6.3 Ellipses. Objective: To find equations of ellipses and to graph them. Complete the Drawing an Ellipse Activity With Your Group

Size: px
Start display at page:

Download "6.3 Ellipses. Objective: To find equations of ellipses and to graph them. Complete the Drawing an Ellipse Activity With Your Group"

Transcription

1 6.3 Ellipses Objective: To find equations of ellipses and to graph them. Complete the Drawing an Ellipse Activity With Your Group

2 Conic Section A figure formed by the intersection of a plane and a right circular cone

3 Elliptical Orbits of Planets Gravitational attraction causes the planets to move in elliptical orbits around the sun with the sun at one focus. This remarkable property was first observed by Johannes Kepler. It was later deduced by Isaac Newton from his inverse square law of gravity using calculus.

4 Reflection Property Ellipses, like parabolas, have an interesting reflection property that leads to a number of practical applications. If a light source is placed at one focus of a reflecting surface with elliptical cross sections, then all the light will be reflected off the surface to the other focus.

5 Lithotripsy This principle, which works for sound waves as well as for light, is used in lithotripsy a treatment for kidney stones. The patient is placed in a tub of water with elliptical cross sections in such a way that the kidney stone is accurately located at one focus. High-intensity sound waves generated at the other focus are reflected to the stone and destroy it with minimal damage to surrounding tissue. The patient is spared the trauma of surgery and recovers within days instead of weeks.

6 Whispering Galleries The reflection property is also used in the construction of whispering galleries. Sound coming from one focus bounces off the walls and ceiling of an elliptical room and passes through the other focus. Even quiet whispers spoken at one focus can be heard clearly at the other.

7 Whispering Galleries Famous whispering galleries include: National Statuary Hall of the US Capitol in Washington, D.C. Mormon Tabernacle in Salt Lake City, Utah

8 Pioneer Courthouse Square SW 6 th & Morrison Terry Schrunk Plaza SW 4 th & Madison

9 Drawing an Ellipse Attach the ends of a string to the tacks. With the point of a pencil, hold the string taut. Then, carefully move the pencil around the foci, keeping the string taut at all times.

10 Drawing an Ellipse The pencil will trace out an ellipse. This is because the sum of the distances from the point of the pencil to the foci will always equal the length of the string, which is constant.

11 Drawing Ellipses If the string is only slightly longer than the distance between the foci, the ellipse traced out will be elongated in shape.

12 Drawing Ellipses If the foci are close together relative to the length of the string, the ellipse will be almost circular.

13 Minor Axis The Ellipse An ellipse is the locus of all points in a plane such that the sum of the distances from two given points in the plane, the foci, is constant. Focus 1 Focus 2 Major Axis Point PF 1 + PF 2 = constant

14 Minor Axis The Ellipse An ellipse is the locus of all points in a plane such that the sum of the distances from two given points in the plane, the foci, is constant. Major Axis (a,0) Focus 1 Focus 2 Point PF 1 + PF 2 = 2a

15 The Standard Form of the Equation of the Ellipse The standard form of an ellipse centered at the origin with the major axis of length 2a along the x-axis and a minor axis of length 2b along the y-axis, is: The standard form of an ellipse centered at the origin with the major axis of length 2a along the y-axis and a minor axis of length 2b along the x-axis, is: (0,c) x 2 a 2 y2 b 2 1 x 2 b 2 y2 a 2 1 (0,-c)

16 The Pythagorean Property b a F 1 (-c, 0) F 2 (c, 0) c a 2 = b 2 + c 2 b 2 = a 2 - c 2 c 2 = a 2 - b 2

17

18 The Standard Forms of the Equation of the Ellipse The standard form of an ellipse centered at any point (h, k) with the major axis of length 2a parallel to the x-axis and a minor axis of length 2b parallel to the y-axis, is: (x h) 2 a 2 (y k)2 b 2 1 Foci: (- c h, k) and ( c h, k) where c 2 = a 2 b 2 (h, k)

19 The Standard Form of the Equation of the Ellipse The standard form of an ellipse centered at any point (h, k) with the major axis of length 2a parallel to the y-axis and a minor axis of length 2b parallel to the x-axis, is: (x h) 2 b 2 (y k)2 a 2 1 Foci: ( h, - c k) and ( h, c k) where c 2 = a 2 b 2 (h, k)

20 Finding the Center, Axes, and Foci State the coordinates of the vertices, the coordinates of the foci, and the lengths of the major and minor axes of the ellipse. Then sketch a graph of the ellipse. 4x 2 + 9y 2 = 36 4x y2 36 = *Divide by 36 x y2 4 = 1

