Coherent and continuous radio emission from Magnetic Chemically Peculiar stars

Size: px
Start display at page:

Download "Coherent and continuous radio emission from Magnetic Chemically Peculiar stars"

Transcription

1 Coherent and continuous radio emission from Magnetic Chemically Peculiar stars C. Trigilio 1 P. Leto 1, G. Umana 1, C.Buemi 1, F.Leone 2 1 INAF-OACT, 2 UNICT

2 Magnetic Chemically Peculiar stars MS B-A type Anomalous abundance Magnetic fields White, 2000; Gudel, 2002

3 Chemical Peculiarity Anomalous photospheric abundance (10 6 Sun) (He-s, He-w, Si, Cr ) Radiative diffusion (Michaud 1970) Elements with many transitions close to maximum of radiation receive impulse toward the surface Over/under-abundance in photosphere Strong magnetic fields: magnetic freezing, concentrations of elements, correlation with orientation of B Dependence on T eff He-s O9-B5 He-w B5-A0 Si A0-A5 others A5

4 Variability of light curve, B eff, lines Oblique rotator (Babcock, 1949) CU Virginis P=0.52 giorni (Pyper et al. 1998) Dipolar field B misaligned with rotational axis

5 Stellar winds Magnetic fields + stellar wind Radio emission? (Kodaira & Fomalont 1970) from UV obs driven winds M <10 10 M yr 1, v wind 1000 km s -1 (Shore et al. 1987, Shore & Brown 1990) Outflows from magnetic poles Trapped plasma in equatorial belt

6 Radio emission Targeted surveys (VLA, ATCA) Drake et al (1987), Willson et al (1987), Linsky el al (1992), Leone Trigilio Umana (1994) Rate detection 25 % Correlation with T eff 31 % He-s O9-B5 26 % He-w B5-A0 23 % Si A0-A5 0 % Others A5 Correlation with wind/mass loss? Gyrosynchrotron emission Radio luminosity L 5GHz erg s 1 Hz 1

7 Modulation of radio emission Radio minima, B eff minima Oblique rotator model Change of orientation (Leone, Umana 1992) Optically thick source

8 Flat Spectra Optically thick source α = -0.7, 0.3 Leone, Umana, Trigilio, (1996) Leone, Trigilio, Neri, Umana (2004) For a dipole R B B * P R ν G B, R ν B * P R 3 3 High/low ν : close/far from the star

9 Toward a model Mass loss from magnetic poles. Trapped plasma in equatorial belt. Wind follows B till 1 2 ρv 2 B2 8π β Current sheets at Alfvén radius Acceleration and propagation inwards (middle magnetosphere) Reflection back outwards Gyrosynchrotron emission (André et al 1988, model for YSO) Figure from Montmerle, 2001 MCP: stable magnetosphere, different orientations Template for other stellar envelopes (thermal/non thermal)

10 3D model Trigilio et al (2004), Leto et al (2007) Magnetic field and geometry (B, i, β ) Mass loss, wind velocity, Alfvén radius Current sheets size Acceleration efficiency (N rel ) and power law Absorption by inner magnetosphere plasma (N rel E δ ) Sampling of the magnetosphere I ν and F ν at different rotational phases Also circular polarization

11 Simulations Derived parameters Mass Loss R alf Inner magnetosphere (T, dens ) Acceleration: Efficiency Power law M M yr R N rel N wind N rel E δ δ 2 18 cm, 4 cm, 1 cm Open Questions: How radio emission depends on T eff, B, P rot? (Need of larger sample)

12 CU Virginis Discovery of coherent radio emission Detection of two pulses at 20 cm with VLA (Trigilio et al 2000) Rotational phase: B eff = 0 High directivity ( magnetic axis) 100% circular polarization (RCP) Cyclotron Maser above the North magnetic pole

13 Maser Localization Cyclotron Maser frequency B pole 3000G B r 3 for a dipole B 500 ( s =1); 250 s = 2 h 1.3R * ( ) above the pole ν B s B G (Hz) ν P 9000 n e (Hz) s harmonic number ν B >>ν P Pulsar like behaviour

14 Stability of the Maser Observations over more than 10 yr show no significant variations (Trigilio et al, 2000, 2008, 2011) (Ravi et al 2010) Differences: -Intensity of the peaks -Phases of the peaks Separation is constant Central point star slowing down

15 Change of P rot Determination of the rotation period with high accuracy Sudden slowing down of the star ΔP 1.12 s Similar gap in 1985 by photometric meas (Pyper et al 1998) Change of moment of inertia? Sudden mass loss from magnetosphere? Interaction thin envelope-inner star Unstable region? No definitive answer yet Precise method for angular momentum loss measurements

16 Bandwidth of the Maser From ATCA, VLA and EVLA obs, ν range: MHz (Trigilio et at 2008, 2011, Ravi et al 2010) Dynamical spectra (EVLA obs) Large bandwidth ν not simultaneous

17 In the framework of the MCP model 1) Acceleration in current sheets 2) Magnetic mirroring 3) Lack of reflected electrons at low pitch angle 4) Anisotropy in the v space 5) Electron cyclotron maser B f v > 0 Electron Cyclotron Maser condition (Melrose & Dulk, 1982) ν=s ν B s=1,2,3 x-mode polarization Narrow Δν Emission almost perpendicular to B From observations: Δν very large, problems with geometry

