Keith Hawkins Columbia Univ. (Simons Fellow) 25 April 2017

Size: px
Start display at page:

Download "Keith Hawkins Columbia Univ. (Simons Fellow) 25 April 2017"

Transcription

1 Red Clump Stars, Stellar Twins, and the Prospects of Chemical Cartography with Gaia Keith Hawkins Columbia Univ. (Simons Fellow) 25 April 217 Ignace Gaston Pardies, Star Map Plate 2: Cetus, Aquarius, Andromeda. etc, Paris, 1693

2 A Vision of Chemical Cartography [Mg/Fe] as a function of spatial position in Gaia-ESO Adapted from Greg Stinson and Maria Bergemann. Ingredients : chemical abundances, Distances, sky positions, ages?

3 What can cartography tell us chemical history across the galaxy chemical substructure Radial migration Hayden+215 Note: This (and many Galactic structure) work(s) made use of Red Clump Stars

4 Ingredient 1: chemical abundances credit: commons.wikimedia.org

5 The Era of Large Surveys N ~ 1, 25+ elements 212 N ~ 1,, N ~ 1,, 15+ elements 18+? elements ? N ~ 1, 15 (2*+) elements 28 N ~ 483, 8+ elements

6 Chemical Labeling Galactic components cluster in chemical space! (cartography is the next step > need distances) R. Wyse Talk, Hawkins+ 215b; see also Hogg+216, Blanco-Carisma +216, Lambert+217, Ness+217; and many others

7 Ingredient 2: Distances Red clump stars (Stanek+1998, ) stellar twins (Jofre+216, )

8 Distances: Red Clump Red clump Use Gaia parallaxes to assess: (1) How good of a standard candle is the RC? (2) Update magnitude of RC in J, H, Ks, W1, W2, W3, W4, G, NUV*

9 Red Clump Datasets G-K Parallax cut at 3% (prior v.s. data dominated posterior) N ~ 97 (3%) N ~ 18 (1%) MK -62 (Laney+212) APOKASC (Elsworth+216), APOGEE-RC (Bovy +214), Laney+212, APO1m (Feuillet+216)

10 Distances: Red Clump The Model N Mλ

11 Distances: Red Clump The Model RC N Mλ

12 Distances: Red Clump The Model RC N Contaminates Mλ

13 Distances: Red Clump The Model M, σ M RC M c =M, σ Mc cont. f out fraction of contamination RC N Contaminates Mλ

14 Distances: Red Clump The Model N M, σ M RC M c =M, σ Mc cont. f out fraction of contamination Other important parameter(s): L scale-length of exponentially decreasing RC space density prior (Bailer-Jones+ 215; Astraatmadja+216) Contaminates Mλ

15 Distances: Red Clump The Model N M, σ M RC M c =M, σ Mc cont. f out fraction of contamination Other important parameter(s): L scale-length of exponentially decreasing RC space density prior (Bailer-Jones+ 215; Astraatmadja+216) Nuisance parameters : - distance - Extinction Contaminates Mλ

16 Distances: Red Clump The Model N M, σ M RC M c =M, σ Mc cont. f out fraction of contamination Other important parameter(s): L scale-length of exponentially decreasing RC space density prior (Bailer-Jones+ 215; Astraatmadja+216) Nuisance parameters : - distance - Extinction Contaminates Use STAN statistical software to sample posterior in parameters Mλ

17 Red Clump K(JHG+)-Magnitude Mk = -62 +/- 13 ; σmk = 17+/- 2; fout ~ 17% M = abs mag M= σm = dispersion of abs mag = σm,out = dispersion of abs mag of L = scale-length outlier of exponential = M,out L (pc) = fout = contamination fraction fout = M L (pc) M,out M fout L (pc) 8 M,out 2 decreasing space density prior 21 M M fout Hawkins+ 217 in prep

18 Red Clump K(JHG+)-Magnitude Mk = -62 +/- 13 ; σmk = 17+/- 2; fout ~ 17% M = abs mag M= σm = dispersion of abs mag (1) (2) σm,out = dispersion of abs mag of L = scale-length outlier of exponential = M,out L (pc) = out M L (pc) M,out M 65 fout = M,out L (pc) fout = Consistent with literature in K s decreasing space density dispersion sets floor of ~1% prior distance uncertainty f = contamination (fair standard candle) fraction M M fout Hawkins+ 217 in prep

19 Red Clump K(JHG+)-Magnitude Agreement with literature: Good New Fair Poor Hawkins+ 217, in prep

20 M M M,out L (pc) fout M,out M,out L (pc) 75 M 9 5 M fout RC in Galex NUV New M = σm = 83 +/- 7!! = = L (pc) = fout =

21 RC in Galex NUV New Mohammed+ (with KH), 217 in prep

22 RC in Galex NUV New Takeaway: RC is a good standard candle; but the bluer the band the more population effects (e.g. [Fe/H]) should be accounted for 2. Photometric Metallicity index using NUV Mohammed+ (with KH), 217 in prep

23 Stellar Twins Interests: Use twins to map the bulge, obtain distances to stars at larger distances than Gaia can reach credit: IoA, Cambridge

24 Distances: Stellar Twins Jofre et al. 216

25 Distances: Stellar Twins Twins used to help settle Pleiades debate Mädler et al. (incl. KH) 216 Figure taken from Gaia collab. et al. 216

26 Stellar Twins in APOGEE Alternative ways to find stellar twins: χ 2 ~6 APOGEE-TGAS stars with quality spectra+aspcap params

27 Stellar Twins in APOGEE Alternative ways to find stellar twins: χ 2 < ( $/$TGAS) > ( $/$TGAS)

28 Stellar Twins in APOGEE Alternative ways to find stellar twins: χ 2

29 Stellar Twins in APOGEE Alternative ways to find stellar twins: χ 2

30 Stellar Twins in APOGEE Alternative ways to find stellar twins: χ 2

31 What are the Prospects for chemical cartography? [Mg/Fe] as a function of spatial position in Gaia-ESO Adapted from Greg Stinson and Maria Bergemann.

