Drifting subpulse phenomenon in pulsars

Size: px
Start display at page:

Download "Drifting subpulse phenomenon in pulsars"

Transcription

1 Drifting subpulse phenomenon in pulsars Lofar perspective Janusz Gil J. Kepler Astronomical Institute University of Zielona Góra, Poland Collaborators: G. Melikidze, B. Zhang, U. Geppert, F. Haberl, J. Kijak, M. Sendyk

2 LOFAR sensitivity for PSRs LOFAR sensitivity for PSRs

3 Broadening of the profile As frequency decreases Evidence of the radius-to-frequency mapping and dipolar nature of magentic field lines in the emission region Sensitive observations below 160 MHz would be highly desirable

4 40 years after discovery of pulsars the actual mechanism of their coherent radio emission is still a mystery. Drifting subpulses, which seem to be a common phenomenon in pulsar radiation, is also a puzzle. The mechanism for drifting subpulses cannot be very different from the mechanism of observed radio emission......intrinsic property of radiation mechanism (Weltevrede, Edwards & Stappers 2006, A&A 445,243)

5 LRFS longitude (deg) 2DFS f=ccp cycles per period ccp LRFS - Longitude Resolved Fluctuation Spectrum P2 = ± P / cpp 2DFS - Two Dimensional Fluctuation Spectrum calulated along various slopes

6 Unbiased search for drifting subpulses in 187 (191) pulsars About 55 % (more) of drifting subpulse pulsars Weltevrede, Edwards & Stappers et al. 2006, ATNF 20. S/N a= r a = rp / h At frequencies lower than 320 MHz (LOFAR range) the ratio of detected drifting subpulses should be even higher

7 m ρ D d h rem Ω γ 1 m γ 1 ρ NS - opening angle Subpulses (drifting) can be resolved if h rp ρ ρ > γ 1 d D rpc α at the emission altitude R rem P (γ 2 )3.76 P1.35

8 Unbiased search for drifting subpulses in 187 (191) pulsars About 55 % (more) of drifting subpulse pulsars Weltevrede et al. 2006, ATNF 20. P 15 = 52 (1.2)3.76 P a= r a = rp / h Lorentz factor γ = 120

9 Subpulse drift Carousel model Sub-beams of radio emission presumably related to sparks operating just above the Polar Cap circulate around the magnetic axis P 2 P3 Subpulses in subsequent pulses arrive in phases determined by the apparent drift rate D = P2 / P3 l of s P4 l of s l of s P4 Ω = Hot PC heated by sparks - circulational periodicity? 2π P Polar cap rpc = P 0.5 cm

10 150 PSR B Perhaps the best example of Drifting subpulses phenomenon in pulsars P2 Apparent subpulse drift-bands P3 11P Modulation of intensity along drift-bands consistent with carousel model that is Sub-beams continue to circulate beyond the observed pulse-window (after van Leuven, Stappers et al..)

11 B α = 175 β = 7

12 PSR B LRFS

13 P1, P2, P3, P4 Apparent drift rate P2 P4 P3 Intrinsic drift rate P1 = P N P4 = P3 N number of rotating sub-beams P4 P4 Ruderman & Sutherland 1975 distance between driftbands in longitude between P P3 distance 1 driftbands in D = P2 / P3 distance between the same driftbands time interval to complete one rotation around the pole very difficult to measure, only 8 cases known!!!

14 PSR B Deshpande&Rankin 1999 P=1.089 s P3 = 1.87 P ^ P4 = 37.35P Number of sub-beams circulating around B P ~37P 4 N = P4 / P3 = 20

15 PSR B MHz observations Asgekar & Deshpande MHz observations Deshpande & Rankin f4 f3 Phased-resolved fluctuation spectrum 1/37 f4 = 1/ 37P P4 = P = 41s. Spectral analysis fully consistent with carousel model. Sub-beams continue to circulate around the beam axis beyond the pulse-window and reapear after the period needed to complete one full circulation around the magnetic axis 1 / 2.f15 3 = 1 / P3 1/14 f4 1/37=0.027 N = P4 / P3 = =20 Low frequency observations (LOFAR range) are more sensitive to low frequency modulations possibly related to the carousel circulation times

16 Radius-to-frequency mapping PSR B Frequency dependent beam size 430 MHz 103 MHz 103 MHz 35 MHz Arecibo PRAO Gauribidanur

17 B Arecibo 327 MHz Rankin et al. 2007

18 B P = 1.19 s P 15 = MHz E = erg / s P3 = P P4 = P N = P4 / P3 = 22 Arecibo Observatory 327 MHz Rankin et al. 2007

19 B Cartographic map of 20 subpulse beams circulating around the pole in about 37 pulsar periods Deshpande & Rankin, 1999 P = s l-of-s P 15 = 3.52 E = 1032 erg / s 430 MHz P3 = 1.86 P P4 = P N = P4 / P3 = 20 α,β (Intensity; pulse longitude and pulse number) (Intensity; polar colatitude and azimuth) Clear manifestation of subpulse sub-beams circulating around the magnetic axis Pulsar geometry known

20 B MHz Q-mode Erratic No organized drift visible Cartographic map impossible to make

21 103 MHz 1/37=0.026 B Q-mode (erratic) Suleymanova & Rankin 2006 Clear feature at 37 P as in the B-mode

22 Spark plasma circulates around the local magnetic pole on the Polar Cap with a specific period P_4, regardless it is fragmented into equally spaced filaments or operates in much less organized manner. One cannot swich off the E x B drift, except when there is no E or B.

23 Natural mechanism of subpulse drift E B Natural state of the magnetospheric plasma frozen into electric and magnetic field is corotation with NS (global corotation) υ cor = c( Ec Bs ) / B 2 = cec / Bs if E Ec then υ υ cor ρ = ρ GJ ρ ρ GJ corotation Polar Gap charge depletion Non-corotation plasma lags behind pulsar rotation and drifts with respects the polar cap surface with velocity υ dr υ dr = c( E Bs ) / B 2 = c E / Bs E Electric field associated with charge depletion ρ = ρ GJ ρ If plasma has transversal structure (spark filaments) then this inevitable E B drift should be observed in the form of drifting subpulses, and/or specific features in the intensity fluctuation spectrum

24 E B spark plasma circulation drift rate Linear velocity of the E x B drift (RS75) υd = c E cη ( 2π / cp ) Bs h 2π = =η h [cm/s] Bs Bs P Bs -actual surface magnetic field Bd -dipolar magnetic field at PC E - component of electric field caused by charge depletion ρ = ρ GJ ρ th = η ρ GJ ω = ν d / d = η (2π / P)(h / d ) Carusel angular speed Time interval to complete one circulation around periphery of PC P d P rp P4 = 2η h 2η h Gil, Melikidze & Geppert 2003

25 Within the model of the inner acceleration region to surface of the PC is heated to high temperatures by the back-flow of particles produced in sparking discharges. The heating rate is determined by the same value of the electric field that is involved in the E x B drifting phenomenon. thus, the observed drifting rate P d P rp P 4 = 2π d / υ d = 2η h 2η h and the observed heating rate (thermal X-ray luminosity from hot PC) Lx = σ Ts4 Abol = σ Ts4 Apc ( Bd / Bs ) should be strongly correlated.

