Size: px
Start display at page:

Download ""

Transcription

1 AlgebraII_FinalCVR1,4.indd 1 10/13/11 2:29 PM

2 C A S I O w w w. C A S I O e d u C At I O n. C O m 1. POLYNOMIAL Investigation 6.5: Earth s Revolution Before the 1530s, many people believed the Earth was the center of the universe and that every celestial body revolved around it, including the sun! Copernicus, a Polish astronomer, presented a cosmological theory stating that the Earth and other heavenly bodies actually revolved around the sun. Although today his heliocentric system of the universe is widely accepted, in his day Copernicus s theories were considered extremely controversial. Reference: Kepler s First Law of Planetary Motion states that the orbit of a planet is elliptical, with the Sun at one of the foci. A complete revolution of the Earth about the Sun takes approximately days. During its revolution around the sun, the Earth winter solstice and summer solstice occur at the ends of the major axis. On January 3, the Earth is at its perihelion, approximately 147 million km from the sun. On July 4, it is at its aphelion (its farthest point), approximately 152 million km from the sun. (We re actually closer to the sun in the Northern Hemisphere s winter than we are in summer.) These two values are at the endpoints of the major axis of its elliptical path. a. Set up an axis system that can describe the Earth s revolution about the Sun using the center of the major axis of the ellipse as the origin. What are the coordinates of the Earth at its perihelion and aphelion? b. What are the coordinates of the Sun? c. What are the coordinates of the Earth when it is an equal distance from both foci? d. Graph this ellipse and select an appropriate viewing window. Which view window best represents the eccentricity of the ellipse? e. Use the calculator to verify the location of the foci determined in part a. Why might these answers vary slightly? f. What is the eccentricity of the ellipse? Discuss what that this means in general terms. Reference: AND LOGARITHMIC

3 1. POLYNOMIAL C A S I O p u t va l u e b A C k i n t h e e q u at I O n Sample Solution: Earth s Revolution AND a. Set up an axis system that can describe the Earth s revolution about the Sun using the center of the major axis of the ellipse as the origin. What are the coordinates of the Earth at its perihelion and aphelion? The total distance along the major axis is 2A. We ll find the sum of the distance from the earth to the Sun at both the perihelion and aphelion. This will give us the length of the entire major axis. By dividing by 2, we ll have the value of A. In RUN: Enter the values, using the c key as shown. This can help us avoid potential mistakes with inputting the correct number of 0 s. LOGARITHMIC Consequently, A is x 10 8 km. At the perihelion, the Earth would be at x 10 8 km, and at the aphelion, it would be at x 10 8 km. b. What are the coordinates of the Sun? We will assume we are orienting the ellipse with the sun at the left focus. The Sun is located 1.47 x 10 8 km to the right of the perihelion and 1.52 x 10 8 km to the left of the aphelion. Though we need do only one of the calculations, for confirmation, we do both calculations as shown. From this, we find that the sun is located at (-2.5 x 10 6, 0). c. What are the coordinates of the Earth when it is an equal distance from both foci?

4 C A S I O w w w. C A S I O e d u C At I O n. C O m 1. POLYNOMIAL Earth s revolution The minor vertices are equal distances from each focus. Letting (0, B) and (0, -B) represent these vertices; the Earth will be at these points when it is equidistant from the two foci. We note that either of these points, we ll use (0, B), the Sun, and the origin form a right triangle. The hypotenuse of the triangle is the distance from (0, B) to the Sun, which, as we found earlier, is at (-2.5 x 10 6, 0). We know, however, that the sum of the distances from the Sun to (0, B) and from (0, B) to the other focus is 2A, so the distance from the Sun to (0, B) is precisely A, which we already know is x 10 8 km. The leg from the origin to our point of interest has length B. The leg from the origin to the sun has length 2.5 x 10 6 km. Using the Pythagorean Theorem, we find that (2.5 x 10 6 ) 2 + B 2 = (1.495 x 10 8 ) 2. To find B, we used the RUN mode on the calculator. AND LOGARITHMIC Thus we find that B is approximately x 10 8 km, which we note is almost identical to A. d. Graph this ellipse and select an appropriate viewing window. Which view window best represents the eccentricity of the ellipse? From the Conic Graphs mode: Scroll down until the form of the ellipse you want is highlighted and press l. Enter the values we have determined. Press u(draw) to draw the graph. At this point, you will likely want to adjust the viewing window. Press Le(V-Window) and make the following changes: Xmin: -2.0c8l; Xmax: 2.0c8l; Ymin: -2.0c8l; Ymax: 2.0c8l; and scales of 2.0c7l on both axes.