21 Finding the Center, Axes, and Foci State the coordinates of the vertices, the coordinates of the foci, and the lengths of the major and minor axes of the ellipse. Then sketch a graph of the ellipse. 2 2 x y b c a The center of the ellipse is (0, 0). Since the larger number occurs under the x 2, the major axis lies on the x-axis. The length of the major axis is 6. The length of the minor axis is 4. The coordinates of the vertices are (3, 0) and (-3, 0). a = b = 3 2 To find the coordinates of the foci, use the Pythagorean property. c 2 = a 2 - b 2 = = 9-4 = 5 c 5 The coordinates of the foci are: ( 5, 0) and ( 5, 0)

22 Finding the Equation of the Ellipse With Center at (h, k) Find the equation for the ellipse with the center at (3, 2), passing through the points (8, 2), (-2, 2), (3, -5), and (3, 9). The major axis is parallel to the y-axis and has a length of 14 units, so a = 7. The minor axis is parallel to the x-axis and has a length of 10 units, so b = 5. The center is at (3, 2), so h = 3 and k = 2. (3, 2) (x h) 2 b 2 (x 3) (y k)2 a 2 1 (y 2) (x 3) 2 25 (y 2)2 49 1

23 Sketch the graph of the ellipse. Include the foci. Since the larger number occurs under the y 2, the major axis is parallel to the y-axis. ( x 1) ( y 5) h = k = a = b = c 2 = a 2 - b 2 = = = 20 c 20 c 2 5 The center is at (1, -5). The major axis, parallel to the y-axis, has a length of 12 units. The minor axis, parallel to the x-axis, has a length of 8 units. The foci are at: ( 1, 5 2 5) and ( 1, 5 2 5)

24 Sketching the Graph of an Ellipse (x 1) 2 16 ( y 5) The center is at (1, -5). The major axis, parallel to the y-axis, has a length of 12 units. The minor axis, parallel to the x-axis, has a length of 8 units. The foci are at: ( 1, 5 2 5) and ( 1, 5 2 5) F 1 F 2 (1, ) c 2 5 c 2 5 (1, )

25 Graphing an Ellipse Using a Graphing Calculator (x 1) 2 16 ( y 1)2 4 1 y 16 (x 1)2 4 1 (x - 1) 2 + 4(y + 1) 2 = 16 4(y + 1) 2 = 16 - (x - 1) 2 y (x 1) 2 4 y 1 16 (x 1)2 4 y 16 (x 1)2 4 1 y 16 (x 1)2 4 1

26 Homework Page 228 #1,3,5,7a,13,15,19,25,27

27 Eccentricity The eccentricity, e, is a measure of how stretched the ellipse is. If e is close to 1, c is almost equal to a, and the ellipse is elongated in shape. However, if e is close to 0, the ellipse is close to a circle in shape.

28 Elliptical Orbits of Planets The orbits of the planets have different eccentricities. Most are nearly circular. However, Mercury and the former planet Pluto the innermost and outermost have visibly elliptical orbits.

Find the center and radius of...

Find the center and radius of... Warm Up x h 2 + y k 2 = r 2 Circle with center h, k and radius r. Find the center and radius of... 2 2 a) ( x 3) y 7 19 2 2 b) x y 6x 4y 12 0 Chapter 6 Analytic Geometry (Conic Sections) Conic Section

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES 10.5 Conic Sections In this section, we will learn: How to derive standard equations for conic sections. CONIC SECTIONS

More information

Conic Sections. Pre-Calculus Unit Completing the Square. Solve each equation by completing the square x 2 + 8x 10 = 0

Conic Sections. Pre-Calculus Unit Completing the Square. Solve each equation by completing the square x 2 + 8x 10 = 0 Pre-Calculus Unit 7 Conic Sections Name: 7.1 Completing the Square Solve each equation by completing the square. 1. x 2 + 4x = 21 6. x 2 5x 5 = 0 11. x 2 6x + 6 = 0 2. x 2 8x = 33 7. x 2 + 7x = 0 12. x

More information

Skills Practice Skills Practice for Lesson 12.1

Skills Practice Skills Practice for Lesson 12.1 Skills Practice Skills Practice for Lesson.1 Name Date Try to Stay Focused Ellipses Centered at the Origin Vocabulary Match each definition to its corresponding term. 1. an equation of the form a. ellipse

More information

1. Determine the length of the major & minor axis. List the coordinates of vertices and co-vertices of the following ellipses. Vertices: Co-Vertices:

1. Determine the length of the major & minor axis. List the coordinates of vertices and co-vertices of the following ellipses. Vertices: Co-Vertices: 1. Sec 6.3 Conic Sections Ellipses Name: An ELLIPSE could be accurately described as circle that has been stretched or compressed by a constant ratio towards a diameter of a circle. A circle is actually