26 Thermal X-ray luminosity from spark-heated polar cap Lx = ( P 15 / P )( P 4 / P ) 31 Efficiency 3 2 erg/s E = IΩ Ω Lx / E = (0.63 / I 45 ) ( P 4 / P) 2. Spin-down power I = I g cm 2 I 45 = 1 ± 0.15

27 X-ray Multi Mirror (XMM) Newton satelite telescope One revolution on an excentric orbit around the Earth takes 48 hours observations are not performed close to the Earth due to strong noise contamination

28 I 45 = 1 ± 0.15 Lx / E = (0.63 / I 45 ) ( P 4 / P) 2

29 Further low frequency LOFAR observation using 2DFS techniques should result P4 in Detection drifting subpulse pulsars and pussible more of be In nearbymore pulsars, in which thermal X-ray component fromdetermination hot polar cap can determined. Then the polar gap relationship Lx P4 2 can be tested further.

30

31 B L_x=2.78 x 10^30 erg/s E_dot=1.5 x 10^32 erg/s P_4=6 P Weltevrede et al P_3=(7+/-1) P P_4=P_3

32 Ruderman & Sutherland 1975 Strong non-dipolar Surface magnetic field Charge depletion maximum possible gap height ~MK Pure vacuum gap ρ = ρ GJ E ~ V /h Very strong electric field E E B drift much too fast as compared with observations Within the acceleration region the spark generated positrons are moving towards the magnetosphere while back-flow of electrons bombard the polar cap surface and heat it to MK temperatures Polar cap heating too intense and subpulse drift was too fast as compared with observations Modification needed

33 Future work New XMM-Newton observations of PSR B Ks performed in November 2006 Zhang, Gil, Melikidze, Geppert, Haberl Non-detected P4 / P = 14 ± 1 (Gupta, Gil, Kijak, Sendyk 2004) Proposal for XMM-Newton observations of PSR B accepted observation in summer 2006 (simultaneous radio observations with GMRT planned) Very promissing P4 / P = 15 ± 1 (Asgekar, Deshapande 2005) Proposal for XMM-Newton observations of PSR B will be submitted for the next cycle Very promissing P4 / P = 10 ± 1 (Weltevrede 2006; GMRT planned)

34 Co-rotating magnetosphere Ec = (Ω r / c) Bs Ec Bs = 0 V = 0 Force-free magnetosphere GJ69, RS75 No acceleration along B ρ c = (1 / 2π ) dive c = = Ω B s /( 2π c ) = ± B s / cp 2 υ cor = c ( Ec Bs ) / B = cec / Bs Co-rotating charge density Linear co-rotation velocity

35 The only two cases existing with both measurements B Lx / E ~ B Lx / E ~ P 3 / P ~ 33 P 3/ P ~ 37

36 Gil, Melikidze & Zhang 2006 η = (1 / 2π )( P / P3 ) Screening factor ~( ) only few % of GJ plasma involved in acceleration Lx = ( P 15 / P )( P 3 / P ) X-ray bolometric luminosity erg/s 10( 28 29) erg / s Lx / E = 0.63 ( P 3 / P) 2 Ts = ( K ) A4 6 A4 = Abol /(10 4 m 2 ) ~ P 15 Efficiency ~ P 0.75 ( P3 / P ) 0.5 Ts ~ (2 3) MK

37 Pulsars are fast rotating and strongly magnetized Neutron Stars (NS) Corotation with NS E*B=0 Polar Cap (PC) region of NS surface connected to ISM via open magnetic field lines penetrating the Light Cylinder Charged particles will leave through LC due to inertia and create charge depletion just above the PC. If this charge cannot be re-supplied by the PC surface (strong binding) then huge accelerating potential drop will occur along the open magnetic field lines close to the PC surface.

38 1.4 GHz 0.32 GHz 1.4 GHz Weltevrede, Edwards & Stappers et al. 2006, 2007

Investigating Emission Mechanisms by Mapping Pulsar Magnetospheres in 3D

Investigating Emission Mechanisms by Mapping Pulsar Magnetospheres in 3D Investigating Emission Mechanisms by Mapping Pulsar Magnetospheres in 3D Candidacy Presentation, 22 Aug 2016 Sam McSweeney Supervisors: Ramesh Bhat Steven Tremblay Avinash Deshpande Trying to figure out

More information

FORMATION OF A PARTIALLY SCREENED INNER ACCELERATION REGION IN RADIO PULSARS: DRIFTING SUBPULSES AND THERMAL X-RAY EMISSION FROM POLAR CAP SURFACE

FORMATION OF A PARTIALLY SCREENED INNER ACCELERATION REGION IN RADIO PULSARS: DRIFTING SUBPULSES AND THERMAL X-RAY EMISSION FROM POLAR CAP SURFACE The Astrophysical Journal, 650:1048 1062, 2006 October 20 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. FORMATION OF A PARTIALLY SCREENED INNER ACCELERATION REGION IN

More information

XMM-NEWTON OBSERVATIONS OF RADIO PULSARS B AND B AND IMPLICATIONS FOR THE PULSAR INNER ACCELERATOR

XMM-NEWTON OBSERVATIONS OF RADIO PULSARS B AND B AND IMPLICATIONS FOR THE PULSAR INNER ACCELERATOR The Astrophysical Journal, 686:497 507, 2008 October 10 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. XMM-NEWTON OBSERVATIONS OF RADIO PULSARS B0834+06 AND B0826 34

More information

Drifting2 or Analysis of temporal evolution of drifting subpulse phenomenon

Drifting2 or Analysis of temporal evolution of drifting subpulse phenomenon Drifting2 or Analysis of temporal evolution of drifting subpulse phenomenon Maciej Serylak Ben Stappers Patrick Weltevrede 4th ESTRELA workshop Bologna Italy 19-22.01.2009 Outline Pulsar (very) short overview

More information

Probing drifting and nulling mechanisms through their interaction in PSR B

Probing drifting and nulling mechanisms through their interaction in PSR B A&A 399, 223 229 (2003) DOI: 10.1051/0004-6361:20021630 c ESO 2003 Astronomy & Astrophysics Probing drifting and nulling mechanisms through their interaction in PSR B0809+74 A. G. J. van Leeuwen 1, B.

