Studying the Milky Way with pulsating stars

Size: px
Start display at page:

Download "Studying the Milky Way with pulsating stars"

Transcription

1 Studying the Milky Way with pulsating stars ( 東京大学 ) Noriyuki Matsunaga (The University of Tokyo)

2 The first C-rich Miras found in the bulge All the AGB stars confirmed in the bulge were O-rich. C-rich Miras among OGLE-III Miras and those in Catchpole+16 Target selection based on (J-Ks) and (9-18) colors Low-resolution spectra from SAAO 74inch/SpUpNIC Boundaries for classification from Ishihara et al. (2011)

3 Distances to the C-rich Miras Relatively large errors remain due to the mix of interstellar and circumstellar extinction. P-W relation with J/Ks is useful to check the approximate positions. 4 Miras (and maybe another) are within the bulge. 3 foreground (including a symbiotic C-rich Mira in Miszalski+13) 4 members 1 background?

4 The origin of C-rich Miras It is unclear how these C-rich Miras were formed. Intermediate-age stars (around Gyr)?? Old objects evolved from stellar mergers?? Accretion from a (merged) dwarf galaxy?? They are tracing a rare stellar population in the bulge. Kinematics and chemical information may help uncover their origin(s). Matsunaga et al. (2017, MNRAS, 469, 4949)

5 Main topics Introduction Pulsating stars as tracers of the Galactic disk New Cepheids revealing the structure of the inner Galaxy and beyond Review of new Cepheids discovered since 2011 Concluding remarks

6 Introduction Pulsating stars as tracers of the Galactic disk

7 Pulsating stars as tracers Type II Cepheid RR Lyr Classical Cepheid Mira Period-luminosity relation Distance Unique evolutionary stage Age Kinematic and Chemical information can be added with follow-up studies. Gautchy & Saio (1995)

8 Ks [mag] As distance indicators Period-Luminosity relations of Cepheids and Miras in the LMC (from Matsunaga et al. 2009, 2011) Classical Cepheid Mira Longer-P Miras Type II Cepheid For Miras, P-L relations are narrow only in the IR (not in the optical) log(period/day)

9 As age indicators Type Initial Mass Age Classical Cepheids 4 10 M Myr Miras 1 6 M 100 Myr 10 Gyr Type II Cepheids ~1 M ~10 Gyr RR Lyrs ~1 M ~10 Gyr log (Age/yr) Myr Myr Period-Age relation of classical Cepheids (Bono et al. 2005) Myr 10Myr log (Period/day) Miras show a loose anticorrelation between age and period (see eg. Feast et al. 2006).

10 Metallicity gradient of Cepheids Higher metallicity towards the inner Galaxy. Cepheids ( Myr) show the most clear and tight metallicity gradient. Genovali et al. (2014, A&A, 566, 37) Genovali et al. (2015, A&A, 580, 17) [Na/Fe] [Fe/H] [Al/Fe] R GC [kpc] [Si/Fe] R GC [kpc]

11 MW Cepheids from classical surveys Distant Cepheids in the Galactic disk are obscured. Very important to extend the sample to a large space. Different locations along each spiral arm, a wider azimuth range, a wider range of Gactrocentric distance GC Sun The distribution of ~500 Cepheids from DDO database: overlaid on the illustration by GLIMPSE project (2008)

12 Cepheids waiting to be found Windmark et al. 2011, A&A, 530, A76 A simple exponential-disc model: f R, z = exp R 3.5kpc sech z z 0 20,000 Cepheids predicted (see ~2,000 new members from OGLE-IV in Udalski 2017, arxiv: ) 9,000 Cepheids may be detected by Gaia. to be detected by Gaia not to be detected by Gaia Sun GC Simulation of Cepheids to be detected by Gaia (Windmark et al. 2011)

13 Cepheids/Miras remain important. Many new to be found by OGLE, VVV, Gaia, LSST... No Gaia parallaxes for a large part of the disk. Cepheids and Miras are bright (especially in the IR) and can be detected across the disk. Gaia s first sky map (2016 Sep)

14 New Cepheids revealing the structure of the inner Galaxy and beyond Review of new Cepheids discovered since 2011

15 IRSF + SIRIUS 1.4-m telescope in Sutherland (SAAO) SIRIUS: FOV: about 7.7 x 7.7 Pixel Scale: /pix, Simultaneous JHK s images. It has been steadily working for over 17 years since 2000, during which 170+ papers were published. 24+ PhD theses (20 in JP, 3 in SA) Manchester, 25 June 2004

16

17 Matsunaga et al. (2011, Nature, 477, 188) 3 Cepheids from IRSF All 3 have P~20 days, aged ~25 Myr. ~0.1 M/yr at ~25 Myr ago

18 Soszynski et al. (2011, AcA, 61, 275) OGLE-III survey 32 classical Cepheids (based on P-W relation, all of them seem located beyond the bulge)

19 5 Cepheids in the disc flare Feast et al. 2014, Nature 509, 342 Based on IRSF photometric data, Estimated distances to 5 OGLE-III Cepheids toward the bulge (Soszynski et al. 2011). The kinematics from SALT spectroscopic data are consistent with the disc rotation. The first stars ever confirmed to be in the disc flare. Other OGLE Cepheids remain to be characterized better. Cepheids identified far from the plane

20 Dekany et al. (2015, ApJL, 799, L12; 2015, ApJL, 812, L29) Cepheids far behind the bulge (Soszynski et al. 2012; Feast et al. 2014) 37 classical Cepheids from VVV survey

21 Dekany et al. (2015, ApJL, 799, L12; 2015, ApJL, 812, L29) Cepheids far behind the bulge (Soszynski et al. 2012; Feast et al. 2014) 37 classical Cepheids from VVV survey Matsunaga et al. (2016, MNRAS, 462, 414) 26 Cepheids, from IRSF, in addition to the three in the Nuclear Stellar Disk

