Use of Satellite Radiative Properties to Improve Air Quality Models and Emission Estimates

Size: px
Start display at page:

Download "Use of Satellite Radiative Properties to Improve Air Quality Models and Emission Estimates"

Transcription

1 Use of Satellite Radiative Properties to Improve Air Quality Models and Emission Estimates Arastoo Pour Biazar Richard T. McNider Kevin Doty Andrew White University of Alabama in Huntsville Presented at: Air Quality Applied Sciences Team 8th Semi-Annual Meeting (AQAST 8) December 2-4, 2014 Georgia Institute of Technology

2 THE ROLE OF PHYSICAL ATMOSPHERE IN AIR QUALITY CHEMISTRY Insolation/Temperature: impacts biogenic emissions (soil NO, isoprene) as well as anthropogenic evaporative loses. Affects chemical reaction rates and thermal decomposition of nitrates. Moisture: Impacts gas/aerosol chemistry, as well as aerosol formation and growth. BL Heights: Affects dilution and pollutant concentrations. Winds: Impacts transport/transformation Clouds: Impact all of the above. Impact photolysis rates (impacting photochemical reactions for ozone and fine particle formation). Also impacting biogenic HC emissions. Impact transport/vertical mixing, LNOx, aqueous chemistry, wet removal, aerosol growth/recycling and indirect effects.

3 Use of Satellite Observation to Improve the Performance of Meteorological / Air Quality Models in Support of Regulatory AQ Community Targeting the needs of regulatory air quality community (SIP and SIP related activities). Utilizing satellite observation for improved representation of clouds and their radiative impact: photolysis rates, biogenic emissions, vertical mixing, etc.

4 Activities Within AQAST Improved representation of chemical reactions: Satellite-derived photolysis rate (TT projects: AQ Reanalysis and DYNAMO) Improved estimate of biogenic emissions: Satellite-derived PAR (Photosynthetically Active Radiation) (TT projects: AQ Reanalysis and DYNAMO) Improved near surface temperature (TT projects: AQ Reanalysis and DYNAMO). Better data archiving/delivery: Improving website: Coordinating with RSIG.

5 ADJUSTING PHOTOLYSIS RATES IN CMAQ BASED ON GOES OBSERVED CLOUDS This technique is included in the standard release of CMAQ Cloud albedo and cloud top temperature from GOES is used to calculate cloud transmissivity and cloud thickness The information is fed into MCIP/CMAQ CMAQ parameterization is bypassed and photolysis rates are then adjusted based on GOES cloud information NO, NO2, O3 & JNO2 Differences (Satellite-Control) (Point A: x=38:39, y=30:31, lon=-95.3, lat=29.7) Concentration (ppb) /24/00 0:00 8/25/00 0:00 8/26/00 0:00 8/27/00 0:00 8/28/00 0:00 8/29/00 0:00 8/30/00 0:00 8/31/00 0:00 9/1/00 0:00 Date/Time (GMT) NO NO2 O3 JNO2 (/min) The differences between NO, NO2, O3 (ppb) and JNO2 from satellite cloud assimilation and control simulations for a selected grid cell over Houston-Galveston area. Adapted from: Pour-Biazar et al., Observed O3 Model (cntrl) Model (satcld) Observed O3 vs Model Predictions (South MISS., lon=-89.57, lat=30.23) OBSERVED ASSIM 60 (CNTRL-SATCLD) Ozone Concentration (ppb) CNTRL -20 Under-prediction -40 8/30/00 0:00 8/30/00 6:00 8/30/00 12:00 8/30/00 18:00 8/31/00 0:00 8/31/00 6:00 8/31/00 12:00 8/31/00 18:00 Date/Time (GMT)

6 Clouds at the Right Place and Time Current Method for insolation and photolysis while improving ozone predictions, physical atmosphere is inconsistent with model dynamics and cloud fields What if we can create an environment that is conducive to cloud formation/removal. W<0 W>0

7 FUNDAMENTAL APPROACH Satellite Model/Satellite comparison Underprediction W<0 W>0 0.65um VIS surface, cloud features Overprediction Use satellite cloud top temperatures and cloud albedos to estimate a TARGET VERTICAL VELOCITY (Wmax). Adjust divergence to comply with Wmax in a way similar to O Brien (1970). Nudge model winds toward new horizontal wind field to sustain the vertical motion.

8 August 12 th, UTC CNTRL AI = 67.3% Assim AI = 82.6% Assimilation technique shows large gains in agreement index. Very effective at both producing and dissipating clouds.

9 36 km Results Agreement Index [36km] Agreement Index km.CNTRL 36km.Assim The assimilation technique improved agreement between model and GOES observations. AI = (A+D)/G MODEL Clear Cloud Clear A B 0.55 Cloud C D 0.50 G=(A+B+C+D) 8/1 8/3 8/5 8/7 8/9 8/11 8/13 8/15 8/17 8/19 8/21 8/23 8/25 8/27 8/29 8/31 Date Percent Change [36km] The daily average percentage change over the August 2006 time period was determined to be 15% % 20.00% 15.00% 10.00% 5.00% 0.00% 8/1 8/3 8/5 8/7 8/9 8/11 8/13 8/15 8/17 8/19 8/21 8/23 8/25 8/27 8/29 8/31 Percent Change Date

10 12-km Statistics Temperature bias is reduced. Bias CONTROL Temperature (K) ASSIMILATION TX12.cntrl TX12.assimBDY36 TX12.assim 8/04 8/05 8/06 8/07 8/08 8/09 8/10 8/11 8/12 8/13 8/14 8/15 8/16 8/17 8/18 8/19 8/20 8/21 8/22 8/23 8/24 8/25 8/26 8/27 8/28 Days Mixing ratio bias is decreased. Bias CONTROL Mixing Ratio (g/kg) ASSIMILATION TX12.cntrl TX12.assimBDY36 TX12.assim 8/04 8/05 8/06 8/07 8/08 8/09 8/10 8/11 8/12 8/13 8/14 8/15 8/16 8/17 8/18 8/19 8/20 8/21 8/22 8/23 8/24 8/25 8/26 8/27 8/28 Days

11 Cloud Albedo Satellite Better agreement in cloud pattern between assimilation simulation and GOES. CNTRL Assim

12 Satellite-Derived Photosynthetically Active Radiation (PAR) Based on Stephens (1978), Joseph (1976), Pinker and Laszlo (1992), Frouin and Pinker (1995)

13

14 GOES Insolation Bias Increases From West to East We are working with George Diak to correct this issue.

15 Performing bias correction before converting to PAR

16 Satellite-derived insolation and PAR for September 14, 2013, at 19:45 GMT.

17 PAR Requests and Status of Deliverables 2013: Requests: DYNAMO, Texas Discover-AQ studies Status: Processed and delivered 2012: Requests: The Texas Commission on Environmental Quality (TCEQ) Status: Being processed. 2011: Requests: Wisconsin Department of Natural Resources (DNR), DYNAMO Status: June-July 2011 has been processed and delivered. Rest of the year being processed. 2006: Requests: For evaluation purposes. Status: Being processed.