5 1. POLYNOMIAL C A S I O p u t va l u e b A C k i n t h e e q u at I O n Earth s revolution Press du(draw) to view the graph with the new view window settings. AND LOGARITHMIC The window is not yet squared, however, so we cannot tell how far removed from a circle this elliptical path really is. Here the ellipse appears elongated. Press Le(V-Window). Select y(square) for a square view window, followed by q(y-base) to use the y-base. The calculator will then select the appropriate x-range for the square view. The screen shot shows the calculator s adjusted values for the Xmin and Xmax. Redraw the graph. Note: how circular the path seems to be now. This is a much better visualization of how close the Earth s orbit is to a circle. e. Use the calculator to verify the location of the foci determined in part a. Why might these answers vary slightly? With the graph displayed, press Ly(G-Solv)q(FOCUS) to find the focus. Use! to find the other focus.

6 C A S I O w w w. C A S I O e d u C At I O n. C O m 1. POLYNOMIAL Earth s revolution Though we note slight rounding error, relative to the distances we are discussing, these are minor. What is noteworthy here is how close to the center the two foci appear to be. f. What is the eccentricity of the ellipse? Discuss what that means in general terms. With the graph displayed, press Ly(G-Solv)uq(e) to find the eccentricity value. AND The eccentricity of an ellipse is a number between 0 and 1. The closer the eccentricity is to 0, the closer the ellipse is to a circle. The closer it is to 1, the more the ellipse collapses on itself, making a very narrow ellipse. Here we see the eccentricity is approximately ; the Earth s trip around the sun is very close to circular. LOGARITHMIC

What is a Satellite? A satellite is an object that orbits another object. Ex. Radio satellite, moons, planets

What is a Satellite? A satellite is an object that orbits another object. Ex. Radio satellite, moons, planets Planetary Orbit Planetary Orbits What shape do planets APPEAR to orbit the sun? Planets APPEAR to orbit in a circle. What shape do the planets orbit the sun??? Each planet Orbits the Sun in an ellipse

More information

Astronomy Section 2 Solar System Test

Astronomy Section 2 Solar System Test is really cool! 1. The diagram below shows one model of a portion of the universe. Astronomy Section 2 Solar System Test 4. Which arrangement of the Sun, the Moon, and Earth results in the highest high

More information

Notes 10-3: Ellipses

Notes 10-3: Ellipses Notes 10-3: Ellipses I. Ellipse- Definition and Vocab An ellipse is the set of points P(x, y) in a plane such that the sum of the distances from any point P on the ellipse to two fixed points F 1 and F

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION KEPLER S LAWS OF PLANETARY MOTION In the early 1600s, Johannes Kepler culminated his analysis of the extensive data taken by Tycho Brahe and published his three laws of planetary motion, which we know

More information

1. The bar graph below shows one planetary characteristic, identified as X, plotted for the planets of our solar system.

1. The bar graph below shows one planetary characteristic, identified as X, plotted for the planets of our solar system. 1. The bar graph below shows one planetary characteristic, identified as X, plotted for the planets of our solar system. Which characteristic of the planets in our solar system is represented by X? A)

More information

Earth s Motions. Rotation -!! Period of Rotation - amount of time to make one complete rotation Example: Earth rotates in hours.

Earth s Motions. Rotation -!! Period of Rotation - amount of time to make one complete rotation Example: Earth rotates in hours. Name: Date: Period: Earth In the Solar System The Physical Setting: Earth Science CLASS NOTES! Rotation -! Period of Rotation - amount of time to make one complete rotation Example: Earth rotates in hours

More information

The Heliocentric Model of Copernicus

The Heliocentric Model of Copernicus Celestial Mechanics The Heliocentric Model of Copernicus Sun at the center and planets (including Earth) orbiting along circles. inferior planets - planets closer to Sun than Earth - Mercury, Venus superior

More information

Name Period Date Earth and Space Science. Solar System Review

Name Period Date Earth and Space Science. Solar System Review Name Period Date Earth and Space Science Solar System Review 1. is the spinning a planetary object on its axis. 2. is the backward motion of planets. 3. The is a unit less number between 0 and 1 that describes

More information

The Revolution of the Moons of Jupiter

The Revolution of the Moons of Jupiter The Revolution of the Moons of Jupiter Overview: During this lab session you will make use of a CLEA (Contemporary Laboratory Experiences in Astronomy) computer program generously developed and supplied

More information

Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009

Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009 Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Mark answer on Scantron.

More information

Earth Science Unit 6: Astronomy Period: Date: Elliptical Orbits

Earth Science Unit 6: Astronomy Period: Date: Elliptical Orbits Earth Science Name: Unit 6: Astronomy Period: Date: Lab # 5 Elliptical Orbits Objective: To compare the shape of the earth s orbit (eccentricity) with the orbits of and with a circle. other planets Focus

More information

November 20, NOTES ES Rotation, Rev, Tilt.notebook. vertically. night. night. counterclockwise. counterclockwise. East. Foucault.