32 What are the Prospects for chemical cartography? [Mg/Fe] as a function of spatial position in Gaia-ESO Adapted from Greg Stinson and Maria Bergemann. Great! with RC stars, Gaia, stellar twins and a ton of large surveys for chemistry.

Action-based Dynamical Modeling of the Milky Way Disk with Gaia & RAVE

Action-based Dynamical Modeling of the Milky Way Disk with Gaia & RAVE IAU Symposium 330 Nice, 27. April 2017 Action-based Dynamical Modeling of the Milky Way Disk with Gaia & RAVE Wilma Trick (MPIA, Heidelberg) Hans-Walter Rix (MPIA) Jo Bovy (Uni Toronto) Open Questions

More information

Bayesian inference using Gaia data. Coryn Bailer-Jones Max Planck Institute for Astronomy, Heidelberg

Bayesian inference using Gaia data. Coryn Bailer-Jones Max Planck Institute for Astronomy, Heidelberg Bayesian inference using Gaia data Coryn Bailer-Jones Max Planck Institute for Astronomy, Heidelberg What is Bayes? an approach to learning (= inference) given data on a phenomenon, determine how well

More information

The Thick Thin Disk and the Thin Thick Disk: a New Paradigm from Gaia

The Thick Thin Disk and the Thin Thick Disk: a New Paradigm from Gaia The Thick Thin Disk and the Thin Thick Disk: a New Paradigm from Gaia Michael Hayden Alejandra Recio-Blanco, Patrick de Laverny, Sarunas Mikolaitis, Guillaume Guiglion, Anastasia Titarenko Observatoire

More information

"The Gaia distances" Jan Rybizki (MPIA CU8) Gaia Data Workshop Heidelberg 06/19/18

The Gaia distances Jan Rybizki (MPIA CU8) Gaia Data Workshop Heidelberg 06/19/18 "The Gaia distances" Jan Rybizki (MPIA CU8) Gaia Data Workshop Heidelberg 06/19/18 "The Gaia distances" Jan Rybizki (MPIA CU8) Gaia Data Workshop Heidelberg 06/19/18 Estimating distances from parallaxes

More information

Chemical evolution of the Galactic disk using Open Clusters

Chemical evolution of the Galactic disk using Open Clusters Chemical evolution of the Galactic disk using Open Clusters ICC Winter Meeting Feb 2017 1. Galactic Archaeology Unravel the formation and evolution of the Milky Way (MW) Resolved stars provide a fossil

More information

CHARA 2016: Adaptive Optics and Perspectives on Visible Interferometry

CHARA 2016: Adaptive Optics and Perspectives on Visible Interferometry PAVO Science Update Tim White (Aarhus), Daniel Huber (Sydney), Iva Karovicova (Heidelberg), Ethan Ryan (Sydney), Amalie Stockholm (Aarhus), Benjamin Pope (Oxford), Peter Tuthill (Sydney), Mike Ireland

More information

Gaia DR2 and/versus RAVE DR5: application for the semi-analytic thin disk model

Gaia DR2 and/versus RAVE DR5: application for the semi-analytic thin disk model Gaia DR2 and/versus RAVE DR5: application for the semi-analytic thin disk model Speaker: Supervisor: Kseniia Sysoliatina (ARI) Prof. Dr. Andreas Just Gaia DR2 workshop Heidelberg, Outline (1) Comparison

More information

Astronomisches Rechen-Institut Heidelberg, Germany. The evolution history of the extended solar neighbourhood

Astronomisches Rechen-Institut Heidelberg, Germany. The evolution history of the extended solar neighbourhood Astronomisches Rechen-Institut Heidelberg, Germany The evolution history of the extended solar neighbourhood Andreas Just Kseniia Sysoliatina, Ioanna Koutsouridou Content Dynamical disc model Local model

More information

Encuentros en la Segunda Fase: Gaia DR2

Encuentros en la Segunda Fase: Gaia DR2 Encuentros en la Segunda Fase: Gaia DR2 Laura Ruiz-Dern R. Lallement, L. Capitanio, C. Danielski, C. Babusiaux, J.L. Vergely, M. Elyajouri, F. Arenou, N. Leclerc GEPI, Observatoire de Paris Meudon REG,

More information

2016 NYC Gaia Sprint. final wrap-up session

2016 NYC Gaia Sprint. final wrap-up session 2016 NYC Gaia Sprint final wrap-up session Acknowledgements This project was developed in part at the 2016 NYC Gaia Sprint, hosted by the Center for Computational Astrophysics at the Simons Foundation

More information

Gaia News:Counting down to launch A. Vallenari. INAF, Padova Astronomical Observatory on behalf of DPACE

Gaia News:Counting down to launch A. Vallenari. INAF, Padova Astronomical Observatory on behalf of DPACE Gaia News:Counting down to launch A. Vallenari INAF, Padova Astronomical Observatory on behalf of DPACE Outline Gaia Spacecraft status The Gaia sky Gaia open and globular clusters From data to science:

More information

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran The Gaia Mission Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany ISYA 2016, Tehran What Gaia should ultimately achieve high accuracy positions, parallaxes, proper motions e.g.