More information

Ellipse. Conic Sections

Ellipse. Conic Sections Ellipse Conic Sections Ellipse The plane can intersect one nappe of the cone at an angle to the axis resulting in an ellipse. Ellipse - Definition An ellipse is the set of all points in a plane such that

More information

Math Conic Sections

Math Conic Sections Math 114 - Conic Sections Peter A. Perry University of Kentucky April 13, 2017 Bill of Fare Why Conic Sections? Parabolas Ellipses Hyperbolas Shifted Conics Goals of This Lecture By the end of this lecture,

More information

Folding Conic Sections

Folding Conic Sections Folding Conic Sections 17th Annual Kansas City Regional Mathematics Technology EXPO October 5, 2007 Bruce Yoshiwara yoshiwbw@piercecollege.edu http://www.piercecollege.edu/faculty/yoshibw/ Folding Conic

More information

Conic Sections: THE ELLIPSE

Conic Sections: THE ELLIPSE Conic Sections: THE ELLIPSE An ellipse is the set of all points,such that the sum of the distance between, and two distinct points is a constant. These two distinct points are called the foci (plural of

More information

Circles. 1 Page Hannah Province Mathematics Department Southwest Tn Community College

Circles. 1 Page Hannah Province Mathematics Department Southwest Tn Community College Circles 1 Page To Graph a Circle; Graphing Calculator + y = 2 2 First Solve the equation for y: x 4 y = 4-x 2 2 y = ± 4 x 2 2 Graph as two separate equations y = 4 x y = 4 x 1 2 So that the circle doesn't

More information

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves 7.1 Ellipse An ellipse is a curve that is the locus of all points in the plane the sum of whose distances r1 and r from two fixed

More information

Name Class Date. Chapter 23 Touring Our Solar System Investigation 23

Name Class Date. Chapter 23 Touring Our Solar System Investigation 23 Chapter 23 Touring Our Solar System Investigation 23 Exploring Orbits Introduction In 1609, the German mathematician and astronomer Johannes Kepler deciphered a major puzzle of the solar system. The strange

More information

9-4 Ellipses. Write an equation of each ellipse. 1. ANSWER: ANSWER:

9-4 Ellipses. Write an equation of each ellipse. 1. ANSWER: ANSWER: Write an equation of each ellipse. 5. CCSS SENSE-MAKING An architectural firm sent a proposal to a city for building a coliseum, shown at the right. 1. a. Determine the values of a and b. b. Assuming that

More information

NAME: PERIOD: DATE: LAB PARTNERS: LAB #39 ECCENTRICITY OF PLANETARY ORBITS

NAME: PERIOD: DATE: LAB PARTNERS: LAB #39 ECCENTRICITY OF PLANETARY ORBITS NAME: PERIOD: DATE: LAB PARTNERS: LAB #39 ECCENTRICITY OF PLANETARY ORBITS INTRODUCTION Our sun is not exactly in the center of the orbits of the planets, and therefore the planetary orbits are not circular.

More information

NAME: PERIOD: DATE: ECCENTRICITY OF PLANETARY ORBITS INTRODUCTION

NAME: PERIOD: DATE: ECCENTRICITY OF PLANETARY ORBITS INTRODUCTION NAME: PERIOD: DATE: PARTNERS: Lab # ECCENTRICITY OF PLANETARY ORBITS INTRODUCTION INTRODUCTION Our sun is not exactly in the center of the orbits of the planets, and therefore the planetary orbits are

More information

Earth Science Unit 6: Astronomy Period: Date: Elliptical Orbits

Earth Science Unit 6: Astronomy Period: Date: Elliptical Orbits Earth Science Name: Unit 6: Astronomy Period: Date: Lab # 5 Elliptical Orbits Objective: To compare the shape of the earth s orbit (eccentricity) with the orbits of and with a circle. other planets Focus

More information

ASTRO 1050 LAB #3: Planetary Orbits and Kepler s Laws

ASTRO 1050 LAB #3: Planetary Orbits and Kepler s Laws ASTRO 1050 LAB #3: Planetary Orbits and Kepler s Laws ABSTRACT Johannes Kepler (1571-1630), a German mathematician and astronomer, was a man on a quest to discover order and harmony in the solar system.