More information

arxiv: v1 [astro-ph.sr] 27 Jun 2012

arxiv: v1 [astro-ph.sr] 27 Jun 2012 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 10 September 2018 (MN LATEX style file v2.2) Radiation properties of extreme nulling pulsar J1502 5653 arxiv:1206.6156v1 [astro-ph.sr] 27 Jun 2012

More information

arxiv: v2 [astro-ph.sr] 28 Jul 2014

arxiv: v2 [astro-ph.sr] 28 Jul 2014 Mon. Not. R. Astron. Soc. 000, 1?? (2014) Printed 29 July 2014 (MN LATEX style file v2.2) arxiv:1402.2675v2 [astro-ph.sr] 28 Jul 2014 Explaining the subpulse drift velocity of pulsar magnetosphere within

More information

Radio Pulsar Phenomenology: What can we learn from pulsar profiles? Simon Johnston (ATNF, CSIRO) Aris Karastergiou (Oxford, UK)

Radio Pulsar Phenomenology: What can we learn from pulsar profiles? Simon Johnston (ATNF, CSIRO) Aris Karastergiou (Oxford, UK) Radio Pulsar Phenomenology: What can we learn from pulsar profiles? Simon Johnston (ATNF, CSIRO) Aris Karastergiou (Oxford, UK) Outline Brief tour through the basics P-Pdot diagram The Rotating Vector

More information

Explaining the subpulse drift velocity of pulsar magnetosphere within the space-charge limited flow model

Explaining the subpulse drift velocity of pulsar magnetosphere within the space-charge limited flow model doi:10.1093/mnras/stu1486 Explaining the subpulse drift velocity of pulsar magnetosphere within the space-charge limited flow model Viktoriya S. Morozova, 1,2 Bobomurat J. Ahmedov 3,4,5 and Olindo Zanotti

More information

Correlated spin-down rates and radio emission in PSR B

Correlated spin-down rates and radio emission in PSR B doi:10.1093/mnras/stv2403 Correlated spin-down rates and radio emission in PSR B1859+07 B. B. P. Perera, 1 B. W. Stappers, 1 P. Weltevrede, 1 A. G. Lyne 1 andj.m.rankin 2 1 Jodrell Bank Centre for Astrophysics,

More information

arxiv:astro-ph/ v1 30 Oct 2000

arxiv:astro-ph/ v1 30 Oct 2000 Vacuum gaps in pulsars and PSR J2144 3933 Janusz Gil 1 and Dipanjan Mitra 2 arxiv:astro-ph/0010603v1 30 Oct 2000 1 J. Kepler Astronomical Center, Lubuska 2, 65-265, Zielona Góra, Poland email: jag@astro.ca.wsp.zgora.pl

More information

Single-Pulse Studies : Polar Maps of Pulsars B and B

Single-Pulse Studies : Polar Maps of Pulsars B and B Chapter 5 Single-Pulse Studies : Polar Maps of Pulsars B0943+10 and B0834+06 In the last chapter, we dwelled on the fluctuation properties of a few,bright pulsars observable using GEETEE at 35 MHz. We

More information

Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/

Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/ Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/0608311 Introduction 11 Rotating RAdio Transients (RRATs) (Mclaughlin et al 2006) Repeated, irregular radio bursts

More information

Geometry: The Sine Qua Non For Understanding the Pulsar Magnetosphere (and Gamma-ray Emission) Matthew Kerr obo Many

Geometry: The Sine Qua Non For Understanding the Pulsar Magnetosphere (and Gamma-ray Emission) Matthew Kerr obo Many Geometry: The Sine Qua Non For Understanding the Pulsar Magnetosphere (and Gamma-ray Emission) Matthew Kerr obo Many kerrm@stanford.edu Parkes 50 th Birthday Party, Parkes Telescope, November 2 nd, 2011

More information

What is the Physics of Pulsar Radio Emission? A white paper submitted to the Astro2010 Science Frontier Panel Stars and Stellar Evolution

What is the Physics of Pulsar Radio Emission? A white paper submitted to the Astro2010 Science Frontier Panel Stars and Stellar Evolution What is the Physics of Pulsar Radio Emission? A white paper submitted to the Astro2010 Science Frontier Panel Stars and Stellar Evolution T. H. Hankins (575) 835-7326 New Mexico Institute of Mining and

More information

The annular gap model: radio and Gamma-ray emission of pulsars. Qiao,G.J. Dept. of Astronomy, Peking Univ.

The annular gap model: radio and Gamma-ray emission of pulsars. Qiao,G.J. Dept. of Astronomy, Peking Univ. The annular gap model: radio and Gamma-ray emission of pulsars Qiao,G.J. Dept. of Astronomy, Peking Univ. The annular gap model of pulsars I. The Annular gap What is the Annular gap? What is the advantage

More information

Understanding the pulsar magnetosphere through first-principle simulations

Understanding the pulsar magnetosphere through first-principle simulations Understanding the pulsar magnetosphere through first-principle simulations Alexander Y. Chen In collaboration with: Andrei Beloborodov Rui Hu The Many Faces of Neutron Stars August 25, 2015 Pulsars: Rotating

More information

The topology and polarisation of subbeams associated with the drifting subpulse emission of pulsar B IV. Q-to-B-mode recovery dynamics

The topology and polarisation of subbeams associated with the drifting subpulse emission of pulsar B IV. Q-to-B-mode recovery dynamics A&A 453, 679 686 (2006) DOI: 10.1051/0004-6361:20054140 c ESO 2006 Astronomy & Astrophysics The topology and polarisation of subbeams associated with the drifting subpulse emission of pulsar B0943+10 IV.