18 Toward a model for ECME Analogy with auroral planetary emission Auroral emission: solar wind, acceleration in magnetic tail AKR (Auroral Kilometric Radiation) Auroral emission from Earth Animation: NASA 2011 Mutel, 2008 From Cluster NASA mission: Higly beamed radiation Localization 1R E above the pole Refraction upward by denser magnetospheric plasma

19 B Ring where ν=s ν B Maser amplification where the optical path is longer Maser radiation in a plane perpendicular to the magnetic axis Plasma B G N 10 9 cm -3 ν P ( X n ) refr = 1 ν ν ν B ( ) Refractive index ( ) consistent with the observed deviation ψ (Trigilio et al, 2011, ApJ 739, L10)

20 How many pulsar style stars can be detected by EMU? Dipolar field Acceleration in Current Sheets, regular flow in flux tubes Similar geometry (modulation North/South magnetic pole) Frequency of the maser

21 How many pulsar style stars can be detected by EMU? Dipolar field Acceleration in Current Sheets, regular flow in flux tubes Similar geometry (modulation North/South magnetic pole) Magnetic axis line of sight About 70 % of MCP Frequency of the maser

22 How many pulsar style stars can be detected by EMU? Dipolar field Acceleration in Current Sheets, regular flow in flux tubes Similar geometry (modulation North/South magnetic pole) Magnetic axis line of sight About 70 % of MCP Frequency of the maser EMU Scales as B pole 500 <B pole < G ν [0.3-1] B (G) pole MHz About 10% of MCP About 7 % of MCP expected <B G >

23 Conclusions and perspectives Model of MCP other magnetosphere (BD, dme ) Plasma in magnetospheres Cyclotron Maser Instability, exoplanets? Angular momentum evolution of stars EMU 3000 MCP within 1 kpc With 30 µjy detection limit and L radio >10 16 erg s -1 Hz -1 ~75% sky with EMU 2200 MCP in EMU 25% ~ 550 MCP can be detected 7% ~ 160 CU Virginis / pulsar-like stars expected

24

25 Magnetic Chemically Peculiar stars Characteristics: MS B-A type Anomalous photospheric abundance (10 6 Sun) (He-s, He-w, Si, Cr ) Strong magnetic fields ( G) Variability: light curve, B eff, lines P = days

26 Stability of the Maser Observations over more than 10 yr show no significant variations (Trigilio et al, 2000, 2008, 2011) Ravi et al (2010) Differences: -Intensity of the peaks -Phases of the peaks

27

28 Toward a model for ECME Analogy with auroral planetary emission Aurorall emission: solar wind, acceleration in magnetic tail Figures from Zarka 1998

29 At 10 pc Jupiter: F (Jup) =10-19 x(au/10pc)^2=2x10-30 W m -2 Hz -1 =2x10-6 Jy A Hot-Jupiter is about 10 6 times powerfull F (HJ) = 2 Jy Hot-Jup Solar planets [Zarka,2001]

30 In the framework of the MCP model 1) Acceleration in current sheets 2) Magnetic mirroring 3) Lack of reflected electrons at low pitch angle 4) Anisotropy in the v space 5) Electron cyclotron maser

31

arxiv: v1 [astro-ph.sr] 8 Mar 2016

arxiv: v1 [astro-ph.sr] 8 Mar 2016 Mon. Not. R. Astron. Soc. 000, 1?? () Printed 19 April 2018 (MN LATEX style file v2.2) 3D-modelling of the stellar auroral radio emission arxiv:1603.02423v1 [astro-ph.sr] 8 Mar 2016 P. Leto 1, C. Trigilio

More information

Stellar radio emission in the SKA era: the SCORPIO project

Stellar radio emission in the SKA era: the SCORPIO project Stellar radio emission in the SKA era: Grazia Umana the SCORPIO project INAF-OAC C. Trigilio, R. Norris, T. Franzen, A. Ingallinera, C. Agliozzo P. Leto, C. Buemi, E. Budding, B. Slee, G. Ramsay, G. Doyle,

More information

Alexey Kuznetsov. Armagh Observatory

Alexey Kuznetsov. Armagh Observatory Alexey Kuznetsov Armagh Observatory Outline of the talk Solar radio emission History Instruments and methods Results of observations Radio emission of planets Overview / history / instruments Radio emission

More information

Low-frequency GMRT observations of the magnetic Bp star HR Lup (HD )

Low-frequency GMRT observations of the magnetic Bp star HR Lup (HD ) Bull. Astr. Soc. India (2012) 40, in press Low-frequency GMRT observations of the magnetic Bp star HR Lup (HD 133880) Samuel J. George 1,2 and Ian R. Stevens 2 1 Astrophysics Group, The Cavendish Laboratory,

More information

Giant Pulsar Studies with the Compact Array

Giant Pulsar Studies with the Compact Array Giant Pulsar Studies with the Compact Array Vikram Ravi (University of Melbourne and CASS) Abstract I present recent results from work at the ATCA on stellar pulsars. Five objects, including the Ap star

More information

What is expected from forthcoming facilities

What is expected from forthcoming facilities Radio Stars Which ones? How many? Where? What do we learn? What is expected from forthcoming facilities References: Guedel, ARA&, 2002, 40, 217-261 Stellar Radio Astronomy: Probing Stellar Atmospheres