November 20, NOTES ES Rotation, Rev, Tilt.notebook. vertically. night. night. counterclockwise. counterclockwise. East. Foucault. NOTES ES, Rev,.notebook, and Rotates on an imaginary axis that runs from the to the South North Pole Pole vertically North The of the axis points to a point in space near day Pole Polaris night Responsible

More information

Lecture 10: Seasons and Ice Age. Earth s Orbit and Its Variations. Perihelion and Aphelion. Tilt Produces Seasons

Lecture 10: Seasons and Ice Age. Earth s Orbit and Its Variations. Perihelion and Aphelion. Tilt Produces Seasons Lecture 10: Seasons and Ice Age Earth s Orbit and Its Variations! Earth s Orbit and Its Variations! How Seasons Are produced! Milankovitch Theory on Glacial-Interglacial Cycle (from The Earth System)!

More information

PHYS 155 Introductory Astronomy

PHYS 155 Introductory Astronomy PHYS 155 Introductory Astronomy - observing sessions: Sunday Thursday, 9pm, weather permitting http://www.phys.uconn.edu/observatory - Exam - Tuesday March 20, - Review Monday 6:30-9pm, PB 38 Marek Krasnansky

More information

Kepler s Laws of Orbital Motion. Lecture 5 January 30, 2014

Kepler s Laws of Orbital Motion. Lecture 5 January 30, 2014 Kepler s Laws of Orbital Motion Lecture 5 January 30, 2014 Parallax If distance is measured in parsecs then d = 1 PA Where PA is the parallax angle, in arcsec NOTE: The distance from the Sun to the Earth

More information

Physics Unit 7: Circular Motion, Universal Gravitation, and Satellite Orbits. Planetary Motion

Physics Unit 7: Circular Motion, Universal Gravitation, and Satellite Orbits. Planetary Motion Physics Unit 7: Circular Motion, Universal Gravitation, and Satellite Orbits Planetary Motion Geocentric Models --Many people prior to the 1500 s viewed the! Earth and the solar system using a! geocentric

More information

1. Determine the length of the major & minor axis. List the coordinates of vertices and co-vertices of the following ellipses. Vertices: Co-Vertices:

1. Determine the length of the major & minor axis. List the coordinates of vertices and co-vertices of the following ellipses. Vertices: Co-Vertices: 1. Sec 6.3 Conic Sections Ellipses Name: An ELLIPSE could be accurately described as circle that has been stretched or compressed by a constant ratio towards a diameter of a circle. A circle is actually

More information

Astro 210 Lecture 6 Jan 29, 2018

Astro 210 Lecture 6 Jan 29, 2018 Astro 210 Lecture 6 Jan 29, 2018 Announcements HW2 due online in PDF, Friday 5:00 pm HW1 extended until 11:59pm today register your iclicker; link on course webpage first Planetarium shows Mon Feb 5 and

More information

PHYS 160 Astronomy Test #1 Fall 2017 Version B

PHYS 160 Astronomy Test #1 Fall 2017 Version B PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,

More information

Unit 2: Celestial Mechanics

Unit 2: Celestial Mechanics Unit 2: Celestial Mechanics The position of the Earth Ptolemy (90 168 AD) Made tables that allowed a user to locate the position of a planet at any past, present, or future date. In order to maintain circular

More information

Aim: What causes Seasons?

Aim: What causes Seasons? Notepack 28 Aim: What causes Seasons? Do Now: What is the difference between revolution and rotation? Earth s rotation The Earth rotates on its axis (imaginary vertical line around which Earth spins) every

More information

How does the solar system, the galaxy, and the universe fit into our understanding of the cosmos?

How does the solar system, the galaxy, and the universe fit into our understanding of the cosmos? Remember to check the links for videos! How does the solar system, the galaxy, and the universe fit into our understanding of the cosmos? Universe ~ 13.7 bya First Stars ~ 13.3 bya First Galaxies ~ 12.7

More information

October 19, NOTES Solar System Data Table.notebook. Which page in the ESRT???? million km million. average.