More information

An Annular Gap Acceleration Model for γ-ray Emission of Pulsars

An Annular Gap Acceleration Model for γ-ray Emission of Pulsars Chin. J. Astron. Astrophys. Vol. 7 (2007), No. 4, 496 502 (http://www.chjaa.org) Chinese Journal of Astronomy and Astrophysics An Annular Gap Acceleration Model for γ-ray Emission of Pulsars Guo-Jun Qiao

More information

discovers a radio-quiet gamma-ray millisecond Journal Group

discovers a radio-quiet gamma-ray millisecond Journal Group Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar @CHEA Journal Group Contribution of the paper Contribution of the paper Millisecond Pulsars (MSPs) Ver y rapid rotating neutron star

More information

Progress in Pulsar detection

Progress in Pulsar detection Progress in Pulsar detection With EINSTEIN & EXOSAT: 7 radio pulsars detected in X-rays With ROSAT, ASCA & BSAX: 33 radio pulsars detected in X-rays After ~8 yrs with XMM & Chandra: 81 radio pulsars detected

More information

An empirical model for the beams of radio pulsars

An empirical model for the beams of radio pulsars Mon. Not. R. Astron. Soc. 380, 1678 1684 (2007) doi:10.1111/j.1365-2966.2007.12237.x An empirical model for the beams of radio pulsars Aris Karastergiou 1 and Simon Johnston 2 1 IRAM, 300 rue de la Piscine,

More information

arxiv: v1 [astro-ph.he] 3 Nov 2011

arxiv: v1 [astro-ph.he] 3 Nov 2011 2011 Fermi Symposium, Roma., May. 9-12 1 Gamma-Ray Pulsar Light Curves in Vacuum and Force-Free Geometry Alice K. Harding 1, Megan E. DeCesar 1,2, M. Coleman Miller 2, Constantinos Kalapotharakos 1,2,

More information

Magneto-Thermal Evolution of Isolated Neutron Stars

Magneto-Thermal Evolution of Isolated Neutron Stars Magneto-Thermal Evolution of Isolated Neutron Stars Ulrich R.M.E. Geppert J. Gil Institute of Astronomy Zielona Gòra 1 B t = c2 4πσ B + c 4πen e B B Ԧv hyd + Ԧv amb B Q T Ohmic decay: σ = σ(t) Ԧv hyd ~

More information

Electrodynamics of neutron star magnetospheres

Electrodynamics of neutron star magnetospheres of neutron star magnetospheres An example of non-neutral plasma in astrophysics Centre d Étude des Environnements Terrestre et Planétaires - Vélizy, FRANCE Laboratoire de Radio Astronomie, École Normale

More information

The Radio and X-ray Mode-Switching Pulsar PSR B

The Radio and X-ray Mode-Switching Pulsar PSR B J. Astrophys. Astr. (September 2017) 38:54 Indian Academy of Sciences DOI 10.1007/s12036-017-9464-7 Review The Radio and X-ray Mode-Switching Pulsar PSR B0943+10 SANDRO MEREGHETTI 1, and MICHELA RIGOSELLI

More information

Simultaneous XMM-Newton Radio Observations of the Mode-switching Radio Pulsar PSR B Wim Hermsen 1,2

Simultaneous XMM-Newton Radio Observations of the Mode-switching Radio Pulsar PSR B Wim Hermsen 1,2 Simultaneous XMM-Newton Radio Observations of the Mode-switching Radio Pulsar PSR B1822-09 Wim Hermsen 1,2 Collaborators: J.W.T. Hessels 3,2, L. Kuiper 1, J. van Leeuwen 3,2, D. Mitra 4, J.M. Rankin 2,5,

More information

A New Model for the Beams of Radio Pulsars

A New Model for the Beams of Radio Pulsars , IRAM, France E-mail: aris.karastergiou@gmail.com Simon Johnston, ATNF, Australia With the discovery of new classes of radio-emitting neutron stars, such as RRATS and the radio emitting magnetar, understanding

More information

Spectral Analysis of the Double Pulsar PSR J with XMM-Newton

Spectral Analysis of the Double Pulsar PSR J with XMM-Newton Spectral Analysis of the Double Pulsar PSR J0737-3039 with XMM-Newton * E. Egron, A. Pellizzoni, M.N. Iacolina, A. Pollock, et al. INAF - Osservatorio Astronomico di Cagliari, Italy * ESAC, Madrid, Spain

More information

Neutron Stars. We now know that SN 1054 was a Type II supernova that ended the life of a massive star and left behind a neutron star.

Neutron Stars. We now know that SN 1054 was a Type II supernova that ended the life of a massive star and left behind a neutron star. Neutron Stars Neutron Stars The emission from the supernova that produced the crab nebula was observed in 1054 AD by Chinese, Japanese, Native Americans, and Persian/Arab astronomers as being bright enough

More information

Joeri van Leeuwen An X-raydio switcheroo!

Joeri van Leeuwen An X-raydio switcheroo! Joeri van Leeuwen Joeri van Leeuwen Joeri van Leeuwen Joeri van Leeuwen Joeri van Leeuwen Joeri van Leeuwen Team Wim Hermsen Lucien Kuiper Dipanjan Mitra Jason Hessels Jelle de Plaa Joanna Rankin Ben Stappers

More information

Particle acceleration and pulsars

Particle acceleration and pulsars Meudon, nov. 2013 p. 1/17 Particle acceleration and pulsars Fabrice Mottez LUTH - Obs. Paris-Meudon - CNRS - Univ. Paris Diderot Meudon, nov. 2013 p. 2/17 Pulsars (PSR) and pulsar wind nebulae (PWNe) Mostly

More information

The Mystery of Fast Radio Bursts and its possible resolution. Pawan Kumar

The Mystery of Fast Radio Bursts and its possible resolution. Pawan Kumar The Mystery of Fast Radio Bursts and its possible resolution Outline Pawan Kumar FRBs: summary of relevant observations Radiation mechanism and polarization FRB cosmology Wenbin Lu Niels Bohr Institute,

More information

Electrodynamics of Magnetized Rotators Anatoly Spitkovsky,, UC Berkeley

Electrodynamics of Magnetized Rotators Anatoly Spitkovsky,, UC Berkeley Electrodynamics of Magnetized Rotators Anatoly Spitkovsky,, UC Berkeley Magnetized rotators are ubiquitous: pulsars, AGN, GRBs (?) Rotation very efficient at long-term energy storage Extraction of rotational

More information

X-ray Observations of Rotation Powered Pulsars

X-ray Observations of Rotation Powered Pulsars X-ray Observations of Rotation Powered Pulsars George Pavlov (Penn State) Oleg Kargaltsev (George Washington Univ.) Martin Durant (Univ. of Toronto) Bettina Posselt (Penn State) Isolated neutron stars