22 Conflicting results in 2015/2016 Dekany et al. (2015) and Matsunaga et al. (2016) reported significantly different distributions of Cepheids in the inner part of the Galactic disk. Our work (shallower) Dekany et al. (2015) 29 classical Ceps from IRSF/SIRIUS 37 classical Ceps from VVV 11 Cepheids are common, and μ 0 (ours) are systematically larger than μ 0 (Dekany et al.). Δμ 0 ~0.5 mag

23 Impact of the extinction law Conversion from a color excess to an extinction depends on the extinction law, A Ks /E(H K s ). These works consider the direction of the bulge. A classical value in Cardelli et al. (1989) Label Reference Data A Ks E H K s C89 Cardelli+1989 Mixed 1.82 N06 Nishiyama+2006 IRSF 1.44 N09 Nishiyama MASS 1.61 AG15 Alonso-Garcia+2015 VVV 1.28 M16 Majaess+2016 VVV 1.49

24 A(K s )/E(H-K s ) (and P-W relation) (μ 0, A Ks ) are derived with two-band magnitudes and PLRs. From the extinction law A Ks = A Ks E(H K s ) μ 0 = K s M Ks A Ks H K s (M H M Ks ) observed from PLR unknown Period-Wesenheit relations are also affected by the error in the extinction law. W HKs = K s γ (H K s ) This term doesn t work as a correction of the interstellar extinction unless γ is correct.

25 E H K s = 1. 5~2. 5 for our targets (the color excess can be determined regardless of the extinction law.) A K s E H K s Matsunaga et al. (2016) used the N06 coefficient. = A Ks = 2. 2~3. 6 A K s E H K s Dekany et al. (2015) used the N09 coefficient. = A Ks = 2. 4~4. 0 ~0.3 mag difference

26 4 Cepheids in the NSD One of the young stellar populations found in the NSD. Radial velocities also support the membership. These Cepheids are located at the distance of GC (8.0±0.5 kpc) and give a constraint on A Ks /E H-Ks. l-v diagram for Cepheids compared with CO gas and orbits around the GC 3 Cepheids within 35 pc (projected) of the GC +1 at ~50 pc Matsunaga et al. (2011) Matsunaga et al. (2015)

27 The λ 2 law towards Bulge The distance modulus to the GC (μ 0 =14.5±0.15 mag; Nishiyama+06b) y-axis: Apparent modulus =True modulus + Extinction Bulge red clumps split into many sub-regions give A Ks /E H-Ks =1.44 (Nishiyama+06a) x-axis: Color excess

28 The λ 2 law towards Bulge PLRs in H and Ks can put individual Cepheids on this diagram (without assuming the extinction law or the distance). y-axis: Apparent modulus =True modulus + Extinction 4 NSD Cepheids x-axis: Color excess

29 The λ 2 law towards Bulge The Nishiyama+06 law is consistent with that the 4 Cepheids are at the GC distance. y-axis: Apparent modulus =True modulus + Extinction A Ks /E H-Ks x-axis: Color excess

30 The λ 2 law towards Bulge A Ks /E H-Ks y-axis: Apparent modulus =True modulus + Extinction 25 other Cepheids in our survey x-axis: Color excess

31 The λ 2 law towards Bulge Also, we found no Cepheids on the nearer side. y-axis: Apparent modulus =True modulus + Extinction A Ks /E H-Ks x-axis: Color excess

32 The λ 2 law towards Bulge The extinction law of A(Ks)/E(H Ks)=1.44 is supported for the direction of the bulge. Very few Cepheids are present within ~2.5 kpc of the Galactic Centre except the NSD. Also see the discussion in the proceedings book for 22 nd Pulsation Conference at San Pedro (eds. M. Catelan & W. Gieren) y-axis: Apparent modulus =True modulus + Extinction A Ks /E H-Ks x-axis: Color excess

33 Classical Cepheids in the far side of the disk Cepheids far behind the bulge (Soszynski et al. 2012; Feast et al. 2014) 4 classical Cepheids in the Nuclear Stellar Disc Lack of classical Cepheids within 2.5 kpc of the GC except 4 in the Nuclear Stellar Disc ( l <2 deg) no simple exp. disc

34 Cepheids far behind the bulge (Soszynski et al. 2012; Feast et al. 2014) Tanioka et al. (2017, ApJ, 842, 104) 3 Cepheids from IRSF

35 Tanioka et al. (2017, ApJ, 842, 104) Monte-Carlo simulations allows us that two Cepheids rotate slower than the Galactic rotation (V LSR of Cepheids from Subaru/IRCS). Slow (3.1 σ) Large errors in (μ 0, A Ks ) remain by Cepheids considering far behind the the extinction bulge laws in (Soszynski Nishiyama+06 et al. 2012; and Feast Cardelli+89. et al. 2014) μ 0 = Consistent with MW rotation D (T2C) 3D extinction map (Schultheis+14) D (CC) μ 0 = Slow (1.6 σ) μ 0 =

36 Cepheids far behind the bulge (Soszynski et al. 2012; Feast et al. 2014) New near-ir survey for the northern disk (Yanagisawa-san s talk) OGLE Cepheids (Udalski, 2017, arxiv: )

37 Cepheids far behind the bulge (Soszynski et al. 2012; Feast et al. 2014) KISOGP survey l= deg ~100 Cepheids OGLE VVV Gaia for the entire range (except obscured region)

38 KISOGP survey l= deg ~100 Cepheids Cepheids far behind the bulge (Soszynski et al. 2012; Feast et al. 2014) New surveys are discovering Cepheids (and other variable stars) spread across the Galactic disk. Spectroscopy will be important to study the disk evolution, and must be efficient for >1000 objects. OGLE VVV Gaia for the entire range (except obscured region)