October 19, NOTES Solar System Data Table.notebook. Which page in the ESRT???? million km million. average. Celestial Object: Naturally occurring object that exists in space. NOT spacecraft or man-made satellites Which page in the ESRT???? Mean = average Units = million km How can we find this using the Solar

More information

Astronomy 1010 Planetary Astronomy Sample Questions for Exam 1

Astronomy 1010 Planetary Astronomy Sample Questions for Exam 1 Astronomy 1010 Planetary Astronomy Sample Questions for Exam 1 Chapter 1 1. A scientific hypothesis is a) a wild, baseless guess about how something works. b) a collection of ideas that seems to explain

More information

Lab 6: The Planets and Kepler

Lab 6: The Planets and Kepler Lab 6: The Planets and Kepler The Motion of the Planets part I 1. Morning and Evening Stars. Start up Stellarium, and check to see if you have the Angle Tool installed it looks like a sideways A ( ) in

More information

Astronomy Regents Review

Astronomy Regents Review Name Astronomy Regents Review Base your answers to questions 1 and 2 on the diagram below, which shows s orbit around the un as viewed from space. is shown at eight different positions labeled A through

More information

Skills Practice Skills Practice for Lesson 12.1

Skills Practice Skills Practice for Lesson 12.1 Skills Practice Skills Practice for Lesson.1 Name Date Try to Stay Focused Ellipses Centered at the Origin Vocabulary Match each definition to its corresponding term. 1. an equation of the form a. ellipse

More information

Kepler s Laws of Orbital Motion. Lecture 5 January 24, 2013

Kepler s Laws of Orbital Motion. Lecture 5 January 24, 2013 Kepler s Laws of Orbital Motion Lecture 5 January 24, 2013 Team Extra Credit Two teams: Io & Genius Every class (that is not an exam/exam review) will have a question asked to a random member of each team

More information

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson.

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson. Lesson 211: EARTH'S SEASONS Students learn the complex geometry and planetary motions that cause Earth to have four distinct seasons. Fundamental Questions Attempting to give thorough and reasonable answers

More information

Astronomy Notes Chapter 02.notebook April 11, 2014 Pythagoras Aristotle geocentric retrograde motion epicycles deferents Aristarchus, heliocentric

Astronomy Notes Chapter 02.notebook April 11, 2014 Pythagoras Aristotle geocentric retrograde motion epicycles deferents Aristarchus, heliocentric Around 2500 years ago, Pythagoras began to use math to describe the world around him. Around 200 years later, Aristotle stated that the Universe is understandable and is governed by regular laws. Most

More information

VISUAL PHYSICS ONLINE

VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE PRACTICAL ACTIVITY HOW DO THE PANETS MOVE? One of the most important questions historically in Physics was how the planets move. Many historians consider the field of Physics to date

More information

ASTRO 1050 LAB #3: Planetary Orbits and Kepler s Laws

ASTRO 1050 LAB #3: Planetary Orbits and Kepler s Laws ASTRO 1050 LAB #3: Planetary Orbits and Kepler s Laws ABSTRACT Johannes Kepler (1571-1630), a German mathematician and astronomer, was a man on a quest to discover order and harmony in the solar system.

More information

Early Theories. Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle

Early Theories. Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle Planetary Motion Early Theories Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle Stars appear to move around Earth Observations showed

More information

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws Laws of Motion. Laws of Motion

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws Laws of Motion. Laws of Motion Today Planetary Motion Tycho Brahe s Observations Kepler s Laws Laws of Motion Laws of Motion In 1633 the Catholic Church ordered Galileo to recant his claim that Earth orbits the Sun. His book on the

More information

Earth Science, 13e Tarbuck & Lutgens

Earth Science, 13e Tarbuck & Lutgens Earth Science, 13e Tarbuck & Lutgens Origins of Modern Astronomy Earth Science, 13e Chapter 21 Stanley C. Hatfield Southwestern Illinois College Early history of astronomy Ancient Greeks Used philosophical

More information

Chapter. Origin of Modern Astronomy

Chapter. Origin of Modern Astronomy Chapter Origin of Modern Astronomy 22.1 Early Astronomy Ancient Greeks Astronomy is the science that studies the universe. It includes the observation and interpretation of celestial bodies and phenomena.

More information

D. A system of assumptions and principles applicable to a wide range of phenomena that has been repeatedly verified

D. A system of assumptions and principles applicable to a wide range of phenomena that has been repeatedly verified ASTRONOMY 1 EXAM 1 Name Identify Terms - Matching (20 @ 1 point each = 20 pts.) 1 Solar System G 7. aphelion N 14. eccentricity M 2. Planet E 8. apparent visual magnitude R 15. empirical Q 3. Star P 9.

More information

UNIT 3: EARTH S MOTIONS

UNIT 3: EARTH S MOTIONS UNIT 3: EARTH S MOTIONS After Unit 3 you should be able to: o Differentiate between rotation and revolution of the Earth o Apply the rates of rotation and revolution to basic problems o Recall the evidence

More information

3) During retrograde motion a planet appears to be A) dimmer than usual. B) the same brightness as usual C) brighter than usual.