18 Summary We continue to support AQAST activities regarding improved AQ model performance. Currently there is a high demand for archived PAR product and we are trying to produce a reasonable product to be used as a preliminary version of data. We are hoping to include our WRF cloud correction technique in other AQAST modeling activities.

19 Acknowledgment The findings presented here were accomplished under partial support from NASA Science Mission Directorate Applied Sciences Program and the Texas Commission on Environmental Quality (TCEQ). Note the results in this study do not necessarily reflect policy or science positions by the funding agencies.

20 ADDITIONAL SLIDES

21 TYPE6 TYPE6 TYPE6 TYPE4 TYPE5 TYPE1 TYPE1 TYPE2 TYPE3 albedo temp(k) TYPE1 a Low Clouds Stratocumulus TYPE2 0.4< a Low Clouds cumulus TYPE3 a > Low Clouds Cumulunimbus TYPE4 a > 0.8 < 260 High Clouds Nimbostratus TYPE5 0.4< a 0.8 < 260 High Clouds Altostratus TYPR6 a 0.4 < 260 High Clouds Cirrus

22 SUN Photolysis Adjustment (CMAQ-4.7) Cloud albedo, surface albedo, and insolation are retrieved based on Gautier et al. (1980), Diak and Gautier (1983). From GOES visible channel centered at.65 µm. Inaccurate cloud prediction results in significant under-/overprediction of ozone. Use of satellite cloud information greatly improves O3 predictions. hν α c tr = 1. cld ( alb + abs cld cld ) BL OZONE CHEMISTRY O3 + NO NO2 + hν (λ<420 nm) VOC + NOx + hν Cloud top Determined from satellite IR temperature -----> NO2 + O > O3 + NO -----> O3 + Nitrates (HNO3, PAN, RONO2) α g α g Surface

23 Satellite Method Cloud top Determined from satellite IR temperature Photolysis Rates WRF Method Assume WRF derived cloud distribution is correct Cloud top Determined from model Transmittance = 1- reflectance - absorption Observed by satellite F(reflectance) transmittance Transmittance Determined from LWC = f(rh, T) and assumed droplet size tr cld τ cld 5 e = 4 + 3τ ( 1 f ) cld Cloud Base Cloud Base Determined from LCL J below = J clear [ 1 + cfrac( 1. 6tr cos( θ ) 1) ] cld Determined from MM5 J above = J clear [ 1 + cfrac( α ( 1 tr )cos( θ ))] i cld

24 Correcting Over-Prediction Objective: Create subsidence within the model to evaporate cloud droplets. Determine the model layer with the maximum amount of cloud liquid water (CLW). Determine the location that a parcel located at Z MaxCLW can be pushed down to so that it evaporates. 1D-VAR Inputs: ww tttttttttttt = ZZ tttttttttttt ZZ pppppp_mmmmmm tt ZZ tttttttttttt = ZZ MMMMMMMMMMMM ADJ_TOP = Z ctop [m] ADJ_BOT = Z par_mod 1000 [m] Z ADJ_TOP Z ctop Z parcel_mod Z base ADJ_BOT Z target

25 Correcting Under-Prediction Objective: Lift a parcel to saturation. Use GOES derived cloud top temperature and cloud albedo to estimate the location and thickness of the observed cloud. Use this estimated cloud thickness to determine the minimum height a parcel at a given model location needs to be lifted to reach saturation. 1D-VAR Inputs: ww tttttttttttt = ZZ SSSSSSSSSSSSSSSSSSSS ZZ pppppp_mmmmmm tt ZZ tttttttttttt = ZZ SSSSSSSSSSSSSSSSSSSS ADJ_TOP = ZZ tttttttttttt + Cloud Depth ADJ_BOT = Z par_mod 1000 [m] Z ADJ_TOP Z Saturation Z parcel_mod ADJ_BOT

26 Air Quality Modeling Systems Physical Atmosphere SCIENCE + ART Chemical Atmosphere Clouds and microphysical processes Atmospheric dynamics Boundary layer development Fluxes of heat and moisture LSM describing landatmosphere interactions Aerosol Cloud interaction Winds, temperature, moisture, surface properties and fluxes Heterogeneous chemistry, aerosol Transport and transformation of pollutants Photochemistry and oxidant formation Natural and antropogenic emissions Surface removal

27 Use of Satellite Observation to Improve the Performance of Meteorological / Air Quality Models in Support of Regulatory AQ Community Motivation: To improve the fidelity of the physical atmosphere in air quality modeling systems such as WRF/CMAQ. Models are too smooth and do not maintain as much energy at higher frequencies as observations. Surface properties and clouds are among major model uncertainties causing this problem. NWS stations are too sparse for model spatial resolution and are not representative of the grid averaged quantity. On the other hand, satellite data provide pixel integral quantity compatible with model grid. Relevant Activities: Targeting the needs of regulatory air quality community (SIP and SIP related activities). Utilizing satellite observation for improved representation of clouds and their radiative impact: photolysis rates, biogenic emissions, vertical mixing, etc. Improving representation of surface energy budget and boundary layer evolution by utilizing satellite observation: Insolation, albedo, Moisture availability, and bulk heat capacity.