More information

Tristan Cantat-Gaudin

Tristan Cantat-Gaudin Open Clusters in the Milky Way with Gaia ICCUB Winter Meeting 1-2 Feb 2018, Barcelona Tristan Cantat-Gaudin Carme Jordi, Antonella Vallenari, Laia Casamiquela, and Gaia people in Barcelona and around the

More information

Building the cosmic distance scale: from Hipparcos to Gaia

Building the cosmic distance scale: from Hipparcos to Gaia The Fundamental Distance Scale: state of the art and the Gaia perspectives 3-6 May 2011 Building the cosmic distance scale: from Hipparcos to Gaia Catherine TURON and Xavier LURI 1 ESA / ESO-H. Heyer Fundamental

More information

Exploring the structure and evolu4on of the Milky Way disk

Exploring the structure and evolu4on of the Milky Way disk Exploring the structure and evolu4on of the Milky Way disk Results from the Gaia-ESO survey and plans for 4MOST Thomas Bensby Dept. of Astronomy and Theore3cal Physics Lund University Sweden Chemistry

More information

Metal-poor stars observed by the Gaia-ESO Survey (and other large surveys)

Metal-poor stars observed by the Gaia-ESO Survey (and other large surveys) Metal-poor stars observed by the Gaia-ESO Survey (and other large surveys) Rodolfo Smiljanic Nicolaus Copernicus Astronomical Center Warsaw/Poland (image credit: ESA/ESO) Cool Stars 20, July 29 - August

More information

Following the evolution of the Galactic disc with Open Clusters

Following the evolution of the Galactic disc with Open Clusters Following the evolution of the Galactic disc with Open Clusters Laura Magrini INAF-Osservatorio Astrofisico di Arcetri With Nikos Prantzos and the GES collaboration (in particular Lorenzo Spina, Sofia

More information

Pre-observations and models

Pre-observations and models Pre-observations and models Carine Babusiaux Observatoire de Paris - GEPI GREAT-ITN, IAC, September 2012 The questions 1) Can the observing program tackle the scientific problem? 2) What is the best configuration

More information

Chemo-dynamical disk modeling. Ivan Minchev Leibniz-Institut fur Astrophysik Potsdam (AIP)

Chemo-dynamical disk modeling. Ivan Minchev Leibniz-Institut fur Astrophysik Potsdam (AIP) Chemo-dynamical disk modeling Ivan Minchev Leibniz-Institut fur Astrophysik Potsdam (AIP) Talk outline Effect of disk asymmetries on disk dynamics. Radial migration in galactic disks. Chemo-dynamical disk

More information

Galaxy Evolution at High Resolution: The New View of the Milky Way's Disc. Jo Bovy (University of Toronto; Canada Research Chair)

Galaxy Evolution at High Resolution: The New View of the Milky Way's Disc. Jo Bovy (University of Toronto; Canada Research Chair) Galaxy Evolution at High Resolution: The New View of the Milky Way's Disc Jo Bovy (University of Toronto; Canada Research Chair) WHY THE MILKY WAY? WHY THE MILKY WAY? Detailed measurements of position,

More information

The Chemical/Dynamical Evolution of the Galactic Bulge

The Chemical/Dynamical Evolution of the Galactic Bulge Astro2020 Science White Paper The Chemical/Dynamical Evolution of the Galactic Bulge Thematic Areas: Stars and Stellar Evolution Resolved Stellar Populations and their Environments Galaxy Evolution Principal

More information

Age- Abundance Trends in the Solar Neighborhood. Diane Feuillet MPIA April 25, 2017 IAUS 330 Nice, France

Age- Abundance Trends in the Solar Neighborhood. Diane Feuillet MPIA April 25, 2017 IAUS 330 Nice, France Age- Abundance Trends in the Solar Neighborhood Diane Feuillet MPIA April 25, 2017 IAUS 330 Nice, France GalacNc Chemical EvoluNon Alpha elements Fe type elements [O/Fe] [Na/Fe] [Mg/Fe] [Cr/Fe] [Ca/Fe]

More information

Renegades in the Solar neighborhood

Renegades in the Solar neighborhood Title Renegades in the Solar neighborhood Ana Bonaca ITC Fellow Harvard University // Charlie Conroy // // Andrew Wetzel // Origin of the halo stars: In situ Eggen, Lynden-Bell & Sandage (1962) Accretion

More information

Overview of Gaia-ESO Survey results based on high-resolution spectra of FGK-type stars Rodolfo Smiljanic! (Gaia-ESO WG11 co-coordinator)

Overview of Gaia-ESO Survey results based on high-resolution spectra of FGK-type stars Rodolfo Smiljanic! (Gaia-ESO WG11 co-coordinator) Overview of Gaia-ESO Survey results based on high-resolution spectra of FGK-type stars Rodolfo Smiljanic! (Gaia-ESO WG11 co-coordinator) The Gaia-ESO Survey http://www.gaia-eso.eu Public spectroscopic

More information

Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia

Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia Shanghai Astronomical Observatory In collaboration with Juntai Shen, Xiang Xiang Xue, Chao Liu, Chris Flynn, Chengqun Yang Contents 1 Stellar Halo

More information

Abundance distribution in the Galactic thick disk

Abundance distribution in the Galactic thick disk Abundance distribution in the Galactic thick disk omas Bensby Lund Observatory, Department of Astronomy and eoretical Physics Discovery of thick disks (Burstein 1979, ApJ, 234, 829) Discovery of the Galactic