3) During retrograde motion a planet appears to be A) dimmer than usual. B) the same brightness as usual C) brighter than usual. Descriptive Astronomy (ASTR 108) Exam 1 B February 17, 2010 Name: In each of the following multiple choice questions, select the best possible answer. In the line on the scan sheet corresponding to the

More information

1) Kepler's third law allows us to find the average distance to a planet from observing its period of rotation on its axis.

1) Kepler's third law allows us to find the average distance to a planet from observing its period of rotation on its axis. Descriptive Astronomy (ASTR 108) Exam 1 A February 17, 2010 Name: In each of the following multiple choice questions, select the best possible answer. In the line on the scan sheet corresponding to the

More information

Orbital Mechanics. CTLA Earth & Environmental Science

Orbital Mechanics. CTLA Earth & Environmental Science Orbital Mechanics CTLA Earth & Environmental Science The Earth Spherical body that is flattened near the poles due to centrifugal force (rotation of the Earth) 40,074 KM across at the Equator 40,0007 KM

More information

Position 3. None - it is always above the horizon. Agree with student 2; star B never crosses horizon plane, so it can t rise or set.

Position 3. None - it is always above the horizon. Agree with student 2; star B never crosses horizon plane, so it can t rise or set. Position 3 None - it is always above the horizon. N E W S Agree with student 2; star B never crosses horizon plane, so it can t rise or set. Imaginary plane No; the Earth blocks the view. Star A at position

More information

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws of Planetary Motion. Laws of Motion. in physics

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws of Planetary Motion. Laws of Motion. in physics Planetary Motion Today Tycho Brahe s Observations Kepler s Laws of Planetary Motion Laws of Motion in physics Page from 1640 text in the KSL rare book collection That the Earth may be a Planet the seeming

More information

What causes Earth to have seasons?

What causes Earth to have seasons? Seasons What causes Earth to have seasons? The distance to Earth does NOT cause seasons seasons are caused by : 1. the tilt of the earth on its axis (23.5 degrees) 2.revolution of earth around the sun

More information

EARTH SCIENCE UNIT 9 -NOTES ASTRONOMY

EARTH SCIENCE UNIT 9 -NOTES ASTRONOMY EARTH SCIENCE UNIT 9 -NOTES ASTRONOMY UNIT 9- ASTRONOMY 2 THE SOLAR SYSTEM I. The Solar System:. a. Celestial Body:. i. Examples:. b. MAIN COMPONENTS/MEMBERS OF THE SOLAR SYSTEM: i. 1. Planets are objects

More information

Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler

Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler Celestial motions The stars: Uniform daily motion about the celestial poles (rising and setting). The Sun: Daily motion around the celestial

More information

Unit: Planetary Science

Unit: Planetary Science Orbital Motion Kepler s Laws GETTING AN ACCOUNT: 1) go to www.explorelearning.com 2) click on Enroll in a class (top right hand area of screen). 3) Where it says Enter class Code enter the number: MLTWD2YAZH

More information

Planetary Orbits: Kepler s Laws 1/18/07

Planetary Orbits: Kepler s Laws 1/18/07 Planetary Orbits: Kepler s Laws Announcements The correct link for the course webpage http://www.lpl.arizona.edu/undergrad/classes/spring2007/giacalone_206-2 The first homework due Jan 25 (available for

More information

VISUAL PHYSICS ONLINE

VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE EXCEL SIMULATION MOTION OF SATELLITES DOWNLOAD the MS EXCEL program PA50satellite.xlsx and view the worksheet Display as shown in the figure below. One of the most important questions

More information

Lecture #5: Plan. The Beginnings of Modern Astronomy Kepler s Laws Galileo

Lecture #5: Plan. The Beginnings of Modern Astronomy Kepler s Laws Galileo Lecture #5: Plan The Beginnings of Modern Astronomy Kepler s Laws Galileo Geocentric ( Ptolemaic ) Model Retrograde Motion: Apparent backward (= East-to-West) motion of a planet with respect to stars Ptolemy

More information

Reasons for the seasons - Rebecca Kaplan

Reasons for the seasons - Rebecca Kaplan Reasons for the seasons - Rebecca Kaplan https://www.youtube.com/watch?v=dd_8jm5ptlk https://www.timeanddate.com/worldclock/sunearth.html https://www.time.gov/ https://www.space.com/33790-harvest-moon-guide.html

More information

Sol o ar a r S yste t m e F o F r o m r at a i t on o The Ne N b e u b l u a a Hypothesis

Sol o ar a r S yste t m e F o F r o m r at a i t on o The Ne N b e u b l u a a Hypothesis Solar System Solar system- the sun and all objects that orbit the sun due to its gravity Solar System Formation The Nebula Hypothesis Parts of the Solar System Planet- a celestial body that is in orbit

More information

MIDTERM PRACTICE EXAM ANSWERS

MIDTERM PRACTICE EXAM ANSWERS MIDTERM PRACTICE EXAM ANSWERS 1. (2) Location B shows that the altitude of the noon Sun increases between Dec 21. and June 21. Location B also shows that the Dec. 21 noon Sun is at an altitude of approximately

More information

Astronomy, PART 2. Vocabulary. A. Universe - Our Milky Way Galaxy is one of of galaxies in an expanding universe.