28 Insolation Satellite Better agreement in cloud pattern between assimilation simulation and GOES is also observed for insolation. CNTRL Assim

Utilization of Geostationary Satellite Observations for Air Quality Modeling During 2013 Discover-AQ Texas Campaign

Utilization of Geostationary Satellite Observations for Air Quality Modeling During 2013 Discover-AQ Texas Campaign Utilization of Geostationary Satellite Observations for Air Quality Modeling During 2013 Discover-AQ Texas Campaign Arastoo Pour Biazar 1, Andrew White 1, Daniel Cohan 2, Rui Zhang 2, Maudood Khan 1, Bright

More information

Presented at: 11 th Annual CMAS Conference Friday Center, UNC-Chapel Hill, Chapel Hill, NC October 15-17, 2012

Presented at: 11 th Annual CMAS Conference Friday Center, UNC-Chapel Hill, Chapel Hill, NC October 15-17, 2012 Yun-Hee Park 1, Arastoo Pour Biazar 1, Richard T. McNider 1, Bright Dornblaser 3, Maudood Khan 2, Kevin Doty 1 1. University of Alabama in Huntsville 2. University Space Research Association (USRA) 3.

More information

Incorporating Space-borne Observations to Improve Biogenic Emission Estimates in Texas (Project )

Incorporating Space-borne Observations to Improve Biogenic Emission Estimates in Texas (Project ) Incorporating Space-borne Observations to Improve Biogenic Emission Estimates in Texas (Project 14-017) Arastoo Pour Biazar, Richard T. McNider, Andrew White University of Alabama in Huntsville Daniel

More information

IMPROVING CLOUD PREDICTION IN WRF THROUGH THE USE OF GOES SATELLITE ASSIMILATION

IMPROVING CLOUD PREDICTION IN WRF THROUGH THE USE OF GOES SATELLITE ASSIMILATION IMPROVING CLOUD PREDICTION IN WRF THROUGH THE USE OF GOES SATELLITE ASSIMILATION Andrew T. White*, Arastoo P. Biazar, Richard T. McNider, Kevin Doty, Maudood Khan Earth System Science Center, The University

More information

AQRP Project Use of Satellite Data to Improve Specifications of Land Surface Parameters

AQRP Project Use of Satellite Data to Improve Specifications of Land Surface Parameters AQRP Project 14-022 Use of Satellite Data to Improve Specifications of Land Surface Parameters By Richard T. McNider, Kevin Doty and Yu Ling Wu, ESSC University of Alabama Huntsville And Pius Lee NOAA

More information

Correcting photolysis rates on the basis of satellite observed clouds

Correcting photolysis rates on the basis of satellite observed clouds Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jd007422, 2007 Correcting photolysis rates on the basis of satellite observed clouds Arastoo Pour-Biazar, 1 Richard

More information

P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES. Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski #

P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES. Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski # P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski # *Cooperative Institute for Meteorological Satellite Studies, University of

More information

Incorporating Space-borne Observations to Improve Biogenic Emission Estimates in Texas

Incorporating Space-borne Observations to Improve Biogenic Emission Estimates in Texas Incorporating Space-borne Observations to Improve Biogenic Emission Estimates in Texas Report Type Final AQRP Project 14-017 Prepared For: Dr. Elena C. McDonald-Buller Texas Air Quality Research Program

More information

Richard McNider Arastoo Pour Biazar (or Arastoo McBiazar) University of Alabama in Huntsville

Richard McNider Arastoo Pour Biazar (or Arastoo McBiazar) University of Alabama in Huntsville Use of Satellite Data to Improve the Physical Atmosphere in Air Quality Decision Models AQAST Project Physical Atmosphere Panel Meeting April 25-26, 2012 Atlanta, GA Richard McNider Arastoo Pour Biazar

More information

Satellite analysis of aerosol indirect effect on stratocumulus clouds over South-East Atlantic

Satellite analysis of aerosol indirect effect on stratocumulus clouds over South-East Atlantic 1/23 Remote sensing of atmospheric aerosol, clouds and aerosol-cloud interactions. Bremen, 16-19 December 2013 Satellite analysis of aerosol indirect effect on stratocumulus clouds over South-East Atlantic

More information

Clouds, Haze, and Climate Change

Clouds, Haze, and Climate Change Clouds, Haze, and Climate Change Jim Coakley College of Oceanic and Atmospheric Sciences Earth s Energy Budget and Global Temperature Incident Sunlight 340 Wm -2 Reflected Sunlight 100 Wm -2 Emitted Terrestrial

More information

9/5/16. Section 3-4: Radiation, Energy, Climate. Common Forms of Energy Transfer in Climate. Electromagnetic radiation.

9/5/16. Section 3-4: Radiation, Energy, Climate. Common Forms of Energy Transfer in Climate. Electromagnetic radiation. Section 3-4: Radiation, Energy, Climate Learning outcomes types of energy important to the climate system Earth energy balance (top of atm., surface) greenhouse effect natural and anthropogenic forcings

More information

Creating Meteorology for CMAQ

Creating Meteorology for CMAQ Creating Meteorology for CMAQ Tanya L. Otte* Atmospheric Sciences Modeling Division NOAA Air Resources Laboratory Research Triangle Park, NC * On assignment to the National Exposure Research Laboratory,

More information

The PRECIS Regional Climate Model

The PRECIS Regional Climate Model The PRECIS Regional Climate Model General overview (1) The regional climate model (RCM) within PRECIS is a model of the atmosphere and land surface, of limited area and high resolution and locatable over

More information

Ongoing EPA efforts to evaluate modeled NO y budgets. Heather Simon, Barron Henderson, Deborah Luecken, Kristen Foley

Ongoing EPA efforts to evaluate modeled NO y budgets. Heather Simon, Barron Henderson, Deborah Luecken, Kristen Foley Ongoing EPA efforts to evaluate modeled NO y budgets Heather Simon, Barron Henderson, Deborah Luecken, Kristen Foley Literature consistent regarding reported high bias Mobile NO x over (2x) Mobile NO x

More information

Know and Respond AQ Alert Service. Paul Willis SCOTTISH AIR QUALITY DATABASE AND WEBSITE ANNUAL SEMINAR Stirling 30 th March 2011

Know and Respond AQ Alert Service. Paul Willis SCOTTISH AIR QUALITY DATABASE AND WEBSITE ANNUAL SEMINAR Stirling 30 th March 2011 Know and Respond AQ Alert Service Paul Willis SCOTTISH AIR QUALITY DATABASE AND WEBSITE ANNUAL SEMINAR Stirling 30 th March 2011 Outline: Know and Respond AQ Alert Service Introduction. The Website. How