More information

What does the Sun tell us about circular polarization on stars? Stephen White

What does the Sun tell us about circular polarization on stars? Stephen White What does the Sun tell us about circular polarization on stars? Stephen White The Radio Sun at 4.6 GHz Combination of: optically thick upper chromosphere, optically thick coronal gyroresonance where B>500

More information

arxiv: v2 [astro-ph.sr] 10 Feb 2017

arxiv: v2 [astro-ph.sr] 10 Feb 2017 Preprint 13 February 2017 Compiled using MNRAS LATEX style file v3.0 The detection of variable radio emission from the fast rotating magnetic hot B-star HR 7355 and evidence for its X-ray aurorae arxiv:1701.07679v2

More information

Planetary Magnetic Fields: Planetary Interiors and Habitability

Planetary Magnetic Fields: Planetary Interiors and Habitability Planetary Magnetic Fields: Planetary Interiors and Habitability W. M. Keck Institute for Space Studies (KISS) Study Joseph Lazio, Evgenya Shkolnik, Gregg Hallinan on behalf of the KISS Study team 2017

More information

SEARCH FOR RADIO EMISSIONS FROM EXTRASOLAR PLANETARY MAGNETOSPHERES

SEARCH FOR RADIO EMISSIONS FROM EXTRASOLAR PLANETARY MAGNETOSPHERES SEARCH FOR RADIO EMISSIONS FROM EXTRASOLAR PLANETARY MAGNETOSPHERES Daniel Winterhalter, Walid Majid, Tom Kuiper, and Joe Lazio Jet Propulsion Laboratory, California Institute of Technology, Pasadena,

More information

Gregg Hallinan National Radio Astronomy Observatory & UC Berkeley

Gregg Hallinan National Radio Astronomy Observatory & UC Berkeley Gregg Hallinan National Radio Astronomy Observatory & UC Berkeley E-mail: gregg@astro.berkeley.edu Stephen White University of Maryland The EVLA: A New Era in Stellar Radio Astronomy EVLA Continuum point-source

More information

Flaring Stars and the Long Wavelength Array

Flaring Stars and the Long Wavelength Array Flaring Stars and the Long Wavelength Array Rachel Osten 1,2 February 14, 2008 1. Introduction Coherent emission appears to be a common phenomenon on radio-active late-type stars. Solar radio flare emissions

More information

CU Virginis The First Stellar Pulsar

CU Virginis The First Stellar Pulsar 1 CU Virginis The First Stellar Pulsar B. J. Kellett 1*, Vito G. Graffagnino 1, Robert Bingham 1,2, Tom W. B. Muxlow 3 & Alastair G. Gunn 3. 1 Rutherford Appleton Laboratory, Space Science & Technology

More information

The Mystery of Fast Radio Bursts and its possible resolution. Pawan Kumar

The Mystery of Fast Radio Bursts and its possible resolution. Pawan Kumar The Mystery of Fast Radio Bursts and its possible resolution Outline Pawan Kumar FRBs: summary of relevant observations Radiation mechanism and polarization FRB cosmology Wenbin Lu Niels Bohr Institute,

More information

- Synchrotron emission: A brief history. - Examples. - Cyclotron radiation. - Synchrotron radiation. - Synchrotron power from a single electron

- Synchrotron emission: A brief history. - Examples. - Cyclotron radiation. - Synchrotron radiation. - Synchrotron power from a single electron - Synchrotron emission: A brief history - Examples - Cyclotron radiation - Synchrotron radiation - Synchrotron power from a single electron - Relativistic beaming - Relativistic Doppler effect - Spectrum

More information

Physics 343 Lecture # 5: Sun, Stars, and Planets; Bayesian analysis

Physics 343 Lecture # 5: Sun, Stars, and Planets; Bayesian analysis Physics 343 Lecture # 5: Sun, Stars, and Planets; Bayesian analysis Schedule for the next week Office hours: Thu 5:00 6:20pm = Deshpande; Fri 10:20 11:40 = Baker + on call Sections A, C = Baker; Sections

More information

Radio Nebulae around Luminous Blue Variable Stars

Radio Nebulae around Luminous Blue Variable Stars Radio Nebulae around Luminous Blue Variable Stars Claudia Agliozzo 1 G. Umana 2 C. Trigilio 2 C. Buemi 2 P. Leto 2 A. Ingallinera 1 A. Noriega-Crespo 3 J. Hora 4 1 University of Catania, Italy 2 INAF-Astrophysical

More information

- Potentials. - Liénard-Wiechart Potentials. - Larmor s Formula. - Dipole Approximation. - Beginning of Cyclotron & Synchrotron

- Potentials. - Liénard-Wiechart Potentials. - Larmor s Formula. - Dipole Approximation. - Beginning of Cyclotron & Synchrotron - Potentials - Liénard-Wiechart Potentials - Larmor s Formula - Dipole Approximation - Beginning of Cyclotron & Synchrotron Maxwell s equations in a vacuum become A basic feature of these eqns is the existence

More information

Low frequency GMRT observations of ultra-cool dwarfs: new constraints on coronal properties

Low frequency GMRT observations of ultra-cool dwarfs: new constraints on coronal properties Low frequency GMRT observations of ultra-cool dwarfs: new constraints on coronal properties Andrew Zic The University of Sydney With Christene Lynch & Tara Murphy The University of Sydney Chuck Carter/Gregg

More information

Enhancing Our Understanding of Ultracool Dwarfs with Arecibo Observatory

Enhancing Our Understanding of Ultracool Dwarfs with Arecibo Observatory Enhancing Our Understanding of Ultracool Dwarfs with Arecibo Observatory Arecibo Observatory has recently been involved in searches for bursts of radio emission from ultracool dwarfs, which bridge the

More information

The double pulsar as Jupiter: tomography of magnetosphere and a new test of General Relativity. Maxim Lyutikov (Purdue U.)