More information

Review of the Bulge Stellar Population And Comparison to the Nuclear Bulge

Review of the Bulge Stellar Population And Comparison to the Nuclear Bulge Review of the Bulge Stellar Population And Comparison to the Nuclear Bulge David M. Nataf, Australian National University 22 July, 2016 IAU Symposium 322, 'The Multi- Messenger Astrophysics of the Galactic

More information

JINA Observations, Now and in the Near Future

JINA Observations, Now and in the Near Future JINA Observations, Now and in the Near Future Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics Examples SDSS-I, II, and III

More information

RR Lyrae in Galex. RASPUTIN Resolved And unresolved Stellar PopUlaTIoNs

RR Lyrae in Galex. RASPUTIN Resolved And unresolved Stellar PopUlaTIoNs RR Lyrae in Galex Giuliano Giuffrida RASPUTIN Resolved And unresolved Stellar PopUlaTIoNs ASDC-INAF Giuseppe Bono (Univ. Tor Vergata Rome) Vittorio Braga (Univ. Tor Vergata Rome) Massimo Dall Ora (INAF-OACN)

More information

Distance and extinction determination for stars in LAMOST and APOGEE survey

Distance and extinction determination for stars in LAMOST and APOGEE survey Distance and extinction determination for stars in LAMOST and APOGEE survey 王建岭 (LAMOST, References: NAOC) Wang et al. 2015a, MNRAS, submitted Wang et al. 2015b, In preparation Outline Background: why

More information

Lecture 12. November 20, 2018 Lab 6

Lecture 12. November 20, 2018 Lab 6 Lecture 12 November 20, 2018 Lab 6 News Lab 4 Handed back next week (I hope). Lab 6 (Color-Magnitude Diagram) Observing completed; you have been assigned data if you were not able to observe. Due: instrumental

More information

The Milky Way s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution

The Milky Way s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution I S I The Milky Way s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution Yang Huang (LAMOST Fellow, yanghuang@pku.edu.cn) N G U N I V E R P E K T Y 1 8 9 8 Peking University

More information

Milky Way star clusters

Milky Way star clusters Using Γα ια for studying Milky Way star clusters Eugene Vasiliev Institute of Astronomy, Cambridge MODEST-, 26 June Overview of Gaia mission Scanning the entire sky every couple of weeks Astrometry for

More information

Gaia-LSST Synergy. A. Vallenari. INAF, Padova

Gaia-LSST Synergy. A. Vallenari. INAF, Padova Gaia-LSST Synergy A. Vallenari INAF, Padova The Galaxy view Unveiling the complex history of the MW assembly and internal evolution is still one of the main interest of astrophysics However the specific

More information

Making precise and accurate measurements with data-driven models

Making precise and accurate measurements with data-driven models Making precise and accurate measurements with data-driven models David W. Hogg Center for Cosmology and Particle Physics, Dept. Physics, NYU Center for Data Science, NYU Max-Planck-Insitut für Astronomie,

More information

Galactic Bulge Science

Galactic Bulge Science Galactic Bulge Science Ken Freeman Australian National University ngcfht meeting Hilo, Mar 27-29 2013 NGC 5746 1 The Galactic bulge was long thought to be a merger product. We now know that boxy bulges

More information

Combining Gaia DR1, DR2 and Matthias Steinmetz (AIP) a preview on the full Gaia dataset. Matthias Steinmetz (AIP)

Combining Gaia DR1, DR2 and Matthias Steinmetz (AIP) a preview on the full Gaia dataset. Matthias Steinmetz (AIP) Combining Gaia DR, DR and Matthias Steinmetz (AIP) a preview on the full Gaia dataset Matthias Steinmetz (AIP) a t a d h AS t 5 - TG E V & A R ase e l e r Ga lact ic D app y lica nam tion ics s Towards

More information

Galaxy simulations in the Gaia era. Ivan Minchev Leibniz-Institut fur Astrophysik Potsdam (AIP)

Galaxy simulations in the Gaia era. Ivan Minchev Leibniz-Institut fur Astrophysik Potsdam (AIP) Galaxy simulations in the Gaia era Ivan Minchev Leibniz-Institut fur Astrophysik Potsdam (AIP) What we think our Galaxy looks like GCS data (Hipparcos satellite) - the only pre-gaia sample with good proper

More information

The Gaia-ESO Spectroscopic Survey. Survey Co-PIs. Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs

The Gaia-ESO Spectroscopic Survey. Survey Co-PIs. Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs The Gaia-ESO Spectroscopic Survey Survey Co-PIs Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs Gaia-ESO survey context and motivations (conclusions and key words of several talks)

More information

The Thousand Parsec Open Cluster Survey establishing new benchmarks for star and planet evolu7on

The Thousand Parsec Open Cluster Survey establishing new benchmarks for star and planet evolu7on The Thousand Parsec Open Cluster Survey establishing new benchmarks for star and planet evolu7on Russel White (Georgia State University) With advice/insight from: Lynne Hillenbrand (Caltech) Sam Quinn

More information

Are open clusters chemically homogeneous? Fan Liu

Are open clusters chemically homogeneous? Fan Liu Are open clusters chemically homogeneous? Fan Liu Collaborators: Martin Asplund, David Yong, Sofia Feltzing, Jorge Melendez, Ivan Ramirez August 1 st 2018 Why open clusters are important? Open clusters

More information

Oxygen in red giants from near-infrared OH lines: 3D effects and first results from. Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto!