More information

Assimilation of satellite derived soil moisture for weather forecasting

Assimilation of satellite derived soil moisture for weather forecasting Assimilation of satellite derived soil moisture for weather forecasting www.cawcr.gov.au Imtiaz Dharssi and Peter Steinle February 2011 SMOS/SMAP workshop, Monash University Summary In preparation of the

More information

Global Change and Air Pollution (EPA-STAR GCAP) Daniel J. Jacob

Global Change and Air Pollution (EPA-STAR GCAP) Daniel J. Jacob Global Change and Air Pollution (EPA-STAR GCAP) and some more recent work on climate-aq interactions Daniel J. Jacob (djacob@fas.harvard.edu) with Eric M. Leibensperger, Shiliang Wu, Amos Tai, and Loretta

More information

Comprehensive Analysis of Annual 2005/2008 Simulation of WRF/CMAQ over Southeast of England

Comprehensive Analysis of Annual 2005/2008 Simulation of WRF/CMAQ over Southeast of England Comprehensive Analysis of Annual 2005/2008 Simulation of WRF/CMAQ over Southeast of England The 13 th International Conference on Harmonization within Atmospheric Dispersion Modelling for Regulatory Purposes

More information

Air Quality Modelling for Health Impacts Studies

Air Quality Modelling for Health Impacts Studies Air Quality Modelling for Health Impacts Studies Paul Agnew RSS Conference September 2014 Met Office Air Quality and Composition team Paul Agnew Lucy Davis Carlos Ordonez Nick Savage Marie Tilbee April

More information

Introducing NREL s Gridded National Solar Radiation Data Base (NSRDB)

Introducing NREL s Gridded National Solar Radiation Data Base (NSRDB) Introducing NREL s Gridded National Solar Radiation Data Base (NSRDB) Manajit Sengupta Aron Habte, Anthony Lopez, Yu Xi and Andrew Weekley, NREL Christine Molling CIMMS Andrew Heidinger, NOAA International

More information

Updated Dust-Iron Dissolution Mechanism: Effects Of Organic Acids, Photolysis, and Dust Mineralogy

Updated Dust-Iron Dissolution Mechanism: Effects Of Organic Acids, Photolysis, and Dust Mineralogy Updated Dust-Iron Dissolution Mechanism: Effects Of Organic Acids, Photolysis, and Dust Mineralogy Nicholas Meskhidze & Matthew Johnson First International Workshop on the Long Range Transport and Impacts

More information

EVALUATION OF THE UAH GOES INSOLATION PRODUCT THROUGH COMPARISON WITH PYRANOMETER MEASUREMENTS AND ANALYSIS DATASETS

EVALUATION OF THE UAH GOES INSOLATION PRODUCT THROUGH COMPARISON WITH PYRANOMETER MEASUREMENTS AND ANALYSIS DATASETS EVALUATION OF THE UAH GOES INSOLATION PRODUCT THROUGH COMPARISON WITH PYRANOMETER MEASUREMENTS AND ANALYSIS DATASETS Peiyang Cheng *, Arastoo Pour-Biazar, Richard McNider, and John Mecikalski Department

More information

Aerosol-Cloud-Precipitation-Climate (ACPC) Initiative: Deep Convective Cloud Group Roadmap Updated: October 2017

Aerosol-Cloud-Precipitation-Climate (ACPC) Initiative: Deep Convective Cloud Group Roadmap Updated: October 2017 Aerosol-Cloud-Precipitation-Climate (ACPC) Initiative: Deep Convective Cloud Group Roadmap Updated: October 2017 S. C. van den Heever, A. M. Fridlind (Deep Convective Cloud Case Co-Leads) P. J. Marinescu,

More information

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS 1 CHAPTER 8 AEROSOLS Aerosols in the atmosphere have several important environmental effects They are a respiratory health hazard at the high concentrations found in urban environments They scatter and

More information

Air Quality Screening Modeling

Air Quality Screening Modeling Air Quality Screening Modeling 2007 Meteorology Simulation with WRF OTC Modeling Committee Meeting September 16, 2010 Baltimore, MD Presentation is based upon the following technical reports available

More information

Clouds in the Climate System: Why is this such a difficult problem, and where do we go from here?

Clouds in the Climate System: Why is this such a difficult problem, and where do we go from here? Clouds in the Climate System: Why is this such a difficult problem, and where do we go from here? Joel Norris Scripps Institution of Oceanography CERES Science Team Meeting April 29, 2009 Collaborators

More information

Polar Weather Prediction

Polar Weather Prediction Polar Weather Prediction David H. Bromwich Session V YOPP Modelling Component Tuesday 14 July 2015 A special thanks to the following contributors: Kevin W. Manning, Jordan G. Powers, Keith M. Hines, Dan

More information

Spatial Variability of Aerosol - Cloud Interactions over Indo - Gangetic Basin (IGB)

Spatial Variability of Aerosol - Cloud Interactions over Indo - Gangetic Basin (IGB) Spatial Variability of Aerosol - Cloud Interactions over Indo - Gangetic Basin (IGB) Shani Tiwari Graduate School of Environmental Studies Nagoya University, Nagoya, Japan Email: pshanitiwari@gmail.com

More information

Title: The Impact of Convection on the Transport and Redistribution of Dust Aerosols

Title: The Impact of Convection on the Transport and Redistribution of Dust Aerosols Authors: Kathryn Sauter, Tristan L'Ecuyer Title: The Impact of Convection on the Transport and Redistribution of Dust Aerosols Type of Presentation: Oral Short Abstract: The distribution of mineral dust

More information

The Challenge of. Guy Brasseur

The Challenge of. Guy Brasseur The Challenge of Monitoring and Predicting Chemical Weather Guy Brasseur Introduction: What is Chemical Weather? What is Chemical Weather? Local, regional, and global distributions of important trace gases

More information

AQRP Monthly Technical Report

AQRP Monthly Technical Report AQRP Monthly Technical Report PROJECT TITLE PROJECT PARTICIPANTS Improving Modeled Biogenic Isoprene Emissions under Drought Conditions and Evaluating Their Impact on Ozone Formation Qi Ying, Gunnar W.