The double pulsar as Jupiter: tomography of magnetosphere and a new test of General Relativity. Maxim Lyutikov (Purdue U.) The double pulsar as Jupiter: tomography of magnetosphere and a new test of General Relativity Maxim Lyutikov (Purdue U.) The Double Pulsar: sixth most important scientific discovery of 2004 (Science)

More information

Stellar Magnetospheres part deux: Magnetic Hot Stars. Stan Owocki

Stellar Magnetospheres part deux: Magnetic Hot Stars. Stan Owocki Stellar Magnetospheres part deux: Magnetic Hot Stars Stan Owocki Key concepts from lec. 1 MagRe# --> inf => ideal => frozen flux breaks down at small scales: reconnection Lorentz force ~ mag. pressure

More information

Crab flares - explosive Reconnection Events in the Nebula

Crab flares - explosive Reconnection Events in the Nebula Crab flares - explosive Reconnection Events in the Nebula Maxim Lyutikov (Purdue) in collaboration with Sergey Komissarov (Leeds) Lorenzo Sironi (Columbia) Oliver Porth (Frankfurt) - ApJ 2017; - JPP, 2017abc

More information

Physics 343 Lecture # 5: Sun, stars, and planets; (more) statistics

Physics 343 Lecture # 5: Sun, stars, and planets; (more) statistics Physics 343 Lecture # 5: Sun, stars, and planets; (more) statistics Schedule for the next week Office hours: Thu 5:00 6:00pm = Rivera; Fri 3:20 4:40 = Baker + on call Sections A, C, F, G = Baker; Sections

More information

Non-thermal emission from Magnetic White Dwarf binary AR Scorpii

Non-thermal emission from Magnetic White Dwarf binary AR Scorpii Non-thermal emission from Magnetic White Dwarf binary AR Scorpii Jumpei Takata (Huazhong University of Science and Technology, China) On behalf of Y. Hui (HUST), C.-P. Hu, K.S. Cheng (HKU, HK), L.C.C.

More information

154 MHz detection of faint, polarised flares from UV Ceti

154 MHz detection of faint, polarised flares from UV Ceti 154 MHz detection of faint, polarised flares from UV Ceti Christene Lynch University of Sydney/CAASTRO Collaborators: Emil Lenc, University of Sydney/CAASTRO Tara Murphy, University of Sydney/CAASTRO David

More information

ABSTRACT The fate of a planetary system like our own, as the parent star expands through the red giant phase and becomes a white dwarf has been a topi

ABSTRACT The fate of a planetary system like our own, as the parent star expands through the red giant phase and becomes a white dwarf has been a topi Planets Around White Dwarfs Jianke Li 1, Lilia Ferrario 2 & Dayal Wickramasinghe 2 1 ANU Astrophysical Theory Centre Department of Mathematics, Faculty of Science & the Mount Stromlo and Siding Spring

More information

Exoplanet searches in Radio : Theory & Observations from UTR-2 to LOFAR/SKA

Exoplanet searches in Radio : Theory & Observations from UTR-2 to LOFAR/SKA Exoplanet searches in Radio : Theory & Observations from UTR-2 to LOFAR/SKA P. Zarka LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris Diderot, 92190 Meudon, philippe.zarka@obspm.fr Jupiter LF

More information

Modelling the synchrotron emission from O-star colliding wind binaries

Modelling the synchrotron emission from O-star colliding wind binaries Modelling the synchrotron emission from O-star colliding wind binaries Delia Volpi 1 1 Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels, Belgium Abstract: Many early-type stars are in binary systems.

More information

(Astro)Physics 343 Lecture # 5: Sun, Stars, and Planets; Fourier Transforms

(Astro)Physics 343 Lecture # 5: Sun, Stars, and Planets; Fourier Transforms (Astro)Physics 343 Lecture # 5: Sun, Stars, and Planets; Fourier Transforms Schedule for the next week Office hours: Mon 5:00 6:20pm = Baker; Thu 3:20 4:40 = Lindner + Sections A, B, F = Baker; Sections

More information

Radiative processes from energetic particles II: Gyromagnetic radiation

Radiative processes from energetic particles II: Gyromagnetic radiation Hale COLLAGE 2017 Lecture 21 Radiative processes from energetic particles II: Gyromagnetic radiation Bin Chen (New Jersey Institute of Technology) e - Shibata et al. 1995 e - magnetic reconnection Previous

More information

Magnetic Reconnection

Magnetic Reconnection Magnetic Reconnection? On small scale-lengths (i.e. at sharp gradients), a diffusion region (physics unknown) can form where the magnetic field can diffuse through the plasma (i.e. a breakdown of the frozenin

More information

Single particle motion and trapped particles

Single particle motion and trapped particles Single particle motion and trapped particles Gyromotion of ions and electrons Drifts in electric fields Inhomogeneous magnetic fields Magnetic and general drift motions Trapped magnetospheric particles