39 Concluding remarks

40 Concluding remarks A large number of new pulsating stars are expected from large surveys: OGLE, VVV, Gaia, LSST Characterizing the interstellar extinction is an urgent task for mapping the wide area of disk. Gaia s proper motions will be crucial. Talk by Kawata-san and more Spectroscopic follow-up will be crucial. Kinematics and chemical abundances demanded. Near-IR spectroscopic observations are required to observe new ones in the obscured regions. Talks by Ikeda-san and Fukue-san

Observing Miras as tracers of the inner part of the Milky Way

Observing Miras as tracers of the inner part of the Milky Way Observing Miras as tracers of the inner part of the Milky Way ( 東京大学 ) Noriyuki Matsunaga (The University of Tokyo) Outline Introduction Miras as tracers of the Milky Way Case study 1 Miras in the bulge

More information

arxiv: v1 [astro-ph.sr] 13 Apr 2018

arxiv: v1 [astro-ph.sr] 13 Apr 2018 AKARI color useful for classifying chemical types of Miras Noriyuki Matsunaga 1 1 Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan arxiv:1804.04940v1 [astro-ph.sr]

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 1. Identification of classical Cepheids: We identified three classical Cepheids amongst the 45 short-period variables discovered. Our sample includes classical Cepheids, type II Cepheids, eclipsing binaries

More information

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %). Galaxies Collection of stars, gas and dust bound together by their common gravitational pull. Galaxies range from 10,000 to 200,000 light-years in size. 1781 Charles Messier 1923 Edwin Hubble The distribution

More information

Techniques for measuring astronomical distances generally come in two variates, absolute and relative.

Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Chapter 6 Distances 6.1 Preliminaries Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Absolute distance measurements involve objects possibly unique

More information

Multi-wavelength study of the Milky Way Galaxy

Multi-wavelength study of the Milky Way Galaxy 29 th ASI Meeting ASI Conference Series, 2011, Vol. 3, pp 79 83 Edited by Pushpa Khare & C. H. Ishwara-Chandra Multi-wavelength study of the Milky Way Galaxy Shashikiran Ganesh Physical Research Laboratory,

More information

Recent Researches concerning Semi-Regular Variables

Recent Researches concerning Semi-Regular Variables Recent Researches concerning Semi-Regular Variables I.S. Glass (SAAO) ASSA Symposium, Durban 2008 Distances in the Universe - the distance ladder a summary Trig parallaxes only direct method Variable stars

More information

THE GALACTIC BULGE AS SEEN BY GAIA

THE GALACTIC BULGE AS SEEN BY GAIA 143 THE GALACTIC BULGE AS SEEN BY GAIA C. Reylé 1, A.C. Robin 1, M. Schultheis 1, S. Picaud 2 1 Observatoire de Besançon, CNRS UMR 6091, BP 1615, 25010 Besançon cedex, France 2 IAG/USP Departamento de

More information

The Milky Way Galaxy (ch. 23)

The Milky Way Galaxy (ch. 23) The Milky Way Galaxy (ch. 23) [Exceptions: We won t discuss sec. 23.7 (Galactic Center) much in class, but read it there will probably be a question or a few on it. In following lecture outline, numbers

More information

Chapter 14 The Milky Way Galaxy

Chapter 14 The Milky Way Galaxy Chapter 14 The Milky Way Galaxy Spiral Galaxy M81 - similar to our Milky Way Galaxy Our Parent Galaxy A galaxy is a giant collection of stellar and interstellar matter held together by gravity Billions

More information

Gaia News:Counting down to launch A. Vallenari. INAF, Padova Astronomical Observatory on behalf of DPACE

Gaia News:Counting down to launch A. Vallenari. INAF, Padova Astronomical Observatory on behalf of DPACE Gaia News:Counting down to launch A. Vallenari INAF, Padova Astronomical Observatory on behalf of DPACE Outline Gaia Spacecraft status The Gaia sky Gaia open and globular clusters From data to science:

More information

Time-series surveys and pulsating stars: The near-infrared perspective

Time-series surveys and pulsating stars: The near-infrared perspective Time-series surveys and pulsating stars: The near-infrared perspective Noriyuki Matsunaga 1, 1 Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Abstract.

More information

The Great Debate: The Size of the Universe (1920)

The Great Debate: The Size of the Universe (1920) The Great Debate: The Size of the Universe (1920) Heber Curtis Our Galaxy is rather small, with Sun near the center. 30,000 LY diameter. Universe composed of many separate galaxies Spiral nebulae = island

More information

Einführung in die Astronomie II

Einführung in die Astronomie II Einführung in die Astronomie II Teil 12 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 13. September 2017 1 / 77 Overview part 12 The Galaxy Historical Overview

More information

The Three Dimensional Universe, Meudon - October, 2004

The Three Dimensional Universe, Meudon - October, 2004 GAIA : The science machine Scientific objectives and impacts ------- F. Mignard OCA/ Cassiopée 1 Summary Few figures about Gaia Gaia major assets What science with Gaia Few introductory highlights Conclusion

More information

Building the cosmic distance scale: from Hipparcos to Gaia

Building the cosmic distance scale: from Hipparcos to Gaia The Fundamental Distance Scale: state of the art and the Gaia perspectives 3-6 May 2011 Building the cosmic distance scale: from Hipparcos to Gaia Catherine TURON and Xavier LURI 1 ESA / ESO-H. Heyer Fundamental

More information

Surface Brightness of Spiral Galaxies

Surface Brightness of Spiral Galaxies Surface Brightness of Spiral Galaxies M104: SA N4535: SAB LMC: dwarf irregular,barred Normal 1/4-law+exp fits An example of surface brightness profile. The top curve is the sum of exp disk+1/4-bulge. The

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

Milky Way S&G Ch 2. Milky Way in near 1 IR H-W Rixhttp://online.kitp.ucsb.edu/online/galarcheo-c15/rix/