More information

Aerosols and climate. Rob Wood, Atmospheric Sciences

Aerosols and climate. Rob Wood, Atmospheric Sciences Aerosols and climate Rob Wood, Atmospheric Sciences What are aerosols? Solid or liquid particles suspended in air Sizes range from a few nm to a few thousand nm Huge range of masses Where do aerosols come

More information

Improvement of Meteorological Inputs for Air Quality Study

Improvement of Meteorological Inputs for Air Quality Study July 21, 2008 NCAR GEO Turbulance Improvement of Meteorological Inputs for Air Quality Study Fong (Fantine) Ngan Daewon W. Byun DaeGyun Lee, Soontae Kim, XiangShang Li and Peter Percell Institute for Multidimensional

More information

Condensation: Dew, Fog and Clouds AT350

Condensation: Dew, Fog and Clouds AT350 Condensation: Dew, Fog and Clouds AT350 T=30 C Water vapor pressure=12mb What is Td? What is the sat. water vapor T=30 C Water vapor pressure=12mb What is Td? What is the sat. water vapor ~12/42~29% POLAR

More information

Final Weather Unit Study Guide

Final Weather Unit Study Guide Name: Atmospheric Composition and Layers Altitude Atmosphere Composition Troposphere Air Pressure Stratosphere Mesosphere Thermosphere Exosphere Ionosphere Sample Questions: Final Weather Unit Study Guide

More information

Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds

Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2214 Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds Y.-C. Chen, M. W. Christensen, G. L. Stephens, and J. H. Seinfeld

More information

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean C. Marty, R. Storvold, and X. Xiong Geophysical Institute University of Alaska Fairbanks, Alaska K. H. Stamnes Stevens Institute

More information

Aerosol modeling with WRF/Chem

Aerosol modeling with WRF/Chem Aerosol modeling with WRF/Chem Jan Kazil University of Colorado / NOAA Earth System Research Laboratory WRF/Chem Tutorial, 3 August 2015 (WRF/Chem 3.7) Part I - Introduction Overview of... Aerosol Aerosol

More information

WRF Model Simulated Proxy Datasets Used for GOES-R Research Activities

WRF Model Simulated Proxy Datasets Used for GOES-R Research Activities WRF Model Simulated Proxy Datasets Used for GOES-R Research Activities Jason Otkin Cooperative Institute for Meteorological Satellite Studies Space Science and Engineering Center University of Wisconsin

More information

Atmospheric Basics Atmospheric Composition

Atmospheric Basics Atmospheric Composition Atmospheric Basics Atmospheric Composition Air is a combination of many gases, each with its own unique characteristics. About 99 percent of the atmosphere is composed of nitrogen and oxygen, with the

More information

Jesper H. Christensen NERI-ATMI, Frederiksborgvej Roskilde

Jesper H. Christensen NERI-ATMI, Frederiksborgvej Roskilde Jesper H. Christensen NERI-ATMI, Frederiksborgvej 399 4000 Roskilde The model work is financially supported by the Danish Environmental Protection Agency with means from the MIKA/DANCEA funds for Environmental

More information

Sungsu Park, Chris Bretherton, and Phil Rasch

Sungsu Park, Chris Bretherton, and Phil Rasch Improvements in CAM5 : Moist Turbulence, Shallow Convection, and Cloud Macrophysics AMWG Meeting Feb. 10. 2010 Sungsu Park, Chris Bretherton, and Phil Rasch CGD.NCAR University of Washington, Seattle,

More information

8. Clouds and Climate

8. Clouds and Climate 8. Clouds and Climate 1. Clouds (along with rain, snow, fog, haze, etc.) are wet atmospheric aerosols. They are made up of tiny spheres of water from 2-100 m which fall with terminal velocities of a few

More information

PALM - Cloud Physics. Contents. PALM group. last update: Monday 21 st September, 2015

PALM - Cloud Physics. Contents. PALM group. last update: Monday 21 st September, 2015 PALM - Cloud Physics PALM group Institute of Meteorology and Climatology, Leibniz Universität Hannover last update: Monday 21 st September, 2015 PALM group PALM Seminar 1 / 16 Contents Motivation Approach

More information

The role of dust on cloud-precipitation cycle

The role of dust on cloud-precipitation cycle UNIVERSITY OF ATHENS SCHOOL OF PHYSICS, DIVISION OF ENVIRONMENT AND METEOROLOGY ATMOSPHERIC MODELING AND WEATHER FORECASTING GROUP The role of dust on cloud-precipitation cycle Stavros Solomos, George

More information

Eric. W. Harmsen 1, John Mecikalski 2, Vanessa Acaron 3 and Jayson Maldonado 3

Eric. W. Harmsen 1, John Mecikalski 2, Vanessa Acaron 3 and Jayson Maldonado 3 Estimating Ground-Level Solar Radiation and Evapotranspiration In Puerto Rico Using Satellite Remote Sensing Eric. W. Harmsen 1, John Mecikalski 2, Vanessa Acaron 3 and Jayson Maldonado 3 1 Department

More information

An Annual Cycle of Arctic Cloud Microphysics

An Annual Cycle of Arctic Cloud Microphysics An Annual Cycle of Arctic Cloud Microphysics M. D. Shupe Science and Technology Corporation National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado T. Uttal

More information

A new perspective on aerosol direct radiative effects in South Atlantic and Southern Africa

A new perspective on aerosol direct radiative effects in South Atlantic and Southern Africa A new perspective on aerosol direct radiative effects in South Atlantic and Southern Africa Ian Chang and Sundar A. Christopher Department of Atmospheric Science University of Alabama in Huntsville, U.S.A.

More information

The Structure and Motion of the Atmosphere OCEA 101

The Structure and Motion of the Atmosphere OCEA 101 The Structure and Motion of the Atmosphere OCEA 101 Why should you care? - the atmosphere is the primary driving force for the ocean circulation. - the atmosphere controls geographical variations in ocean

More information

Regional modelling and assessment of atmospheric particulate matter concentrations at rural background locations in Europe

Regional modelling and assessment of atmospheric particulate matter concentrations at rural background locations in Europe Regional modelling and assessment of atmospheric particulate matter concentrations at rural background locations in Europe Goran Gašparac 1, Amela Jeričević 2 Prashant Kumar 3 1 Geophysical and Ecological

More information

NO X emissions, isoprene oxidation pathways, and implications for surface ozone in the Southeast United States

NO X emissions, isoprene oxidation pathways, and implications for surface ozone in the Southeast United States NO X emissions, isoprene oxidation pathways, and implications for surface ozone in the Southeast United States Katherine (Katie) Travis CMAS 216: 1/26/16 Co-authors: D. J. Jacob, J. A. Fisher, P. S. Kim,