More information

Notes 10-3: Ellipses

Notes 10-3: Ellipses Notes 10-3: Ellipses I. Ellipse- Definition and Vocab An ellipse is the set of points P(x, y) in a plane such that the sum of the distances from any point P on the ellipse to two fixed points F 1 and F

More information

Orbital Mechanics Laboratory

Orbital Mechanics Laboratory Team: Orbital Mechanics Laboratory Studying the forces of nature the interactions between matter is the primary quest of physics. In this celestial experiment, you will measure the force responsible for

More information

GRAVITATIONAL PHENOMENA

GRAVITATIONAL PHENOMENA GRAVITATIONAL PHENOMENA Cruise your radio dial today and try to find any popular song that would have been imaginable without Louis Armstrong. By introducing solo improvisation into jazz, Armstrong took

More information

CH 8. Universal Gravitation Planetary and Satellite Motion

CH 8. Universal Gravitation Planetary and Satellite Motion CH 8 Universal Gravitation Planetary and Satellite Motion Sir Isaac Newton UNIVERSAL GRAVITATION Newton: Universal Gravitation Newton concluded that earthly objects and heavenly objects obey the same physical

More information

REVIEW OF CONIC SECTIONS

REVIEW OF CONIC SECTIONS REVIEW OF CONIC SECTIONS In this section we give geometric definitions of parabolas, ellipses, and hperbolas and derive their standard equations. The are called conic sections, or conics, because the result

More information

CONIC SECTIONS TEST FRIDAY, JANUARY 5 TH

CONIC SECTIONS TEST FRIDAY, JANUARY 5 TH CONIC SECTIONS TEST FRIDAY, JANUARY 5 TH DAY 1 - CLASSIFYING CONICS 4 Conics Parabola Circle Ellipse Hyperbola DAY 1 - CLASSIFYING CONICS GRAPHICALLY Parabola Ellipse Circle Hyperbola DAY 1 - CLASSIFYING

More information

Precalculus Conic Sections Unit 6. Parabolas. Label the parts: Focus Vertex Axis of symmetry Focal Diameter Directrix

Precalculus Conic Sections Unit 6. Parabolas. Label the parts: Focus Vertex Axis of symmetry Focal Diameter Directrix PICTURE: Parabolas Name Hr Label the parts: Focus Vertex Axis of symmetry Focal Diameter Directrix Using what you know about transformations, label the purpose of each constant: y a x h 2 k It is common

More information

9.6 PROPERTIES OF THE CONIC SECTIONS

9.6 PROPERTIES OF THE CONIC SECTIONS 9.6 Properties of the Conic Sections Contemporary Calculus 1 9.6 PROPERTIES OF THE CONIC SECTIONS This section presents some of the interesting and important properties of the conic sections that can be

More information

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Craig Lage New York University - Department of Physics craig.lage@nyu.edu February 24, 2014 1 / 21 Tycho Brahe s Equatorial

More information

Conic Sections in Polar Coordinates

Conic Sections in Polar Coordinates Conic Sections in Polar Coordinates MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction We have develop the familiar formulas for the parabola, ellipse, and hyperbola

More information

The second type of conic is called an ellipse, and is defined as follows. Definition of Ellipse

The second type of conic is called an ellipse, and is defined as follows. Definition of Ellipse 72 Chapter 10 Topics in Analtic Geometr 10.3 ELLIPSES What ou should learn Write equations of ellipses in standard form and graph ellipses. Use properties of ellipses to model and solve real-life problems.

More information

Definition of an Ellipse Drawing an Ellipse Standard Equations and Their Graphs Applications

Definition of an Ellipse Drawing an Ellipse Standard Equations and Their Graphs Applications 616 9 Additional Topics in Analtic Geometr 53. Space Science. A designer of a 00-foot-diameter parabolic electromagnetic antenna for tracking space probes wants to place the focus 100 feet above the verte

More information

The Heliocentric Model of Copernicus

The Heliocentric Model of Copernicus Celestial Mechanics The Heliocentric Model of Copernicus Sun at the center and planets (including Earth) orbiting along circles. inferior planets - planets closer to Sun than Earth - Mercury, Venus superior

More information

Not for reproduction

Not for reproduction REVIEW OF CONIC SECTIONS In this section we give geometric definitions of parabolas, ellipses, and hperbolas and derive their standard equations. The are called conic sections, or conics, because the result

More information

THE CONIC SECTIONS: AMAZING UNITY IN DIVERSITY

THE CONIC SECTIONS: AMAZING UNITY IN DIVERSITY O ne of the most incredible revelations about quadratic equations in two unknowns is that they can be graphed as a circle, a parabola, an ellipse, or a hyperbola. These graphs, albeit quadratic functions,

More information

REVIEW OF KEY CONCEPTS

REVIEW OF KEY CONCEPTS REVIEW OF KEY CONCEPTS 8.1 8. Equations of Loci Refer to the Key Concepts on page 598. 1. Sketch the locus of points in the plane that are cm from a circle of radius 5 cm.. a) How are the lines y = x 3

More information

Name Period Date Earth and Space Science. Solar System Review

Name Period Date Earth and Space Science. Solar System Review Name Period Date Earth and Space Science Solar System Review 1. is the spinning a planetary object on its axis. 2. is the backward motion of planets. 3. The is a unit less number between 0 and 1 that describes