More information

TESTING PULSAR RADIATION MODELS USING AN α-weak-dependent ALTITUDE RATIO

TESTING PULSAR RADIATION MODELS USING AN α-weak-dependent ALTITUDE RATIO The Astrophysical Journal, 703:507 56, 2009 September 20 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:0.088/0004-637x/703//507 TESTING PULSAR RADIATION MODELS

More information

Radio emission regions in pulsars

Radio emission regions in pulsars Mon. Not. R. Astron. Soc. 299, 855 861 (1998) Radio emission regions in pulsars Jaroslaw Kijak 1;2 and Janusz Gil 1 1 Astronomy Centre, Pedagogical University, Lubuska 2, PL-65-265 Zielona Góra, Poland

More information

Cooling Limits for the

Cooling Limits for the Cooling Limits for the Page et al. 2004 Youngest Neutron Stars Cooling from the Youngest NSs SNR Zone NSs younger than ~50 kyr offer strong constraints on rapid cooling - the associated physical processes

More information

arxiv: v1 [astro-ph] 17 Jul 2007

arxiv: v1 [astro-ph] 17 Jul 2007 Mon. Not. R. Astron. Soc. 000, 1 8 (2005) Printed 6 November 27 (MN LATEX style file v2.2) An empirical model for the beams of radio pulsars Aris Karastergiou 1 & Simon Johnston 2 1 IRAM, 300 rue de la

More information

The double pulsar as Jupiter: tomography of magnetosphere and a new test of General Relativity. Maxim Lyutikov (Purdue U.)

The double pulsar as Jupiter: tomography of magnetosphere and a new test of General Relativity. Maxim Lyutikov (Purdue U.) The double pulsar as Jupiter: tomography of magnetosphere and a new test of General Relativity Maxim Lyutikov (Purdue U.) The Double Pulsar: sixth most important scientific discovery of 2004 (Science)

More information

The pulsars magnetospheres

The pulsars magnetospheres The pulsars magnetospheres journée plasma UPMC - janvier 2009 Fabrice Mottez, très redevable à Jérôme Pétri (Obs. Strasbourg) qui a fourni un matériel abondant dérivé de sa présentation à Cargèse en 2005

More information

The Nature of Coherent Radio Emission from Pulsars

The Nature of Coherent Radio Emission from Pulsars J. Astrophys. Astr. (2017) 123: #### DOI 12.3456/s78910-011-012-3 The Nature of Coherent Radio Emission from Pulsars Dipanjan Mitra 123 1, National Center for Radio Astrophysics, TIFR, Pune 411007, India.

More information

The Fermi Large Area Telescope View of Gamma-ray Pulsars

The Fermi Large Area Telescope View of Gamma-ray Pulsars The Fermi Large Area Telescope View of Gamma-ray Pulsars 1 Tyrel J. Johnson, D.A. Smith2, M. Kerr3, & P. R. den Hartog4 on behalf of the Fermi Large Area Telescope Collaboration and the Pulsar Timing and

More information

ETA Observations of Crab Pulsar Giant Pulses

ETA Observations of Crab Pulsar Giant Pulses ETA Observations of Crab Pulsar Giant Pulses John Simonetti,, Dept of Physics, Virginia Tech October 7, 2005 Pulsars Crab Pulsar Crab Giant Pulses Observing Pulses --- Propagation Effects Summary Pulsars

More information

X-ray and Gamma-ray. Emission Pulsars and Pulsar Wind Nebulae. K.S. Cheng Department of Physics University of Hong Kong Hong Kong, China

X-ray and Gamma-ray. Emission Pulsars and Pulsar Wind Nebulae. K.S. Cheng Department of Physics University of Hong Kong Hong Kong, China X-ray and Gamma-ray Emission Pulsars and Pulsar Wind Nebulae K.S. Cheng Department of Physics University of Hong Kong Hong Kong, China X-ray luminosity (L x ) vs spin-down power (L sd ) Becker and Trumper

More information

arxiv: v1 [astro-ph.sr] 23 Jul 2014

arxiv: v1 [astro-ph.sr] 23 Jul 2014 Accepted for publication in The Astrophysical Journal Preprint typeset using L A TEX style emulateapj v. 5/2/11 INTER-RELATIONSHIP BETWEEN THE TWO EMISSION CONES OF B1237+25 Yogesh Maan and Avinash A.

More information

Emission Altitude r/r Pulsar Period P [s] 4.85 GHz

Emission Altitude r/r Pulsar Period P [s] 4.85 GHz Mon. Not. R. Astron. Soc., { (1997) Radio emission regions in pulsars Jaroslaw Kijak 1;2 and Janusz Gil 1 1 Astronomy Centre, Pedagogical University, Lubuska 2, PL-65-265 Zielona Gora, Poland 2 Max-Planck-Institut

More information

Non-thermal emission from Magnetic White Dwarf binary AR Scorpii

Non-thermal emission from Magnetic White Dwarf binary AR Scorpii Non-thermal emission from Magnetic White Dwarf binary AR Scorpii Jumpei Takata (Huazhong University of Science and Technology, China) On behalf of Y. Hui (HUST), C.-P. Hu, K.S. Cheng (HKU, HK), L.C.C.

More information

X-ray emission properties vary with spin-down age. Crab-like pulsars (< 10 4 yrs)

X-ray emission properties vary with spin-down age. Crab-like pulsars (< 10 4 yrs) X-ray emission properties vary with spin-down age Crab-like pulsars (< 10 4 yrs) X-ray emission properties vary with spin-down age Crab-like pulsars (< 10 4 yrs) Cooling neutron stars ( ~10 5-10 6 yrs)

More information

12 Pulsars: overview and some physics

12 Pulsars: overview and some physics Physics 426 Notes Spring 2009 59 12 Pulsars: overview and some physics Carroll & Ostlie present the basic picture in some detail; another good reference is Longair s High Energy Astrophysics. In these

More information

arxiv:astro-ph/ Feb 2000

arxiv:astro-ph/ Feb 2000 The spark-associated soliton model for pulsar radio emission George I. Melikidze 1;, Janusz A. Gil 1 and Avtandil D. Pataraya gogi@astro.ca.sp.zgora.pl, jag@astro.ca.sp.zgora.pl ABSTRACT arxiv:astro-ph/000458

More information

Coherent and continuous radio emission from Magnetic Chemically Peculiar stars

Coherent and continuous radio emission from Magnetic Chemically Peculiar stars Coherent and continuous radio emission from Magnetic Chemically Peculiar stars C. Trigilio 1 P. Leto 1, G. Umana 1, C.Buemi 1, F.Leone 2 1 INAF-OACT, 2 UNICT Magnetic Chemically Peculiar stars MS B-A type

More information

Pulsars & Double Pulsars:! A Multiwavelength Approach!