Oxygen in red giants from near-infrared OH lines: 3D effects and first results from. Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto! Oxygen in red giants from near-infrared OH lines: 3D effects and first results from Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto! Overview! 1. APOGEE: status and prospects! 2. A first look at

More information

The Apache Point Observatory Galactic Evolution Experiment. Ricardo Schiavon

The Apache Point Observatory Galactic Evolution Experiment. Ricardo Schiavon The Apache Point Observatory Galactic Evolution Experiment Ricardo Schiavon CS20, Boston, August 1st, 2018 Overview paper: Majewski, Schiavon et al. (2017) APOGEE at a Glance Dual hemisphere spectroscopic

More information

Inference of cluster distance and geometry from astrometry

Inference of cluster distance and geometry from astrometry Inference of cluster distance and geometry from astrometry Coryn A.L. Bailer-Jones Max Planck Institute for Astronomy, Heidelberg Email: calj@mpia.de 2017-12-01 Abstract Here I outline a method to determine

More information

Studying the Milky Way with pulsating stars

Studying the Milky Way with pulsating stars Studying the Milky Way with pulsating stars ( 東京大学 ) Noriyuki Matsunaga (The University of Tokyo) The first C-rich Miras found in the bulge All the AGB stars confirmed in the bulge were O-rich. C-rich

More information

Hypervelocity Stars. A New Probe for Near-Field Cosmology. Omar Contigiani. Supervisor: Dr. E.M. Rossi. Co-supervisor: Msc. T.

Hypervelocity Stars. A New Probe for Near-Field Cosmology. Omar Contigiani. Supervisor: Dr. E.M. Rossi. Co-supervisor: Msc. T. Hypervelocity Stars A New Probe for Near-Field Cosmology Omar Contigiani Student Colloquium, 20/06/2017, Leiden Co-supervisor: Msc. T. Marchetti Supervisor: Dr. E.M. Rossi Cosmic Web Near-Field Cosmology

More information

Substellar objects: Brown dwarfs and extrasolar planets

Substellar objects: Brown dwarfs and extrasolar planets Substellar objects: Brown dwarfs and extrasolar planets Basic information Class web site: http://www.mpia-hd.mpg.de/homes/goldman/course/ Material: slides, bibliography, useful links Max-Planck-Institut

More information

The Structure and Substructure of the Milky Way Galaxy Discs. Rosemary Wyse

The Structure and Substructure of the Milky Way Galaxy Discs. Rosemary Wyse The Structure and Substructure of the Milky Way Galaxy Discs Rosemary Wyse Hiroshima, 30 th November 2016 The Fossil Record: Galactic Archaeology Studying low-mass old stars near-field cosmology There

More information

Lecture 25: The Cosmic Distance Scale Sections 25-1, 26-4 and Box 26-1

Lecture 25: The Cosmic Distance Scale Sections 25-1, 26-4 and Box 26-1 Lecture 25: The Cosmic Distance Scale Sections 25-1, 26-4 and Box 26-1 Key Ideas The Distance Problem Geometric Distances Trigonometric Parallaxes Luminosity Distances Standard Candles Spectroscopic Parallaxes

More information

Asterseismology and Gaia

Asterseismology and Gaia Asterseismology and Gaia Asteroseismology can deliver accurate stellar radii and masses Huber et al 2017 compare results on distances from Gaia and asteroseismology for 2200 Kepler stars Asteroseismology

More information

Milky Way S&G Ch 2. Milky Way in near 1 IR H-W Rixhttp://online.kitp.ucsb.edu/online/galarcheo-c15/rix/

Milky Way S&G Ch 2. Milky Way in near 1 IR   H-W Rixhttp://online.kitp.ucsb.edu/online/galarcheo-c15/rix/ Why study the MW? its "easy" to study: big, bright, close Allows detailed studies of stellar kinematics, stellar evolution. star formation, direct detection of dark matter?? Milky Way S&G Ch 2 Problems

More information

Data-driven models of stars

Data-driven models of stars Data-driven models of stars David W. Hogg Center for Cosmology and Particle Physics, New York University Center for Data Science, New York University Max-Planck-Insitut für Astronomie, Heidelberg 2015

More information

The chemical evolution of the Galactic Bulge seen through micro-lensing events

The chemical evolution of the Galactic Bulge seen through micro-lensing events The chemical evolution of the Galactic Bulge seen through micro-lensing events Sofia Feltzing Lund Observatory Main collaborators: Martin Asplund (MPA),Thomas Bensby (Lund), Andy Gold (Ohio), Jennifer

More information

arxiv: v1 [astro-ph.ga] 24 May 2016

arxiv: v1 [astro-ph.ga] 24 May 2016 Mon. Not. R. Astron. Soc. 000, 1 15 (2008) Printed 5 September 2018 (MN LATEX style file v2.2) Distance and extinction determination for APOGEE stars with Bayesian method arxiv:1605.07300v1 [astro-ph.ga]

More information

TheGalacticDisk and Halo in the. Carlos Allende Prieto Instituto de Astrofísica de Canarias

TheGalacticDisk and Halo in the. Carlos Allende Prieto Instituto de Astrofísica de Canarias TheGalacticDisk and Halo in the GaiaEra Carlos Allende Prieto Instituto de Astrofísica de Canarias Introduction Hierarchical galaxy formation Galaxy disks Doubledisks seenin manydisk galaxies observed

More information

Detailed program of the Symposium

Detailed program of the Symposium Detailed program of the Symposium Invited reviews : 25 + 5 min Accepted oral contributions : 15 + 5 min List of posters in a separate file Monday! 24/04 Tuesday! 25/04 Wednesday! 26/04 Thrusday! 27/04

More information

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution Chap.3 The nature of Galactic components Overview of (old) Galactic components bulge, thick disk, metal-weak halo Globular clusters metallicity & age distribution Satellite galaxies spatial and metallicity