Milky Way S&G Ch 2. Milky Way in near 1 IR   H-W Rixhttp://online.kitp.ucsb.edu/online/galarcheo-c15/rix/ Why study the MW? its "easy" to study: big, bright, close Allows detailed studies of stellar kinematics, stellar evolution. star formation, direct detection of dark matter?? Milky Way S&G Ch 2 Problems

More information

dsph in Local Group July 2014 Vienna

dsph in Local Group July 2014 Vienna John Menzies SAAO dsph in Local Group Local Group associated with Galaxy, M31, within ~1 Mpc of centre of mass Galaxy has 25 companion dsph M31 has ~ 26 ~ 3 dsph not associated with either, near boundary

More information

The Star Clusters of the Magellanic Clouds

The Star Clusters of the Magellanic Clouds The Dance of Stars MODEST-14 The Star Clusters of the Magellanic Clouds Eva K. Grebel Astronomisches Rechen-Institut Zentrum für Astronomie der Universität Heidelberg Star Clusters in the Magellanic Clouds!

More information

Spatial distribution of stars in the Milky Way

Spatial distribution of stars in the Milky Way Spatial distribution of stars in the Milky Way What kinds of stars are present in the Solar neighborhood, and in what numbers? How are they distributed spatially? How do we know? How can we measure this?

More information

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars Properties of Nearby Stars Most in orbit with the Sun around Galactic Center Stellar Kinematics Reveal Groups of Stars with Common Space Motion (Moving

More information

Thom et al. (2008), ApJ

Thom et al. (2008), ApJ Star S674 along the same LOS as Complex C Star S441 along the same LOS as Complex C Thom et al. (2008), ApJ Distances to HVCs From spectroscopy of high Galactic latitude stars at small angular separations

More information

The Milky Way Galaxy and Interstellar Medium

The Milky Way Galaxy and Interstellar Medium The Milky Way Galaxy and Interstellar Medium Shape of the Milky Way Uniform distribution of stars in a band across the sky lead Thomas Wright, Immanuel Kant, and William Herschel in the 18th century to

More information

The Inner Milky Way Structure with VVV. Marina Rejkuba ESO, Germany

The Inner Milky Way Structure with VVV. Marina Rejkuba ESO, Germany The Inner Milky Way Structure with VVV Marina Rejkuba ESO, Germany Overview Red Clump stars as distance indicators Dependence on age and metallicity Tracing the bar with RC stars in VVV Inner bar flafening

More information

THE GALACTIC BULGE AND ITS GLOBULAR CLUSTERS: MOS. B. Barbuy

THE GALACTIC BULGE AND ITS GLOBULAR CLUSTERS: MOS. B. Barbuy THE GALACTIC BULGE AND ITS GLOBULAR CLUSTERS: MOS B. Barbuy IAG - Universidade de São Paulo Outline: Interest of studies on Galactic bulge and globulars Data available on metallicity,, kinematics in field

More information

The cosmic distance scale

The cosmic distance scale The cosmic distance scale Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment,

More information

Stellar Populations in the Galaxy

Stellar Populations in the Galaxy Stellar Populations in the Galaxy Stars are fish in the sea of the galaxy, and like fish they often travel in schools. Star clusters are relatively small groupings, the true schools are stellar populations.

More information

Galactic Bulge Science

Galactic Bulge Science Galactic Bulge Science Ken Freeman Australian National University ngcfht meeting Hilo, Mar 27-29 2013 NGC 5746 1 The Galactic bulge was long thought to be a merger product. We now know that boxy bulges

More information

JINA Observations, Now and in the Near Future

JINA Observations, Now and in the Near Future JINA Observations, Now and in the Near Future Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics Examples SDSS-I, II, and III

More information

AS1001: Galaxies and Cosmology

AS1001: Galaxies and Cosmology AS1001: Galaxies and Cosmology Keith Horne kdh1@st-and.ac.uk http://www-star.st-and.ac.uk/~kdh1/eg/eg.html Text: Kutner Astronomy:A Physical Perspective Chapters 17-21 Cosmology Today Blah Title Current

More information

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 16

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 16 University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica, read by prof. Massimo Capaccioli Lecture 16 Stellar populations Walter Baade (1893-1960) Learning outcomes The student

More information

Lecture Five: The Milky Way: Structure

Lecture Five: The Milky Way: Structure Lecture Five: The Milky Way: Structure The Celestial Sphere http://www.astro.rug.nl/~etolstoy/pog14 We use equatorial coordinates to determine the positions of stars in the sky. A stars declination (like

More information

2016 Bogotá, Colombia

2016 Bogotá, Colombia ADELA PRODUCTS: 2016 Bogotá, Colombia Movies The VVV Survey Extension: RRLyrae, Cepheids and more Dante Minniti The VVV Science Team Dante Minniti VVV Latest Results 1. RR Lyrae in the Bulge-Halo Transition

More information

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution Chap.3 The nature of Galactic components Overview of (old) Galactic components bulge, thick disk, metal-weak halo Globular clusters metallicity & age distribution Satellite galaxies spatial and metallicity

More information

Summary: Nuclear burning in stars

Summary: Nuclear burning in stars Summary: Nuclear burning in stars Reaction 4 1 H 4 He 3 4 He 12 C 12 C + 4 He 16 O, Ne, Na, Mg Ne O, Mg O Mg, S Si Fe peak Min. Temp. 10 7 o K 2x10 8 8x10 8 1.5x10 9 2x10 9 3x10 9 Evolution through nuclear

More information

Demographics of radio galaxies nearby and at z~0.55. Are radio galaxies signposts to black-hole mergers?