Pulsars & Double Pulsars:! A Multiwavelength Approach! Pulsars & Double Pulsars:! A Multiwavelength Approach! Marta Burgay INAF, Cagliari Observatory! X-Ray Astronomy 2009 Bologna 08/09/2009! Spin-Powered Pulsars! Radio! High Energy! RRATs! Magnetars! XDINS!

More information

Fermi Large Area Telescope:

Fermi Large Area Telescope: Fermi Large Area Telescope: Early Results on Pulsars Kent Wood Naval Research Lab kent.wood@nrl.navy.mil for the Fermi LAT Collaboration Tokyo Institute of Technology 7 March 2009 K. Wood (NRL) 1/30 Fermi

More information

Theory of High Energy Emission from Pulsars. K.S. Cheng Department of Physics University of Hong Kong Hong Kong, China

Theory of High Energy Emission from Pulsars. K.S. Cheng Department of Physics University of Hong Kong Hong Kong, China Theory of High Energy Emission from Pulsars K.S. Cheng Department of Physics University of Hong Kong Hong Kong, China Outline Introduction :Accelerators polar gap, slot gap and outer gap Relevant observed

More information

arxiv:astro-ph/ v1 16 Oct 2003

arxiv:astro-ph/ v1 16 Oct 2003 Young Neutron Stars and Their Environments IAU Symposium, Vol. 218, 2004 F. Camilo and B. M. Gaensler, eds. Observational manifestations of young neutron stars: Spin-powered pulsars arxiv:astro-ph/0310451v1

More information

Distinct Features of Pulsar Polar-Gap Emission at the High-Energy Spectral Cutoff

Distinct Features of Pulsar Polar-Gap Emission at the High-Energy Spectral Cutoff The Universe Viewed in Gamma-Rays 1 Distinct Features of Pulsar Polar-Gap Emission at the High-Energy Spectral Cutoff Jaros law DYKS and Bronis law RUDAK Nicolaus Copernicus Astronomical Center, Rabiańska

More information

arxiv: v1 [astro-ph.he] 20 May 2016

arxiv: v1 [astro-ph.he] 20 May 2016 Astronomy& Astrophysics manuscript no. psrsalsa c ESO 2016 May 23, 2016 Investigation of the bi-drifting subpulses of radio pulsar B1839 04 utilising the open-source data-analysis project PSRSALSA P. Weltevrede

More information

The Structure of Integrated Pulse Profiles. Μ. Vivekanand and V. Radhakrishnan Raman Research Institute, Bangalore

The Structure of Integrated Pulse Profiles. Μ. Vivekanand and V. Radhakrishnan Raman Research Institute, Bangalore J. Astrophys. Astr. (1980) 1, 119 128 The Structure of Integrated Pulse Profiles Μ. Vivekanand and V. Radhakrishnan Raman Research Institute, Bangalore 560080 Received 1980 July 8; accepted 1980 October

More information

Pulsars. The maximum angular frequency of a spinning star can be found by equating the centripetal and gravitational acceleration M R 2 R 3 G M

Pulsars. The maximum angular frequency of a spinning star can be found by equating the centripetal and gravitational acceleration M R 2 R 3 G M Pulsars Pulsating stars were discovered in 1967 via radio dipole antennae by Jocelyn Bell and Anthony Hewish Pulse period of PSR 1919+21 is 1.337 s Most pulsars have periods between 0.25 s and 2 s The

More information

Subpulse modulation, moding and nulling of the five-component pulsar B

Subpulse modulation, moding and nulling of the five-component pulsar B Mon. Not. R. Astron. Soc. 406, 237 246 (2010) doi:10.1111/j.1365-2966.2010.16703.x Subpulse modulation, moding and nulling of the five-component pulsar B1737+13 Megan M. Force 1 and Joanna M. Rankin 1,2

More information

Rotation-Powered Pulsars

Rotation-Powered Pulsars Rotation-Powered Pulsars As we discussed last time, the extreme properties of neutron stars (gravity, density, magnetic field) make them excellent objects to study to see how physics operates in unusual

More information

Explosive reconnection of the double tearing mode in relativistic plasmas

Explosive reconnection of the double tearing mode in relativistic plasmas Explosive reconnection of the double tearing mode in relativistic plasmas Application to the Crab Jérôme Pétri 1 Hubert Baty 1 Makoto Takamoto 2, Seiji Zenitani 3 1 Observatoire astronomique de Strasbourg,

More information

Phenomenology of pulsar B s rotating subbeam system. II. Carousel configuration and polarization ABSTRACT

Phenomenology of pulsar B s rotating subbeam system. II. Carousel configuration and polarization ABSTRACT A&A 455, 215 221 (2006) DOI: 10.1051/0004-6361:20054417 c ESO 2006 Astronomy & Astrophysics Phenomenology of pulsar B0809+74 s rotating subbeam system II. Carousel configuration and polarization Joanna

More information

Studies of interstellar scintillation and scattering of pulsars using polish LOFAR stations

Studies of interstellar scintillation and scattering of pulsars using polish LOFAR stations Studies of interstellar scintillation and scattering of pulsars using polish LOFAR stations Wojciech Lewandowski Janusz Gil Institute for Astronomy, University of Zielona Góra The interstellar medium (ISM)

More information

Astronomy 421. Lecture 23: End states of stars - Neutron stars

Astronomy 421. Lecture 23: End states of stars - Neutron stars Astronomy 421 Lecture 23: End states of stars - Neutron stars 1 Outline Neutron stars Pulsars properties distribution emission mechanism evolution 2 Neutron stars Typical values: M ~ 1.4M R ~ 10 km ρ ~

More information

Outer-magnetospheric model for Vela-like pulsars: formation of sub-gev spectrum

Outer-magnetospheric model for Vela-like pulsars: formation of sub-gev spectrum Mon. Not. R. Astron. Soc. 348, 4 49 (004) Outer-magnetospheric model for -like pulsars: formation of sub-gev spectrum J. Takata, S. Shibata and K. Hirotani 3 Graduate School of Science and Engineering,

More information

Sources of GeV Photons and the Fermi Results

Sources of GeV Photons and the Fermi Results Sources of GeV Photons and the Fermi Results 1. GeV instrumentation and the GeV sky with the Fermi Gamma-ray Space Telescope 2. First Fermi Catalog of Gamma Ray Sources and the Fermi Pulsar Catalog 3.