More information

NOAA s Air Quality Forecasting Activities. Steve Fine NOAA Air Quality Program

NOAA s Air Quality Forecasting Activities. Steve Fine NOAA Air Quality Program NOAA s Air Quality Forecasting Activities Steve Fine NOAA Air Quality Program Introduction Planned Capabilities Initial: 1-day 1 forecast guidance for ozone Develop and validate in Northeastern US September,

More information

AIRQUEST Annual Report and State of the Model

AIRQUEST Annual Report and State of the Model AIRQUEST Annual Report and State of the Model Brian Lamb 1, Serena Chung 1, Farren Herron-Thorpe 2 and Joseph Vaughan 1 1 Laboratory for Atmospheric Research, Washington State University, Pullman, W, USA

More information

Boundary layer equilibrium [2005] over tropical oceans

Boundary layer equilibrium [2005] over tropical oceans Boundary layer equilibrium [2005] over tropical oceans Alan K. Betts [akbetts@aol.com] Based on: Betts, A.K., 1997: Trade Cumulus: Observations and Modeling. Chapter 4 (pp 99-126) in The Physics and Parameterization

More information

Satellite measurements of CCN and cloud properties at the cloudy boundary layer: The Holy Grail is it achievable?

Satellite measurements of CCN and cloud properties at the cloudy boundary layer: The Holy Grail is it achievable? Satellite measurements of CCN and cloud properties at the cloudy boundary layer: The Holy Grail is it achievable? C 1 Daniel Rosenfeld, The Hebrew University of Jerusalem E -85 D C -89-93 E -85 D C -93-89

More information

Chapter 6. Cloud Development and Forms

Chapter 6. Cloud Development and Forms Cloud Formation Chapter 6 Cloud Development and Forms Condensation (i.e. clouds,fog) results from: Diabatic cooling (important for fog) Adiabatic cooling (important for clouds) Clouds form due to adiabatic

More information

Responsibilities of Harvard Atmospheric Chemistry Modeling Group

Responsibilities of Harvard Atmospheric Chemistry Modeling Group Responsibilities of Harvard Atmospheric Chemistry Modeling Group Loretta Mickley, Lu Shen, Daniel Jacob, and Rachel Silvern 2.1 Objective 1: Compile comprehensive air pollution, weather, emissions, and

More information

Polar regions Temperate Regions Tropics High ( cirro ) 3-8 km 5-13 km 6-18 km Middle ( alto ) 2-4 km 2-7 km 2-8 km Low ( strato ) 0-2 km 0-2 km 0-2 km

Polar regions Temperate Regions Tropics High ( cirro ) 3-8 km 5-13 km 6-18 km Middle ( alto ) 2-4 km 2-7 km 2-8 km Low ( strato ) 0-2 km 0-2 km 0-2 km Clouds and Climate Clouds (along with rain, snow, fog, haze, etc.) are wet atmospheric aerosols. They are made up of tiny spheres of water from 2-100 m which fall with terminal velocities of a few cm/sec.

More information

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance (1 of 12) Further Reading: Chapter 04 of the text book Outline - matter-energy interactions - shortwave radiation balance - longwave radiation balance - global radiation balance (2 of 12) Previously, we

More information

Recent Ozone Modeling Results

Recent Ozone Modeling Results Recent Ozone Modeling Results Presentation by: Dan Goldberg, Ph.D. Candidate Co-authors: Tim Canty, Tim Vinciguerra, Ross Salawitch & Russ Dickerson Presented at the MARAMA Science Meeting Wednesday July

More information

Influence of Clouds and Aerosols on the Earth s Radiation Budget Using Clouds and the Earth s Radiant Energy System (CERES) Measurements

Influence of Clouds and Aerosols on the Earth s Radiation Budget Using Clouds and the Earth s Radiant Energy System (CERES) Measurements Influence of Clouds and Aerosols on the Earth s Radiation Budget Using Clouds and the Earth s Radiant Energy System (CERES) Measurements Norman G. Loeb Hampton University/NASA Langley Research Center Bruce

More information

Physical Processes & Issues

Physical Processes & Issues Physical Processes & Issues Radiative Transfer Climate VIS IR Cloud Drops & Ice Aerosol Processing Air quality Condensation Droplets & Xtals Cloud Dynamics Collection Aerosol Activation Hydrological Cycle

More information

EVALUATION OF ATMOSPHERIC PROCESSES FOR OZONE FORMATION FROM VEHICLE EMISSIONS

EVALUATION OF ATMOSPHERIC PROCESSES FOR OZONE FORMATION FROM VEHICLE EMISSIONS EVALUATION OF ATMOSPHERIC PROCESSES FOR OZONE FORMATION FROM VEHICLE EMISSIONS by WILLIAM P. L. CARTER STATEWIDE AIR POLLUTION RESEARCH CENTER, and COLLEGE OF ENGINEERING CENTER FOR ENVIRONMENTAL RESEARCH

More information

Using Global and Regional Models to Represent Background Ozone Entering Texas

Using Global and Regional Models to Represent Background Ozone Entering Texas Using Global and Regional Models to Represent Background Ozone Entering Texas AQRP Project 12-011 Chris Emery, Ed Tai, Greg Yarwood ENVIRON International Corporation Meiyun Lin Princeton University/NOAA

More information

Solutions Manual to Exercises for Weather & Climate, 8th ed. Appendix A Dimensions and Units 60 Appendix B Earth Measures 62 Appendix C GeoClock 63

Solutions Manual to Exercises for Weather & Climate, 8th ed. Appendix A Dimensions and Units 60 Appendix B Earth Measures 62 Appendix C GeoClock 63 Solutions Manual to Exercises for Weather & Climate, 8th ed. 1 Vertical Structure of the Atmosphere 1 2 Earth Sun Geometry 4 3 The Surface Energy Budget 8 4 The Global Energy Budget 10 5 Atmospheric Moisture

More information

Usage of McIDAS V with GOES R AWG products

Usage of McIDAS V with GOES R AWG products McIDAS User Group Meeting, October 25-27, 2010, Madison, WI Usage of McIDAS V with GOES R AWG products William Straka III UW/CIMSS Madison, Wisconsin, USA With help from Tom Rink (CIMSS/), Tom Achtor (CIMSS/),