Demographics of radio galaxies nearby and at z~0.55. Are radio galaxies signposts to black-hole mergers? Elaine M. Sadler Black holes in massive galaxies Demographics of radio galaxies nearby and at z~0.55 Are radio galaxies signposts to black-hole mergers? Work done with Russell Cannon, Scott Croom, Helen

More information

The Milky Way Galaxy. sun. Examples of three Milky-Way like Galaxies

The Milky Way Galaxy. sun. Examples of three Milky-Way like Galaxies The Milky Way Galaxy sun This is what our Galaxy would look like if we were looking at it from another galaxy. Examples of three Milky-Way like Galaxies 1. Roughly 100,000 light years across 2. Roughly

More information

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way Figure 70.01 The Milky Way Wide-angle photo of the Milky Way Overview: Number of Stars Mass Shape Size Age Sun s location First ideas about MW structure Figure 70.03 Shapely (~1900): The system of globular

More information

Outline. c.f. Zhao et al. 2006, ChJA&A, 6, 265. Stellar Abundance and Galactic Chemical Evolution through LAMOST Spectroscopic Survey

Outline. c.f. Zhao et al. 2006, ChJA&A, 6, 265. Stellar Abundance and Galactic Chemical Evolution through LAMOST Spectroscopic Survey KIAA-CambridgeJoint Workshop on Near-Field Cosmology and Galactic Archeology ZHAO Gang National Astronomical Observatories, Chinese Academy of Sciences Dec 1-5, 2008 Beijing Outline LAMOST stellar spectroscopic

More information

(Present and) Future Surveys for Metal-Poor Stars

(Present and) Future Surveys for Metal-Poor Stars (Present and) Future Surveys for Metal-Poor Stars Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics SDSS 1 Why the Fascination

More information

The HERMES project. Reconstructing Galaxy Formation. Ken Freeman RSAA, ANU. The metallicity distribution in the Milky Way discs Bologna May 2012

The HERMES project. Reconstructing Galaxy Formation. Ken Freeman RSAA, ANU. The metallicity distribution in the Milky Way discs Bologna May 2012 The HERMES project Reconstructing Galaxy Formation Ken Freeman RSAA, ANU The metallicity distribution in the Milky Way discs Bologna May 2012 HERMES is a new high-resolution fiber-fed multi-object spectrometer

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2013W1 SEMESTER 1 EXAMINATION 2012/13 GALAXIES Duration: 120 MINS Answer all questions in Section A and two and only two questions in Section B. Section A carries 1/3 of the

More information

Galaxies. With a touch of cosmology

Galaxies. With a touch of cosmology Galaxies With a touch of cosmology Types of Galaxies Spiral Elliptical Irregular Spiral Galaxies Spiral Galaxies Disk component where the spiral arms are Interstellar medium Star formation Spheroidal

More information

Our View of the Milky Way. 23. The Milky Way Galaxy

Our View of the Milky Way. 23. The Milky Way Galaxy 23. The Milky Way Galaxy The Sun s location in the Milky Way galaxy Nonvisible Milky Way galaxy observations The Milky Way has spiral arms Dark matter in the Milky Way galaxy Density waves produce spiral

More information

The Milky Way Galaxy. Sun you are here. This is what our Galaxy would look like if we were looking at it from another galaxy.

The Milky Way Galaxy. Sun you are here. This is what our Galaxy would look like if we were looking at it from another galaxy. The Milky Way Galaxy Sun you are here. This is what our Galaxy would look like if we were looking at it from another galaxy. Examples of three Milky-Way like Galaxies 1. Roughly 100,000 light years across

More information

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars Characterization of the exoplanet host stars Exoplanets Properties of the host stars Properties of the host stars of exoplanets are derived from a combination of astrometric, photometric, and spectroscopic

More information

The Geometry of Sagittarius Stream from PS1 3π RR Lyrae

The Geometry of Sagittarius Stream from PS1 3π RR Lyrae The Geometry of Sagittarius Stream from PS1 3π RR Lyrae Nina Hernitschek, Caltech collaborators: Hans-Walter Rix, Branimir Sesar, Judith Cohen Swinburne-Caltech Workshop: Galaxies and their Halos, Sept.

More information

Relativity and Astrophysics Lecture 15 Terry Herter. RR Lyrae Variables Cepheids Variables Period-Luminosity Relation. A Stellar Properties 2

Relativity and Astrophysics Lecture 15 Terry Herter. RR Lyrae Variables Cepheids Variables Period-Luminosity Relation. A Stellar Properties 2 Stellar Properties Relativity and Astrophysics Lecture 15 Terry Herter Outline Spectroscopic Parallax Masses of Stars Periodic Variable Stars RR Lyrae Variables Cepheids Variables Period-Luminosity Relation

More information

Near infrared high resolution spectroscopy of variable stars G. Bono, Univ. Of Rome ToV + D. Magurno, M. Urbaneja + many others

Near infrared high resolution spectroscopy of variable stars G. Bono, Univ. Of Rome ToV + D. Magurno, M. Urbaneja + many others Near infrared high resolution spectroscopy of variable stars G. Bono, Univ. Of Rome ToV + D. Magurno, M. Urbaneja + many others Near infrared high resolution spectroscopy of variable stars G. Bono, Univ.

More information

Chemical evolution of the Galactic disk using Open Clusters

Chemical evolution of the Galactic disk using Open Clusters Chemical evolution of the Galactic disk using Open Clusters ICC Winter Meeting Feb 2017 1. Galactic Archaeology Unravel the formation and evolution of the Milky Way (MW) Resolved stars provide a fossil

More information

Probing GCs in the GC region with GLAO

Probing GCs in the GC region with GLAO Probing GCs in the GC region with GLAO Masashi Chiba (Tohoku University) AO beginner! Life is good! Subaru/GLAO in Galactic Archaeology Resolved stars provide important information on galaxy formation

More information

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy?