More information

Mass loss from stars

Mass loss from stars Mass loss from stars Can significantly affect a star s evolution, since the mass is such a critical parameter (e.g., L ~ M 4 ) Material ejected into interstellar medium (ISM) may be nuclear-processed:

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

Radio Probes of Extrasolar Space Weather

Radio Probes of Extrasolar Space Weather Radio Probes of Extrasolar Space Weather Rachel Osten Space Telescope Science Institute Radio Stars: from khz to THz Haystack Observatory November 2, 2017 Star s magnetic field helps to set the environment

More information

Radio Aspects of the Transient Universe

Radio Aspects of the Transient Universe Radio Aspects of the Transient Universe Time domain science: the transient sky = frontier for all λλ Less so at high energies BATSE, RXTE/ASM, Beppo/Sax, SWIFT, etc. More so for optical, radio LSST = Large

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

Gregg Hallinan National Radio Astronomy Observatory & University of California Berkeley

Gregg Hallinan National Radio Astronomy Observatory & University of California Berkeley Donati et al. 2006 Hallinan et al. 2007 Clarke et al. 1998 Gregg Hallinan National Radio Astronomy Observatory & University of California Berkeley Southern Cross Astrophysics Conference Series Kiama 10

More information

Thermal pressure vs. magnetic pressure

Thermal pressure vs. magnetic pressure Thermal pressure vs. magnetic pressure The Earth The auroral oval: bremsstrahlung and lines induced by electrons precipitating through the Earth s magnetic field (LX ~ 10 14 erg/s ~ 2 kg TNT equivalent/s)

More information

Project RISARD. - the story so far. Marcin P. Gawroński (Toruń Centre for Astronomy)

Project RISARD. - the story so far. Marcin P. Gawroński (Toruń Centre for Astronomy) Project RISARD - the story so far credit : wiki Marcin P. Gawroński (Toruń Centre for Astronomy) in collaboration with K. Goźdzewski, K. Katarzyński, G. Rycyk (TCfA) Overview RISARD motivation and current

More information

AASTCS 5: Radio Exploration of Planetary Habitability 7 12 May, 2017

AASTCS 5: Radio Exploration of Planetary Habitability 7 12 May, 2017 AASTCS 5: Radio Exploration of Planetary Habitability 7 12 May, 2017 Sunday 7 May, 2017 3:00 pm 7:00 pm 6:00 pm 7:30 pm Welcome Reception Miramonte Green Monday 8 May, 2017 8:00 am Stellar Activity and

More information

Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling

Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling Wataru Ishizaki ( Department of Physics, Graduate School of Science, The University of Tokyo ) Abstract The pulsar

More information

Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/

Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/ Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/0608311 Introduction 11 Rotating RAdio Transients (RRATs) (Mclaughlin et al 2006) Repeated, irregular radio bursts

More information

Monitoring nearly 4000 nearby stellar systems with the OVRO-LWA in search of radio exoplanets

Monitoring nearly 4000 nearby stellar systems with the OVRO-LWA in search of radio exoplanets Monitoring nearly 4000 nearby stellar systems with the OVRO-LWA in search of radio exoplanets Marin M Anderson Caltech AASTCS 5: Radio Habitability May 11, 2017 OVRO-LWA 1 CME CME Mass Mass Understanding

More information

PHASE CONNECTING MULTI-EPOCH RADIO DATA FOR THE ULTRACOOL DWARF TVLM

PHASE CONNECTING MULTI-EPOCH RADIO DATA FOR THE ULTRACOOL DWARF TVLM PHASE CONNECTING MULTI-EPOCH RADIO DATA FOR THE ULTRACOOL DWARF TVLM 513-46546 J.G. Doyle 1, A. Antonova 1,2, G. Hallinan 3, A. Golden 3 ABSTRACT Radio observations for a number of ultracool dwarfs show

More information

AASTCS 5: Radio Exploration of Planetary Habitability 7 12 May, 2017

AASTCS 5: Radio Exploration of Planetary Habitability 7 12 May, 2017 AASTCS 5: Radio Exploration of Planetary Habitability 7 12 May, 2017 Sunday 7 May, 2017 3:00 pm 7:00 pm 6:00 pm 7:30 pm Registration and Speaker Ready, Tuscany Foyer Opening Reception, Miramonte Green

More information

Star-planet interaction and planetary characterization methods

Star-planet interaction and planetary characterization methods Star-planet interaction and planetary characterization methods K. G. Kislyakova (1), H. Lammer (1), M. Holmström (2), C.P. Johnstone (3) P. Odert (4), N.V. Erkaev (5,6) (1) Space Research Institute (IWF),

More information

Clicker Question: Clicker Question: Clicker Question:

Clicker Question: Clicker Question: Clicker Question: Test results Last day to drop without a grade is Feb 29 Grades posted in cabinet and online F D C B A In which direction would the Earth move if the Sun s gravitational force were suddenly removed from

More information

X-ray Emission from O Stars. David Cohen Swarthmore College

X-ray Emission from O Stars. David Cohen Swarthmore College X-ray Emission from O Stars David Cohen Swarthmore College Young OB stars are very X-ray X bright L x up to ~10~ 34 ergs s -1 X-ray temperatures: few up to 10+ kev (10s to 100+ million K) K Orion; Chandra

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Homework Ch 7, 8, 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Our most detailed knowledge of Uranus and Neptune comes from 1) A) the

More information

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Goals: The Birth Of Stars How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Interstellar Medium Gas and dust between stars is the interstellar