Astronomy, PART 2. Vocabulary. A. Universe - Our Milky Way Galaxy is one of of galaxies in an expanding universe. Astronomy, PART 2 Vocabulary Aphelion Asteroid Astronomical Unit Comet Constellation Crater Eccentricity Eclipse Equinox Geocentric model Gravitation Heliocentric model Inertia Jovian Perihelion Revolution

More information

Gravitation and the Waltz of the Planets

Gravitation and the Waltz of the Planets Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets

More information

Gravitation and the Waltz of the Planets. Chapter Four

Gravitation and the Waltz of the Planets. Chapter Four Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets

More information

The Sun-Earth-Moon System

The Sun-Earth-Moon System chapter 311 section 1 Earth The Sun-Earth-Moon System Before You Read What do you already know about Earth s shape, its size, and how it moves? Write what you know on the lines below. What You ll Learn

More information

LAB: What Events Mark the Beginning of Each Season?

LAB: What Events Mark the Beginning of Each Season? Name: Date: LAB: What Events Mark the Beginning of Each Season? The relationship between the Sun and Earth have been used since antiquity to measure time. The day is measured by the passage of the Sun

More information

9-4 Ellipses. Write an equation of each ellipse. 1. ANSWER: ANSWER:

9-4 Ellipses. Write an equation of each ellipse. 1. ANSWER: ANSWER: Write an equation of each ellipse. 5. CCSS SENSE-MAKING An architectural firm sent a proposal to a city for building a coliseum, shown at the right. 1. a. Determine the values of a and b. b. Assuming that

More information

Introduction To Modern Astronomy II

Introduction To Modern Astronomy II ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy II Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens

More information

Gravitation and the Motion of the Planets

Gravitation and the Motion of the Planets Gravitation and the Motion of the Planets 1 Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets go around

More information

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Gravity Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Simulation Synchronous Rotation https://www.youtube.com/watch?v=ozib_l eg75q Sun-Earth-Moon System https://vimeo.com/16015937

More information

Astronomy Review. Use the following four pictures to answer questions 1-4.

Astronomy Review. Use the following four pictures to answer questions 1-4. Astronomy Review Use the following four pictures to answer questions 1-4. 1. Put an X through the pictures that are NOT possible. 2. Circle the picture that could be a lunar eclipse. 3. Triangle the picture

More information

Astronomy 101 Lab: Lunar Phases and Eclipses

Astronomy 101 Lab: Lunar Phases and Eclipses Name: Astronomy 101 Lab: Lunar Phases and Eclipses Pre-Lab Assignment: In this week's lab, you will be using a lamp, a globe, and a ball to simulate the Sun, Earth, and the Moon. You will be able to see

More information

January 21, 2018 Math 9. Geometry. The method of coordinates (continued). Ellipse. Hyperbola. Parabola.

January 21, 2018 Math 9. Geometry. The method of coordinates (continued). Ellipse. Hyperbola. Parabola. January 21, 2018 Math 9 Ellipse Geometry The method of coordinates (continued) Ellipse Hyperbola Parabola Definition An ellipse is a locus of points, such that the sum of the distances from point on the

More information

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy 2006 Pearson Prentice Hall Lecture Outlines PowerPoint Chapter 21 Earth Science 11e Tarbuck/Lutgens This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Name EMS Study Guide. Two important objects that travel around our star are: Planets are not - they don t give off light like stars do

Name EMS Study Guide. Two important objects that travel around our star are: Planets are not - they don t give off light like stars do Name EMS Study Guide Fill in the blank. 1. A is a star and the objects that travel around it. 2. A star is a huge of hydrogen and helium gas that give off its own. 3. Think about our own solar system.