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy? Lecture 12: Galaxies View of the Galaxy from within The Milky Way galaxy Rotation curves and dark matter External galaxies and the Hubble classification scheme Plotting the sky brightness in galactic coordinates,

More information

1.4 Galaxy Light Distributions

1.4 Galaxy Light Distributions 26 1.4 Galaxy Light Distributions List of topics Hubble classification scheme see Binney & Merrifield text Galaxy surface brightness profiles (JL 2.3.1, plus additional material) Galaxy luminosity function

More information

Lecture 25: The Cosmic Distance Scale Sections 25-1, 26-4 and Box 26-1

Lecture 25: The Cosmic Distance Scale Sections 25-1, 26-4 and Box 26-1 Lecture 25: The Cosmic Distance Scale Sections 25-1, 26-4 and Box 26-1 Key Ideas The Distance Problem Geometric Distances Trigonometric Parallaxes Luminosity Distances Standard Candles Spectroscopic Parallaxes

More information

Lecture 28: Spiral Galaxies Readings: Section 25-4, 25-5, and 26-3

Lecture 28: Spiral Galaxies Readings: Section 25-4, 25-5, and 26-3 Lecture 28: Spiral Galaxies Readings: Section 25-4, 25-5, and 26-3 Key Ideas: Disk & Spheroid Components Old Stars in Spheroid Old & Young Stars in Disk Rotation of the Disk: Differential Rotation Pattern

More information

Data Reduction with NIRI. Knut Olsen and Andrew Stephens Gemini Data Workshop Tucson, AZ July 21, 2010

Data Reduction with NIRI. Knut Olsen and Andrew Stephens Gemini Data Workshop Tucson, AZ July 21, 2010 Data Reduction with NIRI Knut Olsen and Andrew Stephens Gemini Data Workshop Tucson, AZ July 21, 2010 Near InfraRed Imager and Spectrometer Built by UH/IfA Science data since 2002 Primary reference: Hodapp

More information

Dwarf spheroidal satellites of M31: Variable stars and stellar populations

Dwarf spheroidal satellites of M31: Variable stars and stellar populations Dwarf spheroidal satellites of M31: Variable stars and stellar populations Felice Cusano INAF-Osservatorio Astronomico di Bologna LBT Team Italy collaborators: Gisella Clementini, Alessia Garofalo, Michele

More information

Red giant variables: OGLE II and MACHO

Red giant variables: OGLE II and MACHO Mem. S.A.It. Vol. 77, 303 c SAIt 2006 Memorie della Red giant variables: OGLE II and MACHO L.L. Kiss 1 and P. Lah 2 1 School of Physics A28, University of Sydney, NSW 2006, Australia, e-mail: laszlo@physics.usyd.edu.au

More information

The Gaia-ESO Spectroscopic Survey. Survey Co-PIs. Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs

The Gaia-ESO Spectroscopic Survey. Survey Co-PIs. Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs The Gaia-ESO Spectroscopic Survey Survey Co-PIs Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs Gaia-ESO survey context and motivations (conclusions and key words of several talks)

More information

The Milky Way - Chapter 23

The Milky Way - Chapter 23 The Milky Way - Chapter 23 The Milky Way Galaxy A galaxy: huge collection of stars (10 7-10 13 ) and interstellar matter (gas & dust). Held together by gravity. Much bigger than any star cluster we have

More information

Galaxies. Lecture Topics. Lecture 23. Discovering Galaxies. Galaxy properties. Local Group. History Cepheid variable stars. Classifying galaxies

Galaxies. Lecture Topics. Lecture 23. Discovering Galaxies. Galaxy properties. Local Group. History Cepheid variable stars. Classifying galaxies Galaxies Lecture 23 APOD: NGC 3628 (The Hamburger Galaxy) 1 Lecture Topics Discovering Galaxies History Cepheid variable stars Galaxy properties Classifying galaxies Local Group 2 23-1 Discovering Galaxies

More information

Lecture Three: Stellar Populations. Stellar Properties: Stellar Populations = Stars in Galaxies. What defines luminous properties of galaxies

Lecture Three: Stellar Populations. Stellar Properties: Stellar Populations = Stars in Galaxies. What defines luminous properties of galaxies Lecture Three: ~2% of galaxy mass in stellar light Stellar Populations What defines luminous properties of galaxies face-on edge-on https://www.astro.rug.nl/~etolstoy/pog16/ 18 th April 2016 Sparke & Gallagher,

More information

Myung Gyoon Lee. With Ho Seong Hwang (CfA) and Hong Soo Park (NAOJ) (Dept of Physics and Astronomy, Seoul National University)

Myung Gyoon Lee. With Ho Seong Hwang (CfA) and Hong Soo Park (NAOJ) (Dept of Physics and Astronomy, Seoul National University) Myung Gyoon Lee (Dept of Physics and Astronomy, Seoul National University) With Ho Seong Hwang (CfA) and Hong Soo Park (NAOJ) 2013. 10. 22 Dynamics of Disk Galaxies, The 7 th Korean Astrophysics Workshop,

More information

Abundance distribution in the Galactic thick disk

Abundance distribution in the Galactic thick disk Abundance distribution in the Galactic thick disk omas Bensby Lund Observatory, Department of Astronomy and eoretical Physics Discovery of thick disks (Burstein 1979, ApJ, 234, 829) Discovery of the Galactic

More information

The Milky Way & Galaxies

The Milky Way & Galaxies The Milky Way & Galaxies The Milky Way Appears as a milky band of light across the sky A small telescope reveals that it is composed of many stars (Galileo again!) Our knowledge of the Milky Way comes

More information

Following the evolution of the Galactic disc with Open Clusters

Following the evolution of the Galactic disc with Open Clusters Following the evolution of the Galactic disc with Open Clusters Laura Magrini INAF-Osservatorio Astrofisico di Arcetri With Nikos Prantzos and the GES collaboration (in particular Lorenzo Spina, Sofia