More information

COMPARATIVE STUDY OF THE RADIO PLANETS

COMPARATIVE STUDY OF THE RADIO PLANETS COMPARATIVE STUDY OF THE RADIO PLANETS André Boischot DASOP Observatoire de Paris Meudon 92195 Meudon Principal Cedex, France. Abstract Four planets the Earth, Jupiter, Saturn and Uranus are known to be

More information

Problem set: solar irradiance and solar wind

Problem set: solar irradiance and solar wind Problem set: solar irradiance and solar wind Karel Schrijver July 3, 203 Stratification of a static atmosphere within a force-free magnetic field Problem: Write down the general MHD force-balance equation

More information

Drifting subpulse phenomenon in pulsars

Drifting subpulse phenomenon in pulsars Drifting subpulse phenomenon in pulsars Lofar perspective Janusz Gil J. Kepler Astronomical Institute University of Zielona Góra, Poland Collaborators: G. Melikidze, B. Zhang, U. Geppert, F. Haberl, J.

More information

Accelerated Electrons as the Source of Auroral Kilometric Radiation. R. J. Strangeway. Institute of Geophysics and Planetary Physics,

Accelerated Electrons as the Source of Auroral Kilometric Radiation. R. J. Strangeway. Institute of Geophysics and Planetary Physics, Accelerated Electrons as the Source of Auroral Kilometric Radiation R. J. Strangeway Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 99, USA R. E. Ergun Laboratory

More information

Pulsar Winds. John Kirk. Max-Planck-Institut für Kernphysik Heidelberg, Germany. < > p.1/18

Pulsar Winds. John Kirk. Max-Planck-Institut für Kernphysik Heidelberg, Germany. < > p.1/18 Pulsar Winds John Kirk Max-Planck-Institut für Kernphysik Heidelberg, Germany < > p.1/18 About 50 years after... The Crab Nebula Central star is source of particles and magnetic field (Piddington 1957)

More information

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev Electromagnetic Spectra AST443, Lecture 13 Stanimir Metchev Administrative Homework 2: problem 5.4 extension: until Mon, Nov 2 Reading: Bradt, chapter 11 Howell, chapter 6 Tenagra data: see bottom of Assignments

More information

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays Pulsars ASTR2110 Sarazin Crab Pulsar in X-rays Test #2 Monday, November 13, 11-11:50 am Ruffner G006 (classroom) Bring pencils, paper, calculator You may not consult the text, your notes, or any other

More information

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and 6-1 6. Interstellar Medium 6.1 Nebulae Emission nebulae are diffuse patches of emission surrounding hot O and early B-type stars. Gas is ionized and heated by radiation from the parent stars. In size,

More information

Explosive reconnection of the double tearing mode in relativistic plasmas

Explosive reconnection of the double tearing mode in relativistic plasmas Explosive reconnection of the double tearing mode in relativistic plasmas Application to the Crab Jérôme Pétri 1 Hubert Baty 1 Makoto Takamoto 2, Seiji Zenitani 3 1 Observatoire astronomique de Strasbourg,

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Second edition Bernard F. Burke and Francis Graham-Smith CAMBRIDGE UNIVERSITY PRESS Contents Preface to the second edition page x 1 Introduction 1 1.1 The role of radio

More information

The Stellar Graveyard Neutron Stars & White Dwarfs

The Stellar Graveyard Neutron Stars & White Dwarfs The Stellar Graveyard Neutron Stars & White Dwarfs White Dwarfs White dwarfs are the remaining cores of low-mass (M < 8M sun ) stars Electron degeneracy pressure supports them against gravity Density ~

More information

Galactic radio loops. Philipp Mertsch with Subir Sarkar. The Radio Synchrotron Background Workshop, University of Richmond 21 July 2017

Galactic radio loops. Philipp Mertsch with Subir Sarkar. The Radio Synchrotron Background Workshop, University of Richmond 21 July 2017 Galactic radio loops Philipp Mertsch with Subir Sarkar The Radio Synchrotron Background Workshop, University of Richmond 21 July 2017 Foregrounds in B-modes Adam et al., arxiv:1502.01588 1409.5738 (Planck

More information

Investigating Emission Mechanisms by Mapping Pulsar Magnetospheres in 3D

Investigating Emission Mechanisms by Mapping Pulsar Magnetospheres in 3D Investigating Emission Mechanisms by Mapping Pulsar Magnetospheres in 3D Candidacy Presentation, 22 Aug 2016 Sam McSweeney Supervisors: Ramesh Bhat Steven Tremblay Avinash Deshpande Trying to figure out

More information

Global MHD Eigenmodes of the Outer Magnetosphere

Global MHD Eigenmodes of the Outer Magnetosphere Global MHD Eigenmodes of the Outer Magnetosphere Andrew Wright UNIVERSITY OF ST ANDREWS Magnetospheric Structure: Cavities and Waveguides The Earth s magnetosphere is structured by magnetic fields and

More information

Science Overview. Vassilis Angelopoulos, ELFIN PI

Science Overview. Vassilis Angelopoulos, ELFIN PI Science Overview Vassilis Angelopoulos, ELFIN PI Science Overview-1 MPDR, 2/12/2015 RADIATION BELTS: DISCOVERED IN 1958, STILL MYSTERIOUS Explorer 1, 1958 Time Magazine, May 4, 1959 Science Overview-2