More information

DAY 139 EQUATION OF A HYPERBOLA

DAY 139 EQUATION OF A HYPERBOLA DAY 139 EQUATION OF A HYPERBOLA INTRODUCTION In our prior conic sections lessons, we discussed in detail the two conic sections, the parabola, and the ellipse. The hyperbola is another conic section we

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION KEPLER S LAWS OF PLANETARY MOTION In the early 1600s, Johannes Kepler culminated his analysis of the extensive data taken by Tycho Brahe and published his three laws of planetary motion, which we know

More information

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A Midpoint and Distance Formula Class Work M is the midpoint of A and B. Use the given information to find the missing point. 1. A(4, 2) and B(3, -8), find M 2. A(5, 7) and B( -2, -9), find M 3. A( 2,0)

More information

www.casioeducation.com 1-800-582-2763 AlgebraII_FinalCVR1,4.indd 1 10/13/11 2:29 PM C A S I O w w w. C A S I O e d u C At I O n. C O m 1. POLYNOMIAL Investigation 6.5: Earth s Revolution Before the 1530s,

More information

Honors Algebra 2 Final Exam 2002

Honors Algebra 2 Final Exam 2002 Honors Algebra 2 Final Exam 2002 Name PART A. MULTIPLE CHOICE. Circle the letter in front of each correct answer. You do not have to show work. There is no partial credit. EACH PROBLEM IN THIS SECTION

More information

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc. Chapter 5 Centripetal Force and Gravity v Centripetal Acceleration v Velocity is a Vector v It has Magnitude and Direction v If either changes, the velocity vector changes. Tumble Buggy Demo v Centripetal

More information

The details of the derivation of the equations of conics are com-

The details of the derivation of the equations of conics are com- Part 6 Conic sections Introduction Consider the double cone shown in the diagram, joined at the verte. These cones are right circular cones in the sense that slicing the double cones with planes at right-angles

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 13. Newton s Theory of Gravity The beautiful rings of Saturn consist of countless centimeter-sized ice crystals, all orbiting the planet under the influence of gravity. Chapter Goal: To use Newton

More information

Assignment 1. Due Feb. 11, 2019

Assignment 1. Due Feb. 11, 2019 Assignment 1 Due Feb. 11, 2019 Show all work and turn in answers on separate pages, not on these pages. Circle your final answers for clarity. Be sure to show/explain all of your reasoning and that your

More information

MATH10000 Mathematical Workshop Project 2 Part 1 Conic Sections

MATH10000 Mathematical Workshop Project 2 Part 1 Conic Sections MATH10000 Mathematical Workshop Project 2 Part 1 Conic Sections The aim of this project is to introduce you to an area of geometry known as the theory of conic sections, which is one of the most famous

More information

Kepler s Laws. Determining one point on Mars orbit

Kepler s Laws. Determining one point on Mars orbit Kepler s Laws Hwk1: max is 28 If you want a question regraded, write a note on the front & give me the paper. Figure added to Homework 2 See link on syllabus Read pages in Galileo s Starry Messenger for

More information

AST101: Our Corner of the Universe Lab 4: Planetary Orbits

AST101: Our Corner of the Universe Lab 4: Planetary Orbits AST101: Our Corner of the Universe Lab 4: Planetary Orbits Name: Partners: Student number (SUID): Lab section number: 1 Introduction Objectives The Planetary Orbits Lab reviews used the Planetary Orbit

More information

PHYS 155 Introductory Astronomy

PHYS 155 Introductory Astronomy PHYS 155 Introductory Astronomy - observing sessions: Sunday Thursday, 9pm, weather permitting http://www.phys.uconn.edu/observatory - Exam - Tuesday March 20, - Review Monday 6:30-9pm, PB 38 Marek Krasnansky

More information

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A Midpoint and Distance Formula Class Work M is the midpoint of A and B. Use the given information to find the missing point. 1. A(, 2) and B(3, -8), find M 2. A(5, 7) and B( -2, -), find M (3. 5, 3) (1.

More information

The Distance Formula. The Midpoint Formula

The Distance Formula. The Midpoint Formula Math 120 Intermediate Algebra Sec 9.1: Distance Midpoint Formulas The Distance Formula The distance between two points P 1 = (x 1, y 1 ) P 2 = (x 1, y 1 ), denoted by d(p 1, P 2 ), is d(p 1, P 2 ) = (x

More information

Tycho Brahe and Johannes Kepler

Tycho Brahe and Johannes Kepler Tycho Brahe and Johannes Kepler The Music of the Spheres 1 Tycho Brahe 1546-1601 Motivated by astronomy's predictive powers. Saw and reported the Nova of 1572. Considered poor observational data to be

More information

Name. Satellite Motion Lab

Name. Satellite Motion Lab Name Satellite Motion Lab Purpose To experiment with satellite motion using an interactive simulation in order to gain an understanding of Kepler s Laws of Planetary Motion and Newton s Law of Universal

More information

VISUAL PHYSICS ONLINE

VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE PRACTICAL ACTIVITY HOW DO THE PANETS MOVE? One of the most important questions historically in Physics was how the planets move. Many historians consider the field of Physics to date

More information

Physics 115/242 The Kepler Problem

Physics 115/242 The Kepler Problem Physics 115/242 The Kepler Problem Peter Young (Dated: April 21, 23) I. INTRODUCTION We consider motion of a planet around the sun, the Kepler problem, see e.g. Garcia, Numerical Methods for Physics, Sec.

