4-8. You must complete all four problems to

More information

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Daniel, Edmundo, Rosa Terceiro trimestre de 2012 UFRJ - COPPE Programa de Engenharia de Sistemas e Computação Bayesian Networks

More information

Part 1: Expectation Propagation

Part 1: Expectation Propagation Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 1: Expectation Propagation Tom Heskes Machine Learning Group, Institute for Computing and Information Sciences Radboud

More information

Reformulations for Integrated Planning of Railway Traffic and Network Maintenance

Reformulations for Integrated Planning of Railway Traffic and Network Maintenance Reformulations for Integrated Planning of Railway Traffic and Network Maintenance Tomas Lidén Linköping University, Department of Science and Technology Norrköping SE-601 74, Sweden tomas.liden@liu.se

More information

Forecasting. Dr. Richard Jerz rjerz.com

Forecasting. Dr. Richard Jerz rjerz.com Forecasting Dr. Richard Jerz 1 1 Learning Objectives Describe why forecasts are used and list the elements of a good forecast. Outline the steps in the forecasting process. Describe at least three qualitative

More information

Dynamic chain graphs for high-dimensional time series: an application to real-time traffic flow forecasting

Dynamic chain graphs for high-dimensional time series: an application to real-time traffic flow forecasting Dynamic chain graphs for high-dimensional time series: an application to real-time traffic flow forecasting Catriona Queen Joint work with Osvaldo Anacleto 1 Department of Mathematics and Statistics The

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Bayesian network modeling. 1

Bayesian network modeling.  1 Bayesian network modeling http://springuniversity.bc3research.org/ 1 Probabilistic vs. deterministic modeling approaches Probabilistic Explanatory power (e.g., r 2 ) Explanation why Based on inductive

More information

Intelligent Systems: Reasoning and Recognition. Reasoning with Bayesian Networks

Intelligent Systems: Reasoning and Recognition. Reasoning with Bayesian Networks Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2016/2017 Lesson 13 24 march 2017 Reasoning with Bayesian Networks Naïve Bayesian Systems...2 Example

More information

13 : Variational Inference: Loopy Belief Propagation

13 : Variational Inference: Loopy Belief Propagation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 13 : Variational Inference: Loopy Belief Propagation Lecturer: Eric P. Xing Scribes: Rajarshi Das, Zhengzhong Liu, Dishan Gupta 1 Introduction

More information

A Mixed Integer Linear Program for Optimizing the Utilization of Locomotives with Maintenance Constraints

A Mixed Integer Linear Program for Optimizing the Utilization of Locomotives with Maintenance Constraints A Mixed Integer Linear Program for with Maintenance Constraints Sarah Frisch Philipp Hungerländer Anna Jellen Dominic Weinberger September 10, 2018 Abstract In this paper we investigate the Locomotive

More information

Weather Integration for Strategic Traffic Flow Management

Weather Integration for Strategic Traffic Flow Management The MITRE Corporation s Center for Advanced Aviation System Development Approved for Public Release; Distribution Unlimited. 15-3356 Weather Integration for Strategic Traffic Flow Management Dr. Christine

More information

Lecture 10: Introduction to reasoning under uncertainty. Uncertainty

Lecture 10: Introduction to reasoning under uncertainty. Uncertainty Lecture 10: Introduction to reasoning under uncertainty Introduction to reasoning under uncertainty Review of probability Axioms and inference Conditional probability Probability distributions COMP-424,

More information

Typical information required from the data collection can be grouped into four categories, enumerated as below.

Typical information required from the data collection can be grouped into four categories, enumerated as below. Chapter 6 Data Collection 6.1 Overview The four-stage modeling, an important tool for forecasting future demand and performance of a transportation system, was developed for evaluating large-scale infrastructure

More information

Data Mining Classification: Basic Concepts and Techniques. Lecture Notes for Chapter 3. Introduction to Data Mining, 2nd Edition

Data Mining Classification: Basic Concepts and Techniques. Lecture Notes for Chapter 3. Introduction to Data Mining, 2nd Edition Data Mining Classification: Basic Concepts and Techniques Lecture Notes for Chapter 3 by Tan, Steinbach, Karpatne, Kumar 1 Classification: Definition Given a collection of records (training set ) Each

More information

MEZZO: OPEN SOURCE MESOSCOPIC. Centre for Traffic Research Royal Institute of Technology, Stockholm, Sweden