More information

Chapter 3: Cycles of the Sky

Chapter 3: Cycles of the Sky Chapter 3: Cycles of the Sky Motions of the Planets Mercury Venus Earth All planets in almost circular (elliptical) orbits around the sun, in approx. the same plane, the ecliptic plane. The Moon is orbiting

More information

Introduction To Modern Astronomy I

Introduction To Modern Astronomy I ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens

More information

ASTROMATH 101: BEGINNING MATHEMATICS IN ASTRONOMY

ASTROMATH 101: BEGINNING MATHEMATICS IN ASTRONOMY Name Partner(s) Section Date ASTROMATH 101: BEGINNING MATHEMATICS IN ASTRONOMY Astronomers deal with very, very large distances, some incredible temperatures, and even really, really small wavelengths.

More information

Find the center and radius of...

Find the center and radius of... Warm Up x h 2 + y k 2 = r 2 Circle with center h, k and radius r. Find the center and radius of... 2 2 a) ( x 3) y 7 19 2 2 b) x y 6x 4y 12 0 Chapter 6 Analytic Geometry (Conic Sections) Conic Section

More information

Unit 6 Lesson 1 How Do the Sun, Earth, and Moon Interact? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 6 Lesson 1 How Do the Sun, Earth, and Moon Interact? Copyright Houghton Mifflin Harcourt Publishing Company Unit 6 Lesson 1 How Do the Sun, Earth, and Moon Interact? Night and Day Earth rotates, or turns like a top. Earth s rotation causes day and night. Earth rotates around an imaginary line called an axis,

More information

Astron 104 Laboratory #5 The Orbit of Mars

Astron 104 Laboratory #5 The Orbit of Mars Name: Date: Section: Astron 104 Laboratory #5 The Orbit of Mars Section 1.3 Note: Use a pencil with a sharp point! Mark your data as accurately as possible. This table contains measurements by Tycho Brahe.

More information

Copernican Revolution. ~1500 to ~1700

Copernican Revolution. ~1500 to ~1700 ~1500 to ~1700 Copernicus (~1500) Brahe (~1570) Kepler (~1600) Galileo (~1600) Newton (~1670) The Issue: Geocentric or Heliocentric Which model explains observations the best? Copernicus (~1500) Resurrected

More information

Kepler, Newton, and laws of motion

Kepler, Newton, and laws of motion Kepler, Newton, and laws of motion First: A Little History Geocentric vs. heliocentric model for solar system (sec. 2.2-2.4)! The only history in this course is this progression: Aristotle (~350 BC) Ptolemy

More information

6.3 Ellipses. Objective: To find equations of ellipses and to graph them. Complete the Drawing an Ellipse Activity With Your Group

6.3 Ellipses. Objective: To find equations of ellipses and to graph them. Complete the Drawing an Ellipse Activity With Your Group 6.3 Ellipses Objective: To find equations of ellipses and to graph them. Complete the Drawing an Ellipse Activity With Your Group Conic Section A figure formed by the intersection of a plane and a right

More information

Earth Moon Motions A B1

Earth Moon Motions A B1 Earth Moon Motions A B1 1. The Coriolis effect provides evidence that Earth (1) rotates on its axis (2) revolves around the Sun (3) undergoes cyclic tidal changes (4) has a slightly eccentric orbit 9.

More information

Chapter 22 Exam Study Guide

Chapter 22 Exam Study Guide Chapter 22 Exam Study Guide Name: Hour: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Write the letter that best answers the question or completes

More information

THE SEASONS PART I: THE EARTH S ORBIT & THE SEASONS

THE SEASONS PART I: THE EARTH S ORBIT & THE SEASONS THE SEASONS To observers on earth, it appears that the earth stands still and everything else moves around it. Thus, in trying to imagine how the universe works, it made good sense to people in ancient

More information

Additional Exercises for Chapter 4

Additional Exercises for Chapter 4 Additional Exercises for Chapter 4 Computations of Copernicus and Brahe The fact that any tangent to a circle is perpendicular to the radius to the point of tangency was verified in the Additional Exercises

More information

APS 1030 Astronomy Lab 79 Kepler's Laws KEPLER'S LAWS

APS 1030 Astronomy Lab 79 Kepler's Laws KEPLER'S LAWS APS 1030 Astronomy Lab 79 Kepler's Laws KEPLER'S LAWS SYNOPSIS: Johannes Kepler formulated three laws that described how the planets orbit around the Sun. His work paved the way for Isaac Newton, who derived

More information

Physical Science 1 Chapter 16 INTRODUCTION. Astronomy is the study of the universe, which includes all matter, energy, space and time.

Physical Science 1 Chapter 16 INTRODUCTION. Astronomy is the study of the universe, which includes all matter, energy, space and time. INTRODUCTION Astronomy is the study of the universe, which includes all matter, energy, space and time. Although the universe is vast and almost beyond imagination, much is known about its make-up and

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 1 The Copernican Revolution Lecture Presentation 1.0 Have you ever wondered about? Where are the stars during the day? What is the near

More information

Ellipse. Conic Sections

Ellipse. Conic Sections Ellipse Conic Sections Ellipse The plane can intersect one nappe of the cone at an angle to the axis resulting in an ellipse. Ellipse - Definition An ellipse is the set of all points in a plane such that

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

C) D) 2. The model below shows the apparent path of the Sun as seen by an observer in New York State on the first day of one of the four seasons.