More information

DARE TO BE. FORMULA: e = distance between foci length of major axis VOCABULARY: ECCENTRIC. ellipse: eccentricity: focus (plural is foci): major axis:

DARE TO BE. FORMULA: e = distance between foci length of major axis VOCABULARY: ECCENTRIC. ellipse: eccentricity: focus (plural is foci): major axis: NAME: DATE: DARE TO BE ECCENTRIC INTRODUCTION: Have you ever heard the phrase dare to be different? Well that's what eccentricity is all about: deviating from the norm - or in other words, being different!

More information

January 21, 2018 Math 9. Geometry. The method of coordinates (continued). Ellipse. Hyperbola. Parabola.

January 21, 2018 Math 9. Geometry. The method of coordinates (continued). Ellipse. Hyperbola. Parabola. January 21, 2018 Math 9 Ellipse Geometry The method of coordinates (continued) Ellipse Hyperbola Parabola Definition An ellipse is a locus of points, such that the sum of the distances from point on the

More information

Lab 6: The Planets and Kepler

Lab 6: The Planets and Kepler Lab 6: The Planets and Kepler The Motion of the Planets part I 1. Morning and Evening Stars. Start up Stellarium, and check to see if you have the Angle Tool installed it looks like a sideways A ( ) in

More information

CIRCLES: #1. What is an equation of the circle at the origin and radius 12?

CIRCLES: #1. What is an equation of the circle at the origin and radius 12? 1 Pre-AP Algebra II Chapter 10 Test Review Standards/Goals: E.3.a.: I can identify conic sections (parabola, circle, ellipse, hyperbola) from their equations in standard form. E.3.b.: I can graph circles

More information

PHYS 106 Fall 2151 Homework 3 Due: Thursday, 8 Oct 2015

PHYS 106 Fall 2151 Homework 3 Due: Thursday, 8 Oct 2015 PHYS 106 Fall 2151 Homework 3 Due: Thursday, 8 Oct 2015 When you do a calculation, show all your steps. Do not just give an answer. You may work with others, but the work you submit should be your own.

More information

Mathematics Precalculus: Academic Unit 7: Conics

Mathematics Precalculus: Academic Unit 7: Conics Understandings Questions Knowledge Vocabulary Skills Conics are models of real-life situations. Conics have many reflective properties that are used in every day situations Conics work can be simplified

More information

Conic Sections and Polar Graphing Lab Part 1 - Circles

Conic Sections and Polar Graphing Lab Part 1 - Circles MAC 1114 Name Conic Sections and Polar Graphing Lab Part 1 - Circles 1. What is the standard equation for a circle with center at the origin and a radius of k? 3. Consider the circle x + y = 9. a. What

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Distance and Midpoint Formula 7.1

Distance and Midpoint Formula 7.1 Distance and Midpoint Formula 7.1 Distance Formula d ( x - x ) ( y - y ) 1 1 Example 1 Find the distance between the points (4, 4) and (-6, -). Example Find the value of a to make the distance = 10 units

More information

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS A1.1. Kepler s laws Johannes Kepler (1571-1630) discovered the laws of orbital motion, now called Kepler's laws.

More information

Lecture 15 - Orbit Problems

Lecture 15 - Orbit Problems Lecture 15 - Orbit Problems A Puzzle... The ellipse shown below has one focus at the origin and its major axis lies along the x-axis. The ellipse has a semimajor axis of length a and a semi-minor axis

More information

Astron 104 Laboratory #5 The Orbit of Mars

Astron 104 Laboratory #5 The Orbit of Mars Name: Date: Section: Astron 104 Laboratory #5 The Orbit of Mars Section 1.3 Note: Use a pencil with a sharp point! Mark your data as accurately as possible. This table contains measurements by Tycho Brahe.

More information

Chapter 4 Thrills and Chills +Math +Depth Acceleration of the Moon +Concepts The Moon is 60 times further away from the center of Earth than objects on the surface of Earth, and moves about Earth in an

More information

Chapter 1 Analytic geometry in the plane

Chapter 1 Analytic geometry in the plane 3110 General Mathematics 1 31 10 General Mathematics For the students from Pharmaceutical Faculty 1/004 Instructor: Dr Wattana Toutip (ดร.ว ฒนา เถาว ท พย ) Chapter 1 Analytic geometry in the plane Overview:

More information

Johannes Kepler ( ) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it!