MEZZO: OPEN SOURCE MESOSCOPIC. Centre for Traffic Research Royal Institute of Technology, Stockholm, Sweden MEZZO: OPEN SOURCE MESOSCOPIC SIMULATION Centre for Traffic Research Royal Institute of Technology, Stockholm, Sweden http://www.ctr.kth.se/mezzo 1 Introduction Mesoscopic models fill the gap between static

More information

Integrating Correlated Bayesian Networks Using Maximum Entropy

Integrating Correlated Bayesian Networks Using Maximum Entropy Applied Mathematical Sciences, Vol. 5, 2011, no. 48, 2361-2371 Integrating Correlated Bayesian Networks Using Maximum Entropy Kenneth D. Jarman Pacific Northwest National Laboratory PO Box 999, MSIN K7-90

More information

Bayesian Networks Inference with Probabilistic Graphical Models

Bayesian Networks Inference with Probabilistic Graphical Models 4190.408 2016-Spring Bayesian Networks Inference with Probabilistic Graphical Models Byoung-Tak Zhang intelligence Lab Seoul National University 4190.408 Artificial (2016-Spring) 1 Machine Learning? Learning

More information

Reasoning Under Uncertainty: Belief Network Inference

Reasoning Under Uncertainty: Belief Network Inference Reasoning Under Uncertainty: Belief Network Inference CPSC 322 Uncertainty 5 Textbook 10.4 Reasoning Under Uncertainty: Belief Network Inference CPSC 322 Uncertainty 5, Slide 1 Lecture Overview 1 Recap

More information

Introduction to Artificial Intelligence. Unit # 11

Introduction to Artificial Intelligence. Unit # 11 Introduction to Artificial Intelligence Unit # 11 1 Course Outline Overview of Artificial Intelligence State Space Representation Search Techniques Machine Learning Logic Probabilistic Reasoning/Bayesian

More information

Online Learning of Probabilistic Graphical Models

Online Learning of Probabilistic Graphical Models 1/34 Online Learning of Probabilistic Graphical Models Frédéric Koriche CRIL - CNRS UMR 8188, Univ. Artois koriche@cril.fr CRIL-U Nankin 2016 Probabilistic Graphical Models 2/34 Outline 1 Probabilistic

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 16 Undirected Graphs Undirected Separation Inferring Marginals & Conditionals Moralization Junction Trees Triangulation Undirected Graphs Separation

More information

Models and Algorithms for Combinatorial Optimization Problems arising in Railway Applications

Models and Algorithms for Combinatorial Optimization Problems arising in Railway Applications UNIVERSITÀ DEGLI STUDI DI BOLOGNA Dottorato di Ricerca in Automatica e Ricerca Operativa MAT/09 XIX Ciclo Models and Algorithms for Combinatorial Optimization Problems arising in Railway Applications Valentina

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/32 Lecture 5a Bayesian network April 14, 2016 2/32 Table of contents 1 1. Objectives of Lecture 5a 2 2.Bayesian

More information

Bayesian Inference. Definitions from Probability: Naive Bayes Classifiers: Advantages and Disadvantages of Naive Bayes Classifiers:

Bayesian Inference. Definitions from Probability: Naive Bayes Classifiers: Advantages and Disadvantages of Naive Bayes Classifiers: Bayesian Inference The purpose of this document is to review belief networks and naive Bayes classifiers. Definitions from Probability: Belief networks: Naive Bayes Classifiers: Advantages and Disadvantages

More information

Application of GIS in Public Transportation Case-study: Almada, Portugal

Application of GIS in Public Transportation Case-study: Almada, Portugal Case-study: Almada, Portugal Doutor Jorge Ferreira 1 FSCH/UNL Av Berna 26 C 1069-061 Lisboa, Portugal +351 21 7908300 jr.ferreira@fcsh.unl.pt 2 FSCH/UNL Dra. FCSH/UNL +351 914693843, leite.ines@gmail.com

More information

Variational algorithms for marginal MAP

Variational algorithms for marginal MAP Variational algorithms for marginal MAP Alexander Ihler UC Irvine CIOG Workshop November 2011 Variational algorithms for marginal MAP Alexander Ihler UC Irvine CIOG Workshop November 2011 Work with Qiang

More information