C) D) 2. The model below shows the apparent path of the Sun as seen by an observer in New York State on the first day of one of the four seasons. 1. Which diagram best represents the regions of Earth in sunlight on June 21 and December 21? [NP indicates the North Pole and the shading represents Earth's night side. Diagrams are not drawn to scale.]

More information

lightyears observable universe astronomical unit po- laris perihelion Milky Way

lightyears observable universe astronomical unit po- laris perihelion Milky Way 1 Chapter 1 Astronomical distances are so large we typically measure distances in lightyears: the distance light can travel in one year, or 9.46 10 12 km or 9, 600, 000, 000, 000 km. Looking into the sky

More information

Conic Sections. Pre-Calculus Unit Completing the Square. Solve each equation by completing the square x 2 + 8x 10 = 0

Conic Sections. Pre-Calculus Unit Completing the Square. Solve each equation by completing the square x 2 + 8x 10 = 0 Pre-Calculus Unit 7 Conic Sections Name: 7.1 Completing the Square Solve each equation by completing the square. 1. x 2 + 4x = 21 6. x 2 5x 5 = 0 11. x 2 6x + 6 = 0 2. x 2 8x = 33 7. x 2 + 7x = 0 12. x

More information

Astronomy 102: Stars and Galaxies Examination 1 February 3, 2003

Astronomy 102: Stars and Galaxies Examination 1 February 3, 2003 Name: Astronomy 102: Stars and Galaxies Examination 1 February 3, 2003 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. If you need additional space,

More information

Astron 104 Laboratory #4 Orbital Motion of a Planet

Astron 104 Laboratory #4 Orbital Motion of a Planet Name: Date: Section: Astron 104 Laboratory #4 Orbital Motion of a Planet Introduction The nature of the Solar System was first derived from careful measurements of the positions of the planets in the night

More information

4 Solar System and Time

4 Solar System and Time 4 olar ystem and Time 4.1 The Universe 4.1.1 Introduction The Universe consists of countless galaxies distributed throughout space. The bodies used in astro navigation belong to the Galaxy known as the

More information

cosmogony geocentric heliocentric How the Greeks modeled the heavens

cosmogony geocentric heliocentric How the Greeks modeled the heavens Cosmogony A cosmogony is theory about ones place in the universe. A geocentric cosmogony is a theory that proposes Earth to be at the center of the universe. A heliocentric cosmogony is a theory that proposes

More information

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Craig Lage New York University - Department of Physics craig.lage@nyu.edu February 24, 2014 1 / 21 Tycho Brahe s Equatorial

More information

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves 7.1 Ellipse An ellipse is a curve that is the locus of all points in the plane the sum of whose distances r1 and r from two fixed

More information

Intro to Astronomy. Looking at Our Space Neighborhood

Intro to Astronomy. Looking at Our Space Neighborhood Intro to Astronomy Looking at Our Space Neighborhood Astronomy: The Original Science Ancient cultures used the movement of stars, planets and the moon to mark time Astronomy: the study of the universe

More information

Motion of the planets

Motion of the planets Our Solar system Motion of the planets Our solar system is made up of the sun and the 9 planets that revolve around the sun Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto (maybe?)

More information

Conic Sections in Polar Coordinates

Conic Sections in Polar Coordinates Conic Sections in Polar Coordinates MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction We have develop the familiar formulas for the parabola, ellipse, and hyperbola

More information

Basics of Kepler and Newton. Orbits of the planets, moons,

Basics of Kepler and Newton. Orbits of the planets, moons, Basics of Kepler and Newton Orbits of the planets, moons, Kepler s Laws, as derived by Newton. Kepler s Laws Universal Law of Gravity Three Laws of Motion Deriving Kepler s Laws Recall: The Copernican

More information

REVIEW OF KEY CONCEPTS

REVIEW OF KEY CONCEPTS REVIEW OF KEY CONCEPTS 8.1 8. Equations of Loci Refer to the Key Concepts on page 598. 1. Sketch the locus of points in the plane that are cm from a circle of radius 5 cm.. a) How are the lines y = x 3

More information

If Earth had no tilt, what else would happen?

If Earth had no tilt, what else would happen? A more in depth explanation from last week: If Earth had no tilt, what else would happen? The equator would be much hotter due to the direct sunlight which would lead to a lower survival rate and little

More information