More information

Determination of [α/fe] and its Application to SEGUE F/G Stars. Young Sun Lee

Determination of [α/fe] and its Application to SEGUE F/G Stars. Young Sun Lee Determination of [α/fe] and its Application to SEGUE F/G Stars Young Sun Lee Research Group Meeting on June 16, 2010 Outline Introduction Why [α/fe]? Determination of [α/fe] Validation of estimate of [α/fe]

More information

The Impact of Gaia on Our Knowledge of Stars and Their Planets

The Impact of Gaia on Our Knowledge of Stars and Their Planets The Impact of Gaia on Our Knowledge of Stars and Their Planets A. Sozzetti INAF Osservatorio Astrofisico di Torino Know thy star know thy planet conference pasadena, 11/10/2017 The impact of Gaia on our

More information

A disk origin for inner stellar halo structures around the Milky Way

A disk origin for inner stellar halo structures around the Milky Way A disk origin for inner stellar halo structures around the Milky Way Adrian Price-Whelan (Princeton University)! adrn " adrianprw Kathryn Johnston, Allyson Sheffield, Chervin Laporte, Maria Bergemann,

More information

Spatial distribution of stars in the Milky Way

Spatial distribution of stars in the Milky Way Spatial distribution of stars in the Milky Way What kinds of stars are present in the Solar neighborhood, and in what numbers? How are they distributed spatially? How do we know? How can we measure this?

More information

Correlations between stellar dynamics and metallicity in the discs

Correlations between stellar dynamics and metallicity in the discs Correlations between stellar dynamics and metallicity in the discs Semi-analytic chemodynamical model of the Milky Way Jan Rybizki (Supervisor: Andreas Just) Astronomisches Rechen-Institut - Zentrum für

More information

arxiv:astro-ph/ v1 5 May 1997

arxiv:astro-ph/ v1 5 May 1997 The Zero Point of Extinction Toward Baade s Window Andrew Gould, Piotr Popowski, and Donald M. Terndrup arxiv:astro-ph/9705020v1 5 May 1997 Dept of Astronomy, Ohio State University, Columbus, OH 43210

More information

The halo is specially interesting because gravitational potential becomes dominated by the dark matter halo

The halo is specially interesting because gravitational potential becomes dominated by the dark matter halo Evidence for dark matter in the Milky Way Astr 511: Galactic Astronomy Winter Quarter 2015 University of Washington Željko Ivezić The halo is specially interesting because gravitational potential becomes

More information

STRUCTURE AND DYNAMICS OF GALAXIES

STRUCTURE AND DYNAMICS OF GALAXIES STRUCTURE AND DYNAMICS OF GALAXIES 23. Piet van der Kruit Kapteyn Astronomical Institute University of Groningen, the Netherlands www.astro.rug.nl/ vdkruit Beijing, September 2011 Outline The local Mass

More information

Radial Velocity Surveys. Matthias Steinmetz (AIP)

Radial Velocity Surveys. Matthias Steinmetz (AIP) Radial Velocity Surveys Matthias Steinmetz (AIP) The Galactic case for RV surveys Information on how galaxies form is locked in n the phase-space (position,velocities) Information is locked in stars (abundances)

More information

Gaia s view of star clusters

Gaia s view of star clusters Gaia s view of star clusters @Jos_de_Bruijne European Space Agency 15 November 2017 @ESAGaia #GaiaMission Figure courtesy ESA/Gaia/DPAC Gaia s first sky map Figure courtesy ESA/Gaia/DPAC Gaia s first sky

More information

Outline. c.f. Zhao et al. 2006, ChJA&A, 6, 265. Stellar Abundance and Galactic Chemical Evolution through LAMOST Spectroscopic Survey

Outline. c.f. Zhao et al. 2006, ChJA&A, 6, 265. Stellar Abundance and Galactic Chemical Evolution through LAMOST Spectroscopic Survey KIAA-CambridgeJoint Workshop on Near-Field Cosmology and Galactic Archeology ZHAO Gang National Astronomical Observatories, Chinese Academy of Sciences Dec 1-5, 2008 Beijing Outline LAMOST stellar spectroscopic

More information

The Besançon Galaxy Model development

The Besançon Galaxy Model development The Besançon Galaxy Model development Annie C. Robin and collaborators Institut UTINAM, OSU THETA, Université Bourgogne-Franche-Comté, Besançon, France Outline Population synthesis principles New scheme

More information

Mapping the oxygen abundance in an elliptical galaxy (NGC 5128)

Mapping the oxygen abundance in an elliptical galaxy (NGC 5128) Mapping the oxygen abundance in an elliptical galaxy (NGC 5128) Jeremy R. Walsh, ESO Collaborators: George H. Jacoby, GMT Observatory, Carnegie; Reynier Peletier, Kapteyn Lab., Groningen; Nicholas A. Walton,

More information

The Gaia-ESO Public Spectroscopic Survey a lesson for our community in use of limited telescope access. Gerry Gilmore Sofia Randich Gaia-ESO Co-PIs

The Gaia-ESO Public Spectroscopic Survey a lesson for our community in use of limited telescope access. Gerry Gilmore Sofia Randich Gaia-ESO Co-PIs The Gaia-ESO Public Spectroscopic Survey a lesson for our community in use of limited telescope access Gerry Gilmore Sofia Randich Gaia-ESO Co-PIs 1 We have Gaia! We want more Gaia will provide 60 million