More information

Gaia-LSST Synergy. A. Vallenari. INAF, Padova

Gaia-LSST Synergy. A. Vallenari. INAF, Padova Gaia-LSST Synergy A. Vallenari INAF, Padova The Galaxy view Unveiling the complex history of the MW assembly and internal evolution is still one of the main interest of astrophysics However the specific

More information

The Milky Way Part 3 Stellar kinematics. Physics of Galaxies 2011 part 8

The Milky Way Part 3 Stellar kinematics. Physics of Galaxies 2011 part 8 The Milky Way Part 3 Stellar kinematics Physics of Galaxies 2011 part 8 1 Stellar motions in the MW disk Let s continue with the rotation of the Galaxy, this time from the point of view of the stars First,

More information

Lecture #21: Plan. Normal Galaxies. Classification Properties Distances

Lecture #21: Plan. Normal Galaxies. Classification Properties Distances Lecture #21: Plan Normal Galaxies Classification Properties Distances Messier 31 = M31 Early 20 th Century The Great Debate (4/26/1920): Harlow Shapley (Mt Wilson) vs Heber Curtis (Lick Observatory) Smithsonian

More information

A100H Exploring the Universe: Discovering Galaxies. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: Discovering Galaxies. Martin D. Weinberg UMass Astronomy A100H Exploring the Universe: Discovering Galaxies Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu April 05, 2016 Read: Chap 19 04/05/16 slide 1 Exam #2 Returned by next class meeting

More information

Hubble sequence galaxy classification scheme, originally based on appearance, but correlates with other properties as well.

Hubble sequence galaxy classification scheme, originally based on appearance, but correlates with other properties as well. Normal Galaxies (Ch. 24) Here we will cover topics in Ch. 24 up to 24.4, but then skip 24.4, 24.5. The sections we are skipping are all about processes that occur in the centers of galaxies, so I d like

More information

Pulsating Variable Stars in the MACHO Bulge database: The Semiregular Variables

Pulsating Variable Stars in the MACHO Bulge database: The Semiregular Variables Pulsating Variable Stars in the MACHO Bulge database: The Semiregular Variables D. Minniti 1, C. Alcock, D. Alves, K. Cook, S. Marshall Lawrence Livermore National Laboratory R. Allsman, T. Axelrod, K.

More information

The Milky Way Part 2 Stellar kinematics. Physics of Galaxies 2012 part 7

The Milky Way Part 2 Stellar kinematics. Physics of Galaxies 2012 part 7 The Milky Way Part 2 Stellar kinematics Physics of Galaxies 2012 part 7 1 Stellar motions in the MW disk Let s look at the rotation of the Galactic disk First, we need to introduce the concept of the Local

More information

Halo Tidal Star Streams with DECAM. Brian Yanny Fermilab. DECam Community Workshop NOAO Tucson Aug

Halo Tidal Star Streams with DECAM. Brian Yanny Fermilab. DECam Community Workshop NOAO Tucson Aug Halo Tidal Star Streams with DECAM Brian Yanny Fermilab DECam Community Workshop NOAO Tucson Aug 19 2011 M31 (Andromeda) Our Local Group neighbors: Spiral galaxies similar to The Milky Way 150 kpc M33

More information

AST 6336, Interstellar Medium, Spring 2015

AST 6336, Interstellar Medium, Spring 2015 AST 6336, Interstellar Medium, Spring 2015 Young stellar clusters (lectures by Nicola Da Rio ndario@ufl.edu) January 2, 4, 2015 Star formation A molecular cloud may become unsupported gas pressure + magnetic

More information

Galaxy evolution through resolved stellar populations: from the Local Group to Coma

Galaxy evolution through resolved stellar populations: from the Local Group to Coma Galaxy evolution through resolved stellar populations: from the Local Group to Coma Isabel Pérez Kapteyn Institute & Universidad de Granada Brief summary of the science cases presented at the Local Universe

More information

GALAXIES 626. The Milky Way II. Chemical evolution:

GALAXIES 626. The Milky Way II. Chemical evolution: GALAXIES 626 The Milky Way II. Chemical evolution: Chemical evolution Observation of spiral and irregular galaxies show that the fraction of heavy elements varies with the fraction of the total mass which

More information

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds.

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. Image taken from the European Southern Observatory in Chile

More information

An Extended View of the Pulsating Stars in the Carina Dwarf Spheroidal Galaxy

An Extended View of the Pulsating Stars in the Carina Dwarf Spheroidal Galaxy Kathy Vivas (CIDA, Venezuela) & Mario Mateo (University of Michigan, USA) ESO/G. Bono & CTIO An Extended View of the Pulsating Stars in the Carina Dwarf Spheroidal Galaxy CMD from Monelli et al (2003)

More information

The Local Spiral Arm of the Galaxy explained by trapping of stars in the corotation resonance

The Local Spiral Arm of the Galaxy explained by trapping of stars in the corotation resonance The Local Spiral Arm of the Galaxy explained by trapping of stars in the corotation resonance Jacques R.D. Lépine,Tatiana A. Michtchenko,Douglas A. Barros, Ronaldo S.S. Vieira University of São Paulo Lund

More information

Exam 4 Review EXAM COVERS LECTURES 22-29

Exam 4 Review EXAM COVERS LECTURES 22-29 Exam 4 Review EXAM COVERS LECTURES 22-29 Theoretically is there a center of the universe? Is there an edge? Do we know where Earth is on this? There is no center to the Universe, What kind of light we

More information

Determination of [α/fe] and its Application to SEGUE F/G Stars. Young Sun Lee

Determination of [α/fe] and its Application to SEGUE F/G Stars. Young Sun Lee Determination of [α/fe] and its Application to SEGUE F/G Stars Young Sun Lee Research Group Meeting on June 16, 2010 Outline Introduction Why [α/fe]? Determination of [α/fe] Validation of estimate of [α/fe]