Johannes Kepler ( ) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it! Johannes Kepler (1571-1630) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it! Kepler s Life Work Kepler sought a unifying principle

More information

What is a Satellite? A satellite is an object that orbits another object. Ex. Radio satellite, moons, planets

What is a Satellite? A satellite is an object that orbits another object. Ex. Radio satellite, moons, planets Planetary Orbit Planetary Orbits What shape do planets APPEAR to orbit the sun? Planets APPEAR to orbit in a circle. What shape do the planets orbit the sun??? Each planet Orbits the Sun in an ellipse

More information

Welcome Accelerated Algebra 2!

Welcome Accelerated Algebra 2! Welcome Accelerated Algebra 2! U7H3: Worksheet 10.3 #15-22, 24-25, 27-30, 33 Complete on graph paper Updates: U7Q1 will be March 23 rd U7T will be April 3 rd Agenda (1) Warm-Up! (2) Review U7H1 + U7H2

More information

Conic Sections. Geometry - Conics ~1~ NJCTL.org. Write the following equations in standard form.

Conic Sections. Geometry - Conics ~1~ NJCTL.org. Write the following equations in standard form. Conic Sections Midpoint and Distance Formula M is the midpoint of A and B. Use the given information to find the missing point. 1. A(, 2) and B(3, -), find M 2. A(5, 7) and B( -2, -), find M 3. A( 2,0)

More information

Gravitation. Kepler s Law. BSc I SEM II (UNIT I)

Gravitation. Kepler s Law. BSc I SEM II (UNIT I) Gravitation Kepler s Law BSc I SEM II (UNIT I) P a g e 2 Contents 1) Newton s Law of Gravitation 3 Vector representation of Newton s Law of Gravitation 3 Characteristics of Newton s Law of Gravitation

More information

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 2012, Brooks/Cole

More information

Planetary motion around the Sun

Planetary motion around the Sun Planetary motion around the Sun Luciano Ancora Draft date February 25, 2016 Author s note This article is an example of essential synthesis (in only 7 pages) of the contents of an entire book of about

More information

Gravitation and the Waltz of the Planets

Gravitation and the Waltz of the Planets Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets

More information

Gravitation and the Waltz of the Planets. Chapter Four

Gravitation and the Waltz of the Planets. Chapter Four Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets

More information

Unit: Planetary Science

Unit: Planetary Science Orbital Motion Kepler s Laws GETTING AN ACCOUNT: 1) go to www.explorelearning.com 2) click on Enroll in a class (top right hand area of screen). 3) Where it says Enter class Code enter the number: MLTWD2YAZH

More information

Section 37 Kepler's Rules

Section 37 Kepler's Rules Section 37 Kepler's Rules What is the universe made out of and how do the parts interact? That was our goal in this course While we ve learned that objects do what they do because of forces, energy, linear

More information

Kepler's Laws and Newton's Laws

Kepler's Laws and Newton's Laws Kepler's Laws and Newton's Laws Kepler's Laws Johannes Kepler (1571-1630) developed a quantitative description of the motions of the planets in the solar system. The description that he produced is expressed

More information

D. 2πmv 2 (Total 1 mark)

D. 2πmv 2 (Total 1 mark) 1. A particle of mass m is moving with constant speed v in uniform circular motion. What is the total work done by the centripetal force during one revolution? A. Zero B. 2 mv 2 C. mv 2 D. 2πmv 2 2. A

More information

GRAVITATION. F = GmM R 2

GRAVITATION. F = GmM R 2 GRAVITATION Name: Partner: Section: Date: PURPOSE: To explore the gravitational force and Kepler s Laws of Planetary motion. INTRODUCTION: Newton s law of Universal Gravitation tells us that the gravitational

More information

Gravitation and the Motion of the Planets

Gravitation and the Motion of the Planets Gravitation and the Motion of the Planets 1 Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets go around

More information

Notes on Planetary Motion

Notes on Planetary Motion (1) Te motion is planar Notes on Planetary Motion Use 3-dimensional coordinates wit te sun at te origin. Since F = ma and te gravitational pull is in towards te sun, te acceleration A is parallel to te

More information

x y = 1. The star could have been placed on the negative x-axis, and the answer would still be the same.

x y = 1. The star could have been placed on the negative x-axis, and the answer would still be the same. Example 1.3.7. The orbit of a planet has the shape of an ellipse, and on one of the foci is the star around which it revolves. The planet is closest to the star when it is at one vertex. It is farthest