More information

The Formation of Galaxy Nuclei

The Formation of Galaxy Nuclei The Formation of Galaxy Nuclei Anil Seth (Harvard-Smithsonian CfA University of Utah) Collaborators: Nadine Neumayer (ESO) Michele Cappellari (Oxford) Nelson Caldwell (Harvard-Smithsonian CfA), Bob Blum

More information

Galactic dynamics reveals Galactic history

Galactic dynamics reveals Galactic history Galactic dynamics reveals Galactic history Author: Ana Hočevar Advisor: dr. Tomaž Zwitter Department of Physics, University of Ljubljana March 18, 2006 Abstract Galaxy formation theory which predicts canibalism

More information

(Present and) Future Surveys for Metal-Poor Stars

(Present and) Future Surveys for Metal-Poor Stars (Present and) Future Surveys for Metal-Poor Stars Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics SDSS 1 Why the Fascination

More information

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way Figure 70.01 The Milky Way Wide-angle photo of the Milky Way Overview: Number of Stars Mass Shape Size Age Sun s location First ideas about MW structure Figure 70.03 Shapely (~1900): The system of globular

More information

Climbing the cosmic ladder with stellar twins in RAVE with Gaia

Climbing the cosmic ladder with stellar twins in RAVE with Gaia Advance Access publication 2017 August 14 doi:10.1093/mnras/stx1877 Climbing the cosmic ladder with stellar twins in RAVE with Gaia P. Jofré, 1,2 G. Traven, 3 K. Hawkins, 4 G. Gilmore, 1 J. L. Sanders,

More information

Chemistry & Dynamics of the Milky Way From Before Hipparcos Until Gaia

Chemistry & Dynamics of the Milky Way From Before Hipparcos Until Gaia Chemistry & Dynamics of the Milky Way From Before Hipparcos Until Gaia J. Andersen 1,2, B. Nordström 1,2 1 Dark Cosmology Centre, The Niels Bohr Institute, University of Copenhagen, Denmark 2 Stellar Astrophysics

More information

The Stellar Low-Mass IMF: SDSS Observations of 15 Million M Dwarfs

The Stellar Low-Mass IMF: SDSS Observations of 15 Million M Dwarfs The Stellar Low-Mass IMF: SDSS Observations of 15 Million M Dwarfs John Bochanski (Penn State) Origins of Stellar Masses October 21st, 2010 Suzanne Hawley (UW), Kevin Covey (Cornell), Andrew West (BU),

More information

arxiv: v1 [astro-ph.sr] 18 Oct 2016

arxiv: v1 [astro-ph.sr] 18 Oct 2016 Astronomy & Astrophysics manuscript no. Galli_printer c ESO 2016 October 19, 2016 A revised moving cluster distance to the Pleiades open cluster P.A.B. Galli 1, 2, 3, E. Moraux 1, 2, H. Bouy 4, J. Bouvier

More information

Spectroscopy of giants and supergiants! Maria Bergemann MPIA Heidelberg"

Spectroscopy of giants and supergiants! Maria Bergemann MPIA Heidelberg Spectroscopy of giants and supergiants! Maria Bergemann MPIA Heidelberg" Spectroscopy of (cool) giants and supergiants! Maria Bergemann MPIA Heidelberg" Outline! Motivation why do spectroscopy of giant

More information

Cosmologia locale: origine e storia della Via Lattea

Cosmologia locale: origine e storia della Via Lattea Cosmologia locale: origine e storia della Via Lattea Mario G. Lattanzi (OATo) & Michele Bellazzini (OABo) Roma, 14 feb 2013 L Italia in Gaia, INAF Hq Collaborators Anna Curir Alessandro Spagna Francesca

More information

Page # Astronomical Distances. Lecture 2. Astronomical Distances. Cosmic Distance Ladder. Distance Methods. Size of Earth

Page # Astronomical Distances. Lecture 2. Astronomical Distances. Cosmic Distance Ladder. Distance Methods. Size of Earth Size of Astronomical istances ecture 2 Astronomical istances istance to the Moon (1 sec) istance to the Sun (8 min) istance to other stars (years) istance to centre of our Galaxy ( 30,000 yr to centre)

More information

Gaia. Stereoscopic Census of our Galaxy. one billion pixels for one billion stars

Gaia. Stereoscopic Census of our Galaxy. one billion pixels for one billion stars Gaia Stereoscopic Census of our Galaxy http://www.cosmos.esa.int/web/gaia http://gaia.ac.uk one billion pixels for one billion stars one percent of the visible Milky Way Gerry Gilmore FRS, UK Gaia PI,

More information

CHARA/NPOI 2013 Science & Technology Review MIRC Observations of the O-star Triple Sigma Orionis

CHARA/NPOI 2013 Science & Technology Review MIRC Observations of the O-star Triple Sigma Orionis MIRC Observations of the O-star Triple Sigma Orionis Gail Schaefer Doug Gies John Monnier Nils Turner New Title: Do NPOI and CHARA Orbits Agree?... stay tuned... Sigma Orionis Image credit: Peter Wienerroither

More information

Blue straggler stars beyond the Milky Way On the origin of blue straggler stars in Magellanic Cloud clusters

Blue straggler stars beyond the Milky Way On the origin of blue straggler stars in Magellanic Cloud clusters Blue straggler stars beyond the Milky Way On the origin of blue straggler stars in Magellanic Cloud clusters Chengyuan Li (Macquarie University) Weijia Sun, Richard de Grijs, Licai Deng Blue straggler

More information

Tests of MATISSE on large spectral datasets from the ESO Archive

Tests of MATISSE on large spectral datasets from the ESO Archive Tests of MATISSE on large spectral datasets from the ESO Archive Preparing MATISSE for the ESA Gaia Mission C.C. Worley, P. de Laverny, A. Recio-Blanco, V. Hill, Y. Vernisse, C. Ordenovic and A. Bijaoui