More information

5. General Circulation Models

5. General Circulation Models 5. General Circulation Models I. 3-D Climate Models (General Circulation Models) To include the full three-dimensional aspect of climate, including the calculation of the dynamical transports, requires

More information

Fine atmospheric structure retrieved from IASI and AIRS under all weather conditions

Fine atmospheric structure retrieved from IASI and AIRS under all weather conditions Fine atmospheric structure retrieved from IASI and AIRS under all weather conditions Daniel K. Zhou 1, William L. Smith 2,3, Allen M. Larar 1, Xu Liu 1, Jonathan P. Taylor 4, Peter Schlüssel 5, L. Larrabee

More information

Sensitivity Study of the MODIS Cloud Top Property

Sensitivity Study of the MODIS Cloud Top Property Sensitivity Study of the MODIS Cloud Top Property Algorithm to CO 2 Spectral Response Functions Hong Zhang a*, Richard Frey a and Paul Menzel b a Cooperative Institute for Meteorological Satellite Studies,

More information

Effect of cirrus microphysical parameterizations on radiative fluxes

Effect of cirrus microphysical parameterizations on radiative fluxes Effect of cirrus microphysical parameterizations on radiative fluxes using TOVS-ScaRaB observations Claudia Stubenrauch Fadoua Eddounia, Gaby Rädel Laboratoire de Météorologie Dynamique, Ecole Polytechnique,

More information

Current Status of COMS AMV in NMSC/KMA

Current Status of COMS AMV in NMSC/KMA Current Status of COMS AMV in NMSC/KMA Eunha Sohn, Sung-Rae Chung, Jong-Seo Park Satellite Analysis Division, NMSC/KMA soneh0431@korea.kr COMS AMV of KMA/NMSC has been produced hourly since April 1, 2011.

More information

Assimilation of Chemical Data from NASA s EOS Instruments: Experiences from the GMAO Thoughts for planning

Assimilation of Chemical Data from NASA s EOS Instruments: Experiences from the GMAO Thoughts for planning Assimilation of Chemical Data from NASA s EOS Instruments: Experiences from the GMAO Thoughts for planning Steven Pawson, Ivanka Stajner, Andrew Tangborn, Krzysztof Wargan of NASA s Global Modeling and

More information

Determination of Planetary Boundary Layer Heights on Short Spatial and Temporal Scales from Surface and Airborne Vertical Profilers during DISCOVER AQ

Determination of Planetary Boundary Layer Heights on Short Spatial and Temporal Scales from Surface and Airborne Vertical Profilers during DISCOVER AQ Determination of Planetary Boundary Layer Heights on Short Spatial and Temporal Scales from Surface and Airborne Vertical Profilers during DISCOVER AQ Ruben Delgado 1, Timothy Berkoff 1,9, Jaime S. Compton

More information

Importance of Numerical Weather Prediction in Variable Renewable Energy Forecast

Importance of Numerical Weather Prediction in Variable Renewable Energy Forecast Importance of Numerical Weather Prediction in Variable Renewable Energy Forecast Dr. Abhijit Basu (Integrated Research & Action for Development) Arideep Halder (Thinkthrough Consulting Pvt. Ltd.) September

More information

Eric. W. Harmsen 1, John Mecikalski 2, Pedro Tosado Cruz 1 Ariel Mercado Vargas 1

Eric. W. Harmsen 1, John Mecikalski 2, Pedro Tosado Cruz 1 Ariel Mercado Vargas 1 Estimating Evapotranspiration using Satellite Remote Sensing in Puerto Rico, Haiti and the Dominican Republic Eric. W. Harmsen 1, John Mecikalski 2, Pedro Tosado Cruz 1 Ariel Mercado Vargas 1 1. University

More information

Modelling aerosol-cloud interations in GCMs

Modelling aerosol-cloud interations in GCMs Modelling aerosol-cloud interations in GCMs Ulrike Lohmann ETH Zurich Institute for Atmospheric and Climate Science Reading, 13.11.2006 Acknowledgements: Sylvaine Ferrachat, Corinna Hoose, Erich Roeckner,

More information

Biogenic aerosols and their interactions with climate. Yuzhong Zhang

Biogenic aerosols and their interactions with climate. Yuzhong Zhang Biogenic aerosols and their interactions with climate Yuzhong Zhang 2011.4.4 Biogenic aerosols and their interactions with climate 1. OVERVIEW OF BIOGENIC AEROSOL Definition and categories Why important?

More information

Variational data assimilation of lightning with WRFDA system using nonlinear observation operators

Variational data assimilation of lightning with WRFDA system using nonlinear observation operators Variational data assimilation of lightning with WRFDA system using nonlinear observation operators Virginia Tech, Blacksburg, Virginia Florida State University, Tallahassee, Florida rstefane@vt.edu, inavon@fsu.edu

More information

6 th INTERNATIONAL WORKSHOP ON SAND/DUSTSTORMS AND ASSOCIATED DUSTFALL 7-9 September 2011, Athens, Greece

6 th INTERNATIONAL WORKSHOP ON SAND/DUSTSTORMS AND ASSOCIATED DUSTFALL 7-9 September 2011, Athens, Greece 6 th INTERNATIONAL WORKSHOP ON SAND/DUSTSTORMS AND ASSOCIATED DUSTFALL Motivations Importance of Numerical Prediction Models to mineral dust cycle evaluation of dust effects over Italian region Identify

More information

9 Condensation. Learning Goals. After studying this chapter, students should be able to:

9 Condensation. Learning Goals. After studying this chapter, students should be able to: 9 Condensation Learning Goals After studying this chapter, students should be able to: 1. explain the microphysical processes that operate in clouds to influence the formation and growth of cloud droplets

More information

Numerical simulation of relationship between climatic factors and ground ozone concentration over Kanto area using the MM5/CMAQ Model

Numerical simulation of relationship between climatic factors and ground ozone concentration over Kanto area using the MM5/CMAQ Model 251 Numerical simulation of relationship between climatic factors and ground ozone concentration over Kanto area using the MM5/CMAQ Model Mai Van KHIEM, Ryozo OOKA, Hong HUANG and Hiroshi HAYAMI In recent