More information

Lecture 3 Pulsars and pulsar wind nebulae

Lecture 3 Pulsars and pulsar wind nebulae Lecture 3 Pulsars and pulsar wind nebulae Pulsars Characteristic parameters Pulsar wind nebulae Properties Evolution Exotic central compact objects - Magnetars The Crab Pulsar http://www.jb.man.ac.uk/~pulsar/education/sounds/sounds.html

More information

Studies of single pulses from two millisecond pulsars ares presented. The energy

Studies of single pulses from two millisecond pulsars ares presented. The energy Chapter 6 Individual Pulses in Millisecond Pulsars 6.1 Summary Studies of single pulses from two millisecond pulsars ares presented. The energy distribution of PSR B1534+12 is similar to that of slow pulsars,

More information

Probing the Pulsar Wind in the TeV Binary System

Probing the Pulsar Wind in the TeV Binary System Probing the Pulsar Wind in the TeV Binary System -PSR B1259-63/SS2883- Jumpei Takata (University of Hong Kong) Ronald Taam (TIARA, Taiwan) 1 Outline 1, Introduction -TeV binaries -Fermi observation -PSR

More information

FERMI. YOUNG PULSAR SPECTRA WITH THE LAT FERMI TELESCOPE Ateliers pulsars. 25 novembre 2008 Damien Parent. Gamma-ray Large Area Space Telescope

FERMI. YOUNG PULSAR SPECTRA WITH THE LAT FERMI TELESCOPE Ateliers pulsars. 25 novembre 2008 Damien Parent. Gamma-ray Large Area Space Telescope FERMI Gamma-ray Large Area Space Telescope YOUNG PULSAR SPECTRA WITH THE LAT FERMI TELESCOPE Ateliers pulsars 25 novembre 2008 1 Topics 1. Young pulsars, our best candidates 2 examples : J0205+6449 and

More information

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars Marie-Hélène Grondin CENBG, Bordeaux (France) on behalf of the Fermi-LAT Collaboration and the Pulsar Timing

More information

arxiv:astro-ph/ v1 23 Aug 2005

arxiv:astro-ph/ v1 23 Aug 2005 Coherent Curvature Radiation and Proton Counterflow in the Pulsar Magnetosphere Katsuaki Asano arxiv:astro-ph/0508474v1 23 Aug 2005 Division of Theoretical Astronomy, National Astronomical Observatory

More information

Periodic Nulls in Pulsar B

Periodic Nulls in Pulsar B Mon. Not. R. Astron. Soc. 000, 1 7 (2007) Printed 22 April 2007 (MN LATEX style file v2.2) Periodic Nulls in Pulsar B1133+16 Jeffrey L. Herfindal and Joanna M. Rankin Physics Department, University of

More information

The Same Physics Underlying SGRs, AXPs and Radio Pulsars

The Same Physics Underlying SGRs, AXPs and Radio Pulsars Chin. J. Astron. Astrophys. Vol. 6 (2006), Suppl. 2, 273 278 (http://www.chjaa.org) Chinese Journal of Astronomy and Astrophysics The Same Physics Underlying SGRs, AXPs and Radio Pulsars Biping Gong National

More information

Pulsars and Timing. Lucas Guillemot, Ismaël Cognard.!! Rencontre CTA, Observatoire de Paris, 28/11/13

Pulsars and Timing. Lucas Guillemot, Ismaël Cognard.!! Rencontre CTA, Observatoire de Paris, 28/11/13 Pulsars and Timing Lucas Guillemot, Ismaël Cognard Rencontre CTA, Observatoire de Paris, 28/11/13 Pulsars radio emission cone γ-ray emission fan beam Pulsars are rapidly rotating highly magnetized neutron

More information

Term Project: Magnetic Fields of Pulsars

Term Project: Magnetic Fields of Pulsars Term Project: Magnetic Fields of Pulsars Jamie Lomax May 14, 2008 Contents Introduction-A brief introduction to pulsars. (Page 1) Observing Pulsars-An example of how pulsars are observed. (Page 1) Magnetic

More information

On the pulse-width statistics in radio pulsars I. Importance of the interpulse emission

On the pulse-width statistics in radio pulsars I. Importance of the interpulse emission Mon. Not. R. Astron. Soc. 414, 1314 1328 (2011) doi:10.1111/j.1365-2966.2011.18471.x On the pulse-width statistics in radio pulsars I. Importance of the interpulse emission Krzysztof Maciesiak, 1 Janusz

More information

The Double Pulsar:! A Decade of Discovery! (and what you can do over the next decade with FAST!)

The Double Pulsar:! A Decade of Discovery! (and what you can do over the next decade with FAST!) The Double Pulsar:! A Decade of Discovery! (and what you can do over the next decade with FAST!) Maura McLaughlin West Virginia University 20 May 2014 : Double neutron star systems" The pulsar catalog

More information

New measurements of pulsar braking indices (obtained via phase-coherent timing)

New measurements of pulsar braking indices (obtained via phase-coherent timing) New measurements of pulsar braking indices (obtained via phase-coherent timing) Collaborators: Vicky Kaspi (McGill) Fotis Gavriil (GSFC) Richard Manchester (ATNF) Eric Gotthelf (Columbia) Lucien Kuiper

More information

Radio Pulsar Death. Bing Zhang

Radio Pulsar Death. Bing Zhang Vol.44 Suppl. ACTA ASTRONOMICA SINICA Feb., 2003 Radio Pulsar Death Bing Zhang (The Pennsylvania State University, USA) ABSTRACT Pulsar radio emission is believed to be originated from the electronpositron

More information

Pulsar Overview. Kevin Stovall NRAO

Pulsar Overview. Kevin Stovall NRAO Pulsar Overview Kevin Stovall NRAO IPTA 2018 Student Workshop, 11 June, 2018 Pulsars Pulsars ~2,700 pulsars known Act as clocks, therefore provide a means for studying a variety of physical phenomena Strongly

More information

Emission from Isolated Neutron Stars. Observations and model applications

Emission from Isolated Neutron Stars. Observations and model applications Thermal Emission from Isolated Neutron Stars Theoretical aspects Observations and model applications Slava Zavlin (MPE, Garching) A Short History Chi & Salpeter (1964) and Tsuruta (1964): thermal radiation