More information

Recent developments on the formation and evolution of young low-mass stars

Recent developments on the formation and evolution of young low-mass stars Recent developments on the formation and evolution of young low-mass stars Rob Jeffries Keele University, UK Observations of young clusters that probe: The influence of magnetic activity and rotation on

More information

Normal Galaxies ASTR 2120 Sarazin

Normal Galaxies ASTR 2120 Sarazin Normal Galaxies ASTR 2120 Sarazin Test #2 Monday, April 8, 11-11:50 am ASTR 265 (classroom) Bring pencils, paper, calculator You may not consult the text, your notes, or any other materials or any person

More information

A wide brown dwarf binary around a planet-host star

A wide brown dwarf binary around a planet-host star A wide brown dwarf binary around a planet-host star Nicolas Lodieu (1, 2, 3) (1) Instituto de Astrofisica de Canarias (IAC, Tenerife) (2) Universidad de La Laguna (ULL, Tenerife) (3) Ramon y Cajal fellow

More information

Reddening map of the Large Magellanic Cloud bar region. A. Subramaniam

Reddening map of the Large Magellanic Cloud bar region. A. Subramaniam A&A 430, 421 426 (2005) DOI: 10.1051/0004-6361:20041279 c ESO 2005 Astronomy & Astrophysics Reddening map of the Large Magellanic Cloud bar region A. Subramaniam Indian Institute of Astrophysics, II Block,

More information

The Cepheid distance to the LMC from the first results of the VISTA Magellanic Cloud (VMC) Survey.

The Cepheid distance to the LMC from the first results of the VISTA Magellanic Cloud (VMC) Survey. The Cepheid distance to the LMC from the first results of the VISTA Magellanic Cloud (VMC) Survey. Vincenzo Ripepi Marcella Marconi Maria Ida Moretti Gisella Clementini Maria Rosa Cioni INAF-Osservatorio

More information

Techniques for measuring astronomical distances generally come in two variates, absolute and relative.

Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Chapter 6 Distances 6.1 Preliminaries Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Absolute distance measurements involve objects possibly unique

More information

Estimating the mass of our Milky Way from the LAMOST Galactic spectroscopic survey

Estimating the mass of our Milky Way from the LAMOST Galactic spectroscopic survey 2 nd LAMOST KEPLER WORKSHOP LAMOST in the era of large spectroscopic surveys July 31-August 3, 2017, @ Brussels Estimating the mass of our Milky Way from the LAMOST Galactic spectroscopic survey Yang Huang

More information

ESTIMATING DISTANCES FROM PARALLAXES. III. DISTANCES OF TWO MILLION STARS IN THE Gaia DR1 CATALOGUE

ESTIMATING DISTANCES FROM PARALLAXES. III. DISTANCES OF TWO MILLION STARS IN THE Gaia DR1 CATALOGUE Accepted to ApJ 28 September 206 Preprint typeset using L A TEX style AASTeX6 v..0 ESTIMATING DISTANCES FROM PARALLAXES. III. DISTANCES OF TWO MILLION STARS IN THE Gaia DR CATALOGUE Tri L. Astraatmadja,2

More information

Dynamics of the Milky Way

Dynamics of the Milky Way Jason Sanders (Oxford IoA) with James Binney Dynamics of the Milky Way Tidal streams & Extended Distribution Functions for the Galactic Disc Whistle-stop tour of a PhD Where is the dark matter? We can

More information

This Week in Astronomy

This Week in Astronomy Homework #8 Due Wednesday, April 18, 11:59PM Covers Chapters 15 and 16 Estimated time to complete: 40 minutes Read chapters, review notes before starting This Week in Astronomy Credit: NASA/JPL-Caltech

More information

Astr 598: Astronomy with SDSS. Spring Quarter 2004, University of Washington, Željko Ivezić. Lecture 6: Milky Way Structure I: Thin and Thick Disks

Astr 598: Astronomy with SDSS. Spring Quarter 2004, University of Washington, Željko Ivezić. Lecture 6: Milky Way Structure I: Thin and Thick Disks Astr 598: Astronomy with SDSS Spring Quarter 004, University of Washington, Željko Ivezić Lecture 6: Milky Way Structure I: Thin and Thick Disks Stellar Counts There is a lot of information about the Milky

More information

The Cosmological Distance Ladder. It's not perfect, but it works!

The Cosmological Distance Ladder. It's not perfect, but it works! The Cosmological Distance Ladder It's not perfect, but it works! First, we must know how big the Earth is. Next, we must determine the scale of the solar system. Copernicus (1543) correctly determined

More information

Chapter 10: Unresolved Stellar Populations

Chapter 10: Unresolved Stellar Populations Chapter 10: Unresolved Stellar Populations We now consider the case when individual stars are not resolved. So we need to use photometric and spectroscopic observations of integrated magnitudes, colors

More information

STELLAR LIFETIMES AND ABUNDANCE GRADIENTS: HINTS FROM CENTRAL STARS OF PLANETARY NEBULAE

STELLAR LIFETIMES AND ABUNDANCE GRADIENTS: HINTS FROM CENTRAL STARS OF PLANETARY NEBULAE STELLAR LIFETIMES AND ABUNDANCE GRADIENTS: HINTS FROM CENTRAL STARS OF PLANETARY NEBULAE W. J. Maciel University of São Paulo Brazil R. D. D. Costa T. S. Rodrigues 3/27/13 ESO Workshop: The deaths of stars

More information