More information

NEW SCHEME TO IMPROVE THE DETECTION OF RAINY CLOUDS IN PUERTO RICO

NEW SCHEME TO IMPROVE THE DETECTION OF RAINY CLOUDS IN PUERTO RICO NEW SCHEME TO IMPROVE THE DETECTION OF RAINY CLOUDS IN PUERTO RICO Joan Manuel Castro Sánchez Advisor Dr. Nazario Ramirez UPRM NOAA CREST PRYSIG 2016 October 7, 2016 Introduction A cloud rainfall event

More information

Temperature Pressure Wind Moisture

Temperature Pressure Wind Moisture Chapter 1: Properties of Atmosphere Temperature Pressure Wind Moisture Thickness of the Atmosphere (from Meteorology Today) 90% 70% The thickness of the atmosphere is only about 2% of Earth s thickness

More information

Exploration of Nitrogen Total Deposition Budget Uncertainty at the Regional Scale

Exploration of Nitrogen Total Deposition Budget Uncertainty at the Regional Scale Exploration of Nitrogen Total Deposition Budget Uncertainty at the Regional Scale Robin L. Dennis, Donna Schwede, Jesse Bash and Jon Pleim Atmospheric Modeling and Analysis Division NERL, EPA NADP Annual

More information

AQRP Monthly Technical Report

AQRP Monthly Technical Report AQRP Monthly Technical Report PROJECT TITLE PROJECT PARTICIPANTS Impact of large-scale circulation patterns on surface ozone concentrations in Houston-Galveston-Brazoria (HGB) Texas A&M University at Galveston

More information

Big Bend Regional Aerosol & Visibility Observational Study

Big Bend Regional Aerosol & Visibility Observational Study Big Bend Regional Aerosol & Visibility Observational Study BRAVO - Results Bret Schichtel National Park Service, Schichtel@cira.colostate.edu Presented at the BRAVO Public Meeting Alpine, Texas September

More information

Satellite remote sensing of aerosols & clouds: An introduction

Satellite remote sensing of aerosols & clouds: An introduction Satellite remote sensing of aerosols & clouds: An introduction Jun Wang & Kelly Chance April 27, 2006 junwang@fas.harvard.edu Outline Principals in retrieval of aerosols Principals in retrieval of water

More information

WMO OSCAR. Observing Systems Capability Analysis and Review Tool A building block of Rolling Requirements Review

WMO OSCAR.   Observing Systems Capability Analysis and Review Tool A building block of Rolling Requirements Review WMO OSCAR Observing Systems Capability Analysis and Review Tool A building block of Rolling Requirements Review Quantitative user-defined requirements for observation of physical variables in application

More information

Condensation: Dew, Fog, & Clouds. Chapter 5

Condensation: Dew, Fog, & Clouds. Chapter 5 Condensation: Dew, Fog, & Clouds Chapter 5 The Formation of Dew & Frost Dew forms on objects near the ground surface when they cool below the dew point temperature. More likely on clear nights due to increased

More information

The Greenhouse Effect. Lan Ma

The Greenhouse Effect. Lan Ma The Greenhouse Effect Lan Ma What to cover today: How do we calculate the Earth s surface temperature? What makes a gas a greenhouse gas and how does the increasing greenhouse gases in the atmosphere cause

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION The role of clouds in transformation and removal of air pollutants D. Moller, G. Mauersberger Department for Air Chemistry, Fraunhofer Institut for Atmospheric Environmental Research, D-1199 Berlin, Germany

More information

Simulated Radiances for OMI

Simulated Radiances for OMI Simulated Radiances for OMI document: KNMI-OMI-2000-004 version: 1.0 date: 11 February 2000 author: J.P. Veefkind approved: G.H.J. van den Oord checked: J. de Haan Index 0. Abstract 1. Introduction 2.

More information

Ensemble Trajectories and Moisture Quantification for the Hurricane Joaquin (2015) Event

Ensemble Trajectories and Moisture Quantification for the Hurricane Joaquin (2015) Event Ensemble Trajectories and Moisture Quantification for the Hurricane Joaquin (2015) Event Chasity Henson and Patrick Market Atmospheric Sciences, School of Natural Resources University of Missouri 19 September

More information

Aerosol forecasting and assimilation at ECMWF: overview and data requirements

Aerosol forecasting and assimilation at ECMWF: overview and data requirements Aerosol forecasting and assimilation at ECMWF: overview and data requirements Angela Benedetti Luke Jones ECMWF Acknowledgements: Jean-Jacques Morcrette, Carole Peubey, Olaf Stiller, and Richard Engelen

More information

Land Data Assimilation at NCEP NLDAS Project Overview, ECMWF HEPEX 2004

Land Data Assimilation at NCEP NLDAS Project Overview, ECMWF HEPEX 2004 Dag.Lohmann@noaa.gov, Land Data Assimilation at NCEP NLDAS Project Overview, ECMWF HEPEX 2004 Land Data Assimilation at NCEP: Strategic Lessons Learned from the North American Land Data Assimilation System

More information

Direct radiative forcing due to aerosols in Asia during March 2002

Direct radiative forcing due to aerosols in Asia during March 2002 Direct radiative forcing due to aerosols in Asia during March 2002 Soon-Ung Park, Jae-In Jeong* Center for Atmospheric and Environmental Modeling *School of Earth and Environmental Sciences, Seoul National

More information

Aerosol-Cloud-Radiation Interactions in Atmospheric Forecast Models

Aerosol-Cloud-Radiation Interactions in Atmospheric Forecast Models Aerosol-Cloud-Radiation Interactions in Atmospheric Forecast Models John H. Seinfeld, Principal Investigator California Institute of Technology 1200 E. California Blvd., M/C 210-41 Pasadena, CA 91125 phone:

More information

Satellite Observations of Greenhouse Gases

Satellite Observations of Greenhouse Gases Satellite Observations of Greenhouse Gases Richard Engelen European Centre for Medium-Range Weather Forecasts Outline Introduction Data assimilation vs. retrievals 4D-Var data assimilation Observations

More information

Influence of 3D Model Grid Resolution on Tropospheric Ozone Levels

Influence of 3D Model Grid Resolution on Tropospheric Ozone Levels Influence of 3D Model Grid Resolution on Tropospheric Ozone Levels Pedro Jiménez nez, Oriol Jorba and José M. Baldasano Laboratory of Environmental Modeling Technical University of Catalonia-UPC (Barcelona,

More information