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Bernard F. Burke Massachusetts Institute of Technology and Francis Graham-Smith Jodrell Bank, University of Manchester CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements

More information

Pulsars. Table of Contents. Introduction

Pulsars. Table of Contents. Introduction Pulsars Table of Contents Introduction... 1 Discovery...2 Observation...2 Binary Pulsars...3 Pulsar Classes... 3 The Significance of Pulsars... 3 Sources...4 Introduction Pulsars are neutron stars which

More information

Multi-wavelength observations and variability of Young Stellar Objects

Multi-wavelength observations and variability of Young Stellar Objects X-ray to radio Multi-wavelength observations and variability of Young Stellar Objects Jan Forbrich Harvard-Smithsonian CfA Credit: X-ray: NASA/CXC/CfA/J.Forbrich et al.; Infrared: NASA/SSC/CfA/IRAC GTO

More information

Introduction to the Sun and the Sun-Earth System

Introduction to the Sun and the Sun-Earth System Introduction to the Sun and the Sun-Earth System Robert Fear 1,2 R.C.Fear@soton.ac.uk 1 Space Environment Physics group University of Southampton 2 Radio & Space Plasma Physics group University of Leicester

More information

discovers a radio-quiet gamma-ray millisecond Journal Group

discovers a radio-quiet gamma-ray millisecond Journal Group Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar @CHEA Journal Group Contribution of the paper Contribution of the paper Millisecond Pulsars (MSPs) Ver y rapid rotating neutron star

More information

Plasma Physics for Astrophysics

Plasma Physics for Astrophysics - ' ' * ' Plasma Physics for Astrophysics RUSSELL M. KULSRUD PRINCETON UNIVERSITY E;RESS '. ' PRINCETON AND OXFORD,, ', V. List of Figures Foreword by John N. Bahcall Preface Chapter 1. Introduction 1

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Radio Emission Physics in the Crab Pulsar. J. A. Eilek & T. H. Hankins New Mexico Tech, Socorro NM, USA

Radio Emission Physics in the Crab Pulsar. J. A. Eilek & T. H. Hankins New Mexico Tech, Socorro NM, USA Radio Emission Physics in the Crab Pulsar J. A. Eilek & T. H. Hankins New Mexico Tech, Socorro NM, USA Summary for Impatient Readers We are carrying out ultra-high time resolution observations in order

More information

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley)

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley) The Physics of Collisionless Accretion Flows Eliot Quataert (UC Berkeley) Accretion Disks: Physical Picture Simple Consequences of Mass, Momentum, & Energy Conservation Matter Inspirals on Approximately

More information

In-Situ vs. Remote Sensing

In-Situ vs. Remote Sensing In-Situ vs. Remote Sensing J. L. Burch Southwest Research Institute San Antonio, TX USA Forum on the Future of Magnetospheric Research International Space Science Institute Bern, Switzerland March 24-25,

More information

HST Observations of Planetary Atmospheres

HST Observations of Planetary Atmospheres HST Observations of Planetary Atmospheres John T. Clarke Boston University Hubble Science Legacy 3 April 2002 Venus - Near-UV images reveal cloud motions and winds - UV spectra track SO 2 composition,

More information

while the Planck mean opacity is defined by

while the Planck mean opacity is defined by PtII Astrophysics Lent, 2016 Physics of Astrophysics Example sheet 4 Radiation physics and feedback 1. Show that the recombination timescale for an ionised plasma of number density n is t rec 1/αn where

More information

The Bizarre Stellar Graveyard

The Bizarre Stellar Graveyard The Bizarre Stellar Graveyard 18.1 White Dwarfs Our goals for learning: What is a white dwarf? What can happen to a white dwarf in a close binary system? What is a white dwarf? White Dwarfs White dwarfs

More information

Foundations of Astrophysics

Foundations of Astrophysics Foundations of Astrophysics Barbara Ryden The Ohio State University Bradley M. Peterson The Ohio State University Preface xi 1 Early Astronomy 1 1.1 The Celestial Sphere 1 1.2 Coordinate Systems on a Sphere

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

Magnetic Activity and Flares in the Near-UV of Exoplanet Host Stars

Magnetic Activity and Flares in the Near-UV of Exoplanet Host Stars Magnetic Activity and Flares in the Near-UV of Exoplanet Host Stars Adam Kowalski CU-Boulder, NSO, LASP Sun-Climate Symposium March 22, 2018 Lecture 24, April 19th 2017 Overview Overview of M dwarfs Flares

More information

Milky Way SKA: the ISM, star formation and stellar evolution with the SKA. Mark Thompson, Grazia Umana, and the Our Galaxy SWG

Milky Way SKA: the ISM, star formation and stellar evolution with the SKA. Mark Thompson, Grazia Umana, and the Our Galaxy SWG Milky Way SKA: the ISM, star formation and stellar evolution with the SKA Mark Thompson, Grazia Umana, and the Our Galaxy SWG Uncovering the ecology of baryons Graphic courtesy Naomi McClure- Griffiths

More information

Polarisation of high-energy emission in a pulsar striped wind

Polarisation of high-energy emission in a pulsar striped wind Polarisation of high-energy emission in a pulsar striped wind Jérôme Pétri Max Planck Institut für Kernphysik - Heidelberg Bad Honnef - 16/5/26 p.1/22 Outline 1. The models 2. The striped wind 3. Application