More information

The Eccentricity Story

The Eccentricity Story The Eccentricity Story Introduction The concept of eccentricity, like the general equation A By Cy D Ey F = 0 is a unifying concept for the conic sections: circle, ellipse, parabola, and hyperbola. One

More information

VISUAL PHYSICS ONLINE

VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE EXCEL SIMULATION MOTION OF SATELLITES DOWNLOAD the MS EXCEL program PA50satellite.xlsx and view the worksheet Display as shown in the figure below. One of the most important questions

More information

Lecture Outline. Chapter 13 Gravity Pearson Education, Inc. Slide 13-1

Lecture Outline. Chapter 13 Gravity Pearson Education, Inc. Slide 13-1 Lecture Outline Chapter 13 Gravity Slide 13-1 The plan Lab this week: exam problems will put problems on mastering for chapters without HW; will also go over exam 2 Final coverage: now posted; some sections/chapters

More information

Chapter 13: universal gravitation

Chapter 13: universal gravitation Chapter 13: universal gravitation Newton s Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler s Laws and the Motion of Planets Spherical Mass Distributions Apparent

More information

Today. Laws of Motion. Conservation Laws. Gravity. tides

Today. Laws of Motion. Conservation Laws. Gravity. tides Today Laws of Motion Conservation Laws Gravity tides Newton s Laws of Motion Our goals for learning: Newton s three laws of motion Universal Gravity How did Newton change our view of the universe? He realized

More information

Physics Lecture 03: FRI 29 AUG

Physics Lecture 03: FRI 29 AUG Physics 23 Jonathan Dowling Isaac Newton (642 727) Physics 23 Lecture 03: FRI 29 AUG CH3: Gravitation III Version: 8/28/4 Michael Faraday (79 867) 3.7: Planets and Satellites: Kepler s st Law. THE LAW

More information

Chapter 2: Orbits and Launching Methods

Chapter 2: Orbits and Launching Methods 9/20/ Chapter 2: Orbits and Launching Methods Prepared by Dr. Mohammed Taha El Astal EELE 6335 Telecom. System Part I: Satellite Communic ations Winter Content Kepler s First, Second, and Third Law Definitions

More information

The History of Astronomy. Please pick up your assigned transmitter.

The History of Astronomy. Please pick up your assigned transmitter. The History of Astronomy Please pick up your assigned transmitter. When did mankind first become interested in the science of astronomy? 1. With the advent of modern computer technology (mid-20 th century)

More information

Honors Precalculus Chapter 8 Summary Conic Sections- Parabola

Honors Precalculus Chapter 8 Summary Conic Sections- Parabola Honors Precalculus Chapter 8 Summary Conic Sections- Parabola Definition: Focal length: y- axis P(x, y) Focal chord: focus Vertex x-axis directrix Focal width/ Latus Rectum: Derivation of equation of parabola:

More information

Chapter 13. Universal Gravitation

Chapter 13. Universal Gravitation Chapter 13 Universal Gravitation Planetary Motion A large amount of data had been collected by 1687. There was no clear understanding of the forces related to these motions. Isaac Newton provided the answer.

More information

Physics General Physics. Lecture 8 Planetary Motion. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 8 Planetary Motion. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 8 Planetary Motion Fall 2016 Semester Prof. Matthew Jones 1 First Midterm Exam Tuesday, October 4 th, 8:00-9:30 pm Location: PHYS 112 and WTHR 200. Covering material

More information

Universal Gravitation

Universal Gravitation Universal Gravitation Newton s Law of Universal Gravitation Every particle in the Universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely

More information

FROM NEWTON TO KEPLER. One simple derivation of Kepler s laws from Newton s ones.

FROM NEWTON TO KEPLER. One simple derivation of Kepler s laws from Newton s ones. italian journal of pure and applied mathematics n. 3 04 (393 400) 393 FROM NEWTON TO KEPLER. One simple derivation of Kepler s laws from Newton s ones. František Mošna Department of Mathematics Technical

More information

December 16, Conic sections in real life.notebook

December 16, Conic sections in real life.notebook OCCURRENCE OF THE CONICS Mathematicians have a habit of studying, just for the fun of it, things that seem utterly useless; then centuries later their studies turn out to have enormous scientific value.

More information

5.1. Accelerated Coordinate Systems:

5.1. Accelerated Coordinate Systems: 5.1. Accelerated Coordinate Systems: Recall: Uniformly moving reference frames (e.g. those considered at 'rest' or moving with constant velocity in a straight line) are called inertial reference frames.

More information

Gravity and the Orbits of Planets

Gravity and the Orbits of Planets Gravity and the Orbits of Planets 1. Gravity Galileo Newton Earth s Gravity Mass v. Weight Einstein and General Relativity Round and irregular shaped objects 2. Orbits and Kepler s Laws ESO Galileo, Gravity,

More information