More information

ELECTROMAGNETIC RADIATION FROM PULSARS : AND MAGNETARS 4

ELECTROMAGNETIC RADIATION FROM PULSARS : AND MAGNETARS 4 ASTRONOMICAL SOCIETY OF THE PACIFIC CONFERENCE SERIES Volume 466 J ELECTROMAGNETIC RADIATION FROM PULSARS : AND MAGNETARS 4 Proceedings of a conference held at University of Zielona Gora, Zielona Gora,

More information

Radio Emission Physics in the Crab Pulsar. J. A. Eilek & T. H. Hankins New Mexico Tech, Socorro NM, USA

Radio Emission Physics in the Crab Pulsar. J. A. Eilek & T. H. Hankins New Mexico Tech, Socorro NM, USA Radio Emission Physics in the Crab Pulsar J. A. Eilek & T. H. Hankins New Mexico Tech, Socorro NM, USA Summary for Impatient Readers We are carrying out ultra-high time resolution observations in order

More information

- Synchrotron emission: A brief history. - Examples. - Cyclotron radiation. - Synchrotron radiation. - Synchrotron power from a single electron

- Synchrotron emission: A brief history. - Examples. - Cyclotron radiation. - Synchrotron radiation. - Synchrotron power from a single electron - Synchrotron emission: A brief history - Examples - Cyclotron radiation - Synchrotron radiation - Synchrotron power from a single electron - Relativistic beaming - Relativistic Doppler effect - Spectrum

More information

Recent Radio Observations of Pulsars

Recent Radio Observations of Pulsars Recent Radio Observations of Pulsars R. N. Manchester Australia Telescope National Facility, CSIRO Sydney Australia Summary A pulsar census Recent pulsar surveys Pulse modulation and drifting subpulses

More information

Polarization of high-energy emission in a pulsar striped wind

Polarization of high-energy emission in a pulsar striped wind Paris - 16/1/26 p.1/2 Polarization of high-energy emission in a pulsar striped wind Jérôme Pétri Max Planck Institut für Kernphysik - Heidelberg Paris - 16/1/26 p.2/2 Outline 1. The models 2. The striped

More information

Toward an Empirical Theory of Pulsar Emission. XII. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

Toward an Empirical Theory of Pulsar Emission. XII. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions 2017. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/1538-4357/aa7b73 Toward an Empirical Theory of Pulsar Emission. XII. Exploring the Physical Conditions in Millisecond

More information

The Stellar Graveyard Neutron Stars & White Dwarfs

The Stellar Graveyard Neutron Stars & White Dwarfs The Stellar Graveyard Neutron Stars & White Dwarfs White Dwarfs White dwarfs are the remaining cores of low-mass (M < 8M sun ) stars Electron degeneracy pressure supports them against gravity Density ~

More information

Editorial comment: research and teaching at UT

Editorial comment: research and teaching at UT Wednesday, March 23, 2017 Reading for Exam 3: Chapter 6, end of Section 6 (binary evolution), Section 6.7 (radioactive decay), Chapter 7 (SN 1987A), Background: Sections 3.1, 3.2, 3.3, 3.4, 3.5, 3.8, 3.10,

More information

Pulsar Wind Nebulae. Pennsylvania State University. General outlook Chandra results Polarization in radio and optical X-ray polarization

Pulsar Wind Nebulae. Pennsylvania State University. General outlook Chandra results Polarization in radio and optical X-ray polarization Pulsar Wind Nebulae George Pavlov & Oleg Kargaltsev Pennsylvania State University General outlook Chandra results Polarization in radio and optical X-ray polarization Pulsar Wind Nebulae: extended objects

More information

PoS(Texas 2010)130. Geometric modelling of radio and γ-ray light curves of 6 Fermi LAT pulsars

PoS(Texas 2010)130. Geometric modelling of radio and γ-ray light curves of 6 Fermi LAT pulsars Geometric modelling of radio and γ-ray light curves of 6 Fermi LAT pulsars A. S. Seyffert a,b, C. Venter a, O. C. de Jager a, and A. K. Harding b a Centre for Space Research, North-West University, Potchefstroom

More information

Probing Pulsar Winds With X-rays!

Probing Pulsar Winds With X-rays! Probing Pulsar Winds With X-rays! Collaborators:! Bryan Gaensler! Steve Reynolds! David Helfand! Stephen Ng! Anne Lemiere! Okkie de Jager! Stephanie LaMassa! Jack Hughes! PWNe and Their SNRs! PWN Shock

More information

e - -e + pair production in pulsar magnetospheres

e - -e + pair production in pulsar magnetospheres e - -e + pair production in pulsar magnetospheres Kouichi HIROTANI TIARA/ASIAA-NTHU, Taiwan IPMU December 8, 2009 Crab nebula: Composite image of X-ray [blue] and optical [red] 1 Introduction: The γ-ray

More information

Neutron Stars: Observations

Neutron Stars: Observations Neutron Stars: Observations Ian Jones School of Mathematics, University of Southampton, UK Neutron star observations: overview From the observational point of view, neutron stars come in many different

More information

ae Bhadik Singie-pulse Studies of Pulsars at Decameter Wavelengths DEPARTMENT OF PHYSICS BANGALORE (INDIA) &11PmiUM!

ae Bhadik Singie-pulse Studies of Pulsars at Decameter Wavelengths DEPARTMENT OF PHYSICS BANGALORE (INDIA) &11PmiUM! Singie-pulse Studies of Pulsars at Decameter Wavelengths ae Bhadik &11PmiUM! jnvr the depw 4 DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF SCIENCE BANGALORE-560 012 (INDIA) Declaration I hereby declare that

More information

Composite Supernova Remnants: Multiwavelength Observations and Theoretical Modelling

Composite Supernova Remnants: Multiwavelength Observations and Theoretical Modelling Composite Supernova Remnants: Multiwavelength Observations and Theoretical Modelling Okkie de Jager & Stefan Ferreira (NWU, South Africa) Regis Terrier & Arache Djannati-Ataï (Univ. of Paris VII, France)

More information

Pulsars. in this talk. Pulsar timing. Pulsar timing. Pulsar timing. Pulsar timing. How to listen to what exotic. are telling us! Paulo César C.

Pulsars. in this talk. Pulsar timing. Pulsar timing. Pulsar timing. Pulsar timing. How to listen to what exotic. are telling us! Paulo César C. How to listen to what exotic Pulsars are telling us! in this talk 1. 2. 3. Test of gravitational theories using binary pulsars 4. Probing the equation of state of super-dense matter Paulo César C. Freire

More information