More information

The chiming of Saturn s magnetosphere at planetary periods

The chiming of Saturn s magnetosphere at planetary periods The chiming of Saturn's magnetosphere at planetary periods. Gabby Provan with help from David Andrews and Stan Cowley The chiming of Saturn s magnetosphere at planetary periods G. Provan, D. J. Andrews

More information

CHAPTER 29: STARS BELL RINGER:

CHAPTER 29: STARS BELL RINGER: CHAPTER 29: STARS BELL RINGER: Where does the energy of the Sun come from? Compare the size of the Sun to the size of Earth. 1 CHAPTER 29.1: THE SUN What are the properties of the Sun? What are the layers

More information

A Detailed Study of. the Pulsar Wind Nebula 3C 58

A Detailed Study of. the Pulsar Wind Nebula 3C 58 A Detailed Study of Collaborators: D. J. Helfand S. S. Murray S. Ransom F. D. Seward B. M. Gaensler E. V. Gotthelf E. van der Swaluw the Pulsar Wind Nebula 3C 58 Pulsar Wind Nebulae Young NS powers a particle/magnetic

More information

Final States of a Star

Final States of a Star Pulsars Final States of a Star 1. White Dwarf If initial star mass < 8 MSun or so. (and remember: Maximum WD mass is 1.4 MSun, radius is about that of the Earth) 2. Neutron Star If initial mass > 8 MSun

More information

arxiv: v1 [astro-ph.sr] 8 May 2015

arxiv: v1 [astro-ph.sr] 8 May 2015 Mon. Not. R. Astron. Soc. 000, 1?? (2000) Printed 16 October 2018 (MN LATEX style file v2.2) First detections of 610 MHz radio emission from hot magnetic stars arxiv:1505.02139v1 [astro-ph.sr] 8 May 2015

More information

Experiments with a Supported Dipole

Experiments with a Supported Dipole Experiments with a Supported Dipole Reporting Measurements of the Interchange Instability Excited by Electron Pressure and Centrifugal Force Introduction Ben Levitt and Dmitry Maslovsky Collisionless Terrella

More information

Origin of Magnetic Fields in Galaxies

Origin of Magnetic Fields in Galaxies Lecture 4: Origin of Magnetic Fields in Galaxies Rainer Beck, MPIfR Bonn Generation and amplification of cosmic magnetic fields Stage 1: Field seeding Stage 2: Field amplification Stage 3: Coherent field

More information

Time resolved X-ray spectral analysis during optical dips and accretion bursts in stars with disks of NGC2264 from Chandra/ACIS-I and CoRoT data

Time resolved X-ray spectral analysis during optical dips and accretion bursts in stars with disks of NGC2264 from Chandra/ACIS-I and CoRoT data X-Ray Universe - 2017 Time resolved X-ray spectral analysis during optical dips and accretion bursts in stars with disks of NGC2264 from Chandra/ACIS-I and CoRoT data Time resolved X-ray spectral analysis

More information

Next Generation VLA Memo. 41 Initial Imaging Tests of the Spiral Configuration. C.L. Carilli, A. Erickson March 21, 2018

Next Generation VLA Memo. 41 Initial Imaging Tests of the Spiral Configuration. C.L. Carilli, A. Erickson March 21, 2018 Next Generation VLA Memo. 41 Initial Imaging Tests of the Spiral Configuration C.L. Carilli, A. Erickson March 21, 2018 Abstract We investigate the imaging performance of the Spiral214 array in the context

More information

The Sun. How are these quantities measured? Properties of the Sun. Chapter 14

The Sun. How are these quantities measured? Properties of the Sun. Chapter 14 The Sun Chapter 14 The Role of the Sun in the Solar System > 99.9% of the mass Its mass is responsible for the orderly orbits of the planets Its heat is responsible for warming the planets It is the source

More information

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11)

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11) Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11) Kenneth Wood, Room 316 kw25@st-andrews.ac.uk http://www-star.st-and.ac.uk/~kw25 What is a Stellar Atmosphere? Transition from dense

More information

JUPITER BURST OBSERVATION WITH LOFAR/ITS

JUPITER BURST OBSERVATION WITH LOFAR/ITS JUPITER BURST OBSERVATION WITH LOFAR/ITS A. Nigl, J. Kuijpers, H. Falcke, P. Zarka, L. Bähren Abstract Io-induced Jupiter emission lies mainly in the frequency range from about 2 to 40 MHz [Zarka et al.,

More information

Continuing our Roger Blandford abbreviations feast

Continuing our Roger Blandford abbreviations feast Continuing our Roger Blandford abbreviations feast 1 P,PP, B & (of course) M Maxim Lyutikov (Purdue) 2 Pulsars, Plasma Physcs, Blandford & Magnetic fields 3 It s an interesting problem... Pulsars were

More information

CHAPTER 27. Continuum Emission Mechanisms

CHAPTER 27. Continuum Emission Mechanisms CHAPTER 27 Continuum Emission Mechanisms Continuum radiation is any radiation that forms a continuous spectrum and is not restricted to a narrow frequency range. In what follows we briefly describe five

More information

Ay 20 Basic Astronomy and the Galaxy Problem Set 2

Ay 20 Basic Astronomy and the Galaxy Problem Set 2 Ay 20 Basic Astronomy and the Galaxy Problem Set 2 October 19, 2008 1 Angular resolutions of radio and other telescopes Angular resolution for a circular aperture is given by the formula, θ min = 1.22λ

More information