More information

The Apache Point Observatory Galactic Evolution Experiment. Ricardo Schiavon

The Apache Point Observatory Galactic Evolution Experiment. Ricardo Schiavon The Apache Point Observatory Galactic Evolution Experiment Ricardo Schiavon CS20, Boston, August 1st, 2018 Overview paper: Majewski, Schiavon et al. (2017) APOGEE at a Glance Dual hemisphere spectroscopic

More information

arxiv: v1 [astro-ph.sr] 12 Jul 2017

arxiv: v1 [astro-ph.sr] 12 Jul 2017 Astronomy& Astrophysics manuscript no. popii_cep c ESO 7 July 3, 7 Galactic Bulge Population II Cepheids in the VVV Survey: Period-Luminosity Relations and a Distance to the Galactic Center A. Bhardwaj,,

More information

The physical properties of galaxies in Universe

The physical properties of galaxies in Universe The physical properties of galaxies in Universe Iurii Babyk, Dublin Institute for Advanced Studies, Dublin City University, Main Astronomical Observatory of the NAS of Ukraine. Introduction Large-Scale

More information

24.1 Hubble s Galaxy Classification

24.1 Hubble s Galaxy Classification Chapter 24 Galaxies Units of Chapter 24 24.1 Hubble s Galaxy Classification 24.2 The Distribution of Galaxies in Space 24.3 Hubble s Law 24.4 XXActive Galactic Nuclei XXRelativistic Redshifts and Look-Back

More information

Distances based on Mira variables. Leonid Georgiv IA UNAM

Distances based on Mira variables. Leonid Georgiv IA UNAM Distances based on Mira variables. Leonid Georgiv IA UNAM A short story 1999 King et al reported a nova in the galaxy IC 1613. (King et al. 1999, IAUC, 7287) A short story The star were detected on our

More information

Action-based Dynamical Modeling of the Milky Way Disk with Gaia & RAVE

Action-based Dynamical Modeling of the Milky Way Disk with Gaia & RAVE IAU Symposium 330 Nice, 27. April 2017 Action-based Dynamical Modeling of the Milky Way Disk with Gaia & RAVE Wilma Trick (MPIA, Heidelberg) Hans-Walter Rix (MPIA) Jo Bovy (Uni Toronto) Open Questions

More information

Three classical Cepheid variable stars in the nuclear bulge of the Milky Way

Three classical Cepheid variable stars in the nuclear bulge of the Milky Way Three classical Cepheid variable stars in the nuclear bulge of the Milky Way Noriyuki Matsunaga 1*, Takahiro Kawadu 2, Shogo Nishiyama 3, Takahiro Nagayama 4, Naoto Kobayashi 1,5, Motohide Tamura 3, Giuseppe

More information

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio.

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio. More abs. Dust [1.1] kev V Wavelength Optical Infra-red More abs. Wilms et al. 000, ApJ, 54, 914 No grains Grains from http://www.astro.princeton.edu/~draine/dust/dustmix.html See DraineH 003a, column

More information

Normal Galaxies (Ch. 24) + Galaxies and Dark Matter (Ch. 25) Symbolically: E0.E7.. S0..Sa..Sb..Sc..Sd..Irr

Normal Galaxies (Ch. 24) + Galaxies and Dark Matter (Ch. 25) Symbolically: E0.E7.. S0..Sa..Sb..Sc..Sd..Irr Normal Galaxies (Ch. 24) + Galaxies and Dark Matter (Ch. 25) Here we will cover topics in Ch. 24 up to 24.4, but then skip 24.4, 24.5 and proceed to 25.1, 25.2, 25.3. Then, if there is time remaining,

More information

Astronomy 330 Lecture 7 24 Sep 2010

Astronomy 330 Lecture 7 24 Sep 2010 Astronomy 330 Lecture 7 24 Sep 2010 Outline Review Counts: A(m), Euclidean slope, Olbers paradox Stellar Luminosity Function: Φ(M,S) Structure of the Milky Way: disk, bulge, halo Milky Way kinematics Rotation

More information

STRUCTURE AND DYNAMICS OF GALAXIES

STRUCTURE AND DYNAMICS OF GALAXIES STRUCTURE AND DYNAMICS OF GALAXIES 23. Piet van der Kruit Kapteyn Astronomical Institute University of Groningen, the Netherlands www.astro.rug.nl/ vdkruit Beijing, September 2011 Outline The local Mass

More information

Distance Measuring Techniques and The Milky Way Galaxy

Distance Measuring Techniques and The Milky Way Galaxy Distance Measuring Techniques and The Milky Way Galaxy Measuring distances to stars is one of the biggest challenges in Astronomy. If we had some standard candle, some star with a known luminosity, then

More information

The Besançon Galaxy Model development

The Besançon Galaxy Model development The Besançon Galaxy Model development Annie C. Robin and collaborators Institut UTINAM, OSU THETA, Université Bourgogne-Franche-Comté, Besançon, France Outline Population synthesis principles New scheme

More information

Galaxies. Need a (physically) meaningful way of describing the relevant properties of a galaxy.

Galaxies. Need a (physically) meaningful way of describing the relevant properties of a galaxy. Galaxies Aim to understand the characteristics of galaxies, how they have evolved in time, and how they depend on environment (location in space), size, mass, etc. Need a (physically) meaningful way of

More information

Galaxies Guiding Questions

Galaxies Guiding Questions Galaxies Guiding Questions How did astronomers first discover other galaxies? How did astronomers first determine the distances to galaxies? Do all galaxies have spiral arms, like the Milky Way? How do

More information

The chemical evolution of the Galactic Bulge seen through micro-lensing events

The chemical evolution of the Galactic Bulge seen through micro-lensing events The chemical evolution of the Galactic Bulge seen through micro-lensing events Sofia Feltzing Lund Observatory Main collaborators: Martin Asplund (MPA),Thomas Bensby (Lund), Andy Gold (Ohio), Jennifer

More information