Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

Size: px
Start display at page:

Download "Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev"

Transcription

1 Electromagnetic Spectra AST443, Lecture 13 Stanimir Metchev

2 Administrative Homework 2: problem 5.4 extension: until Mon, Nov 2 Reading: Bradt, chapter 11 Howell, chapter 6 Tenagra data: see bottom of Assignments & Exams section on course website M11 (B+V), M52 (B+V+R), HD b (R, all data taken) expect M37 (B+V+R) data tonight remaining: Hyades (B+V+R) 2

3 Outline Overview color-magnitude and color-color diagrams spectral classification Electromagnetic spectra optically thin, synchrotron, and blackbody emission electronic line transitions Stellar diagnostics atmospheres: temperature, pressure, abundance binarity 3

4 Color-Magnitude Diagram 4

5 Extinction and Reddening: CCD Legend: arrow: A V = 5 mag extinction solid line: main sequence + giants dotted line: substellar models crosses: known brown dwarfs solid points: brown dwarf candidates A V = 5 mag Metchev et al. (2003) 5

6 OBAFGKM + LT higher ionization potential species 6

7 Color-Magnitude Diagram 7

8 Outline Overview color-magnitude and color-color diagrams spectral classification Electromagnetic spectra optically thin, synchrotron, and blackbody emission electronic line transitions Stellar diagnostics atmospheres: temperature, pressure, abundance binarity 8

9 Radiation (Lecture 12) specific intensity I ν de = I ν dt da dν dω [erg s 1 cm 2 Hz 1 sterad 1 ] or [Jy sterad 1 ] 1 Jy = erg s 1 cm 2 Hz 1 = W m 2 Hz 1 surface brightness of extended sources (independent of distance) spectral flux density S ν S ν = I ν dω [erg s 1 cm 2 Hz 1 ] or [Jy] or [W m 2 Hz 1 ] S λ = S ν c/λ 2 [erg s 1 cm 2 nm 1 ] point sources, integrated light from extended sources flux density F F = S ν dν [erg s 1 cm 2 ] or [W m 2 ] power P P = F da = de / dt [erg s 1 ] or [W] received power: integrated over telescope area luminosity: integrated over area of star conversion to photon counts energy of N photons: Nhν 9

10 Extinction and Optical Depth (Lecture 4) Light passing through a medium can be: transmitted, absorbed, scattered extinction at frequency ν over distance s dl ν (s) = κ ν ρ L ν ds = L dτ ν L ν = L ν,0 e τ = L ν,0 e κρs =L ν,0 e s/l A ν = 2.5 lg (F ν,0 /F ν ) = 2.5 lg(e)τ ν = 0.43τ ν mag medium opacity κ ν [cm 2 g 1 ], density ρ [g cm 3 ] optical depth τ ν = κ ν ρs [unitless] photon mean free path: l ν = (κ ν ρ) 1 = s/τ ν [cm] A V = m V m V,0 10

11 Neutral Atoms and Molecules Are Strong Wavelength-Dependent Absorbers 11

12 Electronic Transitions bound-free free-bound free-free (bremsstrahlung) 12

13 Examples of Continuum Spectra optically thin thermal radiation synchrotron radiation (non-thermal) blackbody (optically thick) thermal radiation 13

14 Optically Thin Bremsstrahlung optical depth << 1 hot plasma: free electrons accelerated in near-collisions with massive ions large accelerarion due to Coulomb force: radiation continuum spectrum: j(",t) # Z 2 n e n i T $1 2 e $h" kt [W m 3 Hz 1 ] Z n e,n i atomic number (charge number) of ions number densities [m 3 ] of electrons, ions spectrum is flat at low (radio) ν (i.e., ~independent of ν) occurrence: x-rays in dentist s tube shocks in supernova remnants stellar coronae (~1,000,000 K) 14

15 Synchrotron Radiation charged electrons spiraling in a B field spiraling motion means acceleration, hence radiation relativistic electrons can emit x-ray to gammaray photons beaming in direction of travel spectrum reflects energy distribution of radiating electrons power law: I = Kν α [W m 2 Hz 1 sterad 1 ] (α < 0) 15

16 Blackbody Radiation (Lecture 4) Planck law specific intensity I(",T) = 2h" 3 c 2 1 e h" kt #1 Wien displacement law T λ max = 0.29 K cm Stefan-Boltzmann law F = σ T 4 energy flux density [erg s 1 cm 2 ] " = 2# 5 k 4 Stellar luminosity power [erg s 1 ] Inverse-square law F(r) = L * / r 2 15c 2 h 3 = 5.67 $10%5 erg cm 2 s 1 K 4 L * = 4"R 2 4 * #T eff 16

17 Blackbody Radiation (Lecture 4) T eff, Sun = 5777 K T λ max = 0.29 K cm 17

18 Examples of Continuum Spectra optically thin thermal radiation synchrotron radiation (non-thermal) blackbody (optically thick) thermal radiation see Fig of Bradt, p

19 Radiative Transfer (again) The optical depth τ λ accounts for interaction between photospheric matter and radiation field. 19

20 Line Radiation & h" = #E $ R 1 2 n % 1 ) ( 2 + ' 1 n 2 * 20

21 Outline Overview color-magnitude and color-color diagrams spectral classification Electromagnetic spectra optically thin, synchrotron, and blackbody emission electronic line transitions Stellar diagnostics atmospheres: temperature, pressure, abundance binarity 21

22 Spectral Lines as Atmospheric Diagnostics chemical content and abundances mostly H and He, but heavier metals (Z > 2) + molecules are important sources of opacity photospheric temperature individual line strength line ratios photospheric pressure non-zero line width surface gravity g, mass M * stellar rotation Doppler broadening dp dr = " GM r# = "g# r 2 equation of hydrostatic equilibrium 22

23 Taking the Stellar Temperature individual line strengths N n " g n e #$ n kt g n statistical weight g n = 2n 2 for hydrogen line ratios N n = g n e # ( $ n #$ m ) kt N m g m 23

24 Taking the Stellar Temperature T eff (Fe II λ5317 / Fe I λ5328) line ratio decreases with decreasing T eff 24

25 Line Profiles Natural line width (Lorentzian [a.k.a, Cauchy] profile) Heisenberg uncertainty principle: ν = E/h Collisional broadening (Lorentzian profile) collisions interrupt photon emission process t coll < t emission ~ 10 9 s dependent on T, ρ Pressure broadening (~ Lorentzian profile) t interaction > t emission nearby particles shift energy levels of emitting particle Stark effect (n = 2, 4) van der Waals force (n = 6) dipole coupling between pairs of same species (n = 3) # /2$ I " = I 0 (" %" 0 ) 2 + # 2 /4 # & Lorentzian FWHM " natural = #E i + #E f h /2$ " collisional = 2 #t coll = 1 #t i + 1 #t f " pressure % r &n ; n = 2,3,4,6 25

26 Stark Effect in Hydrogen if external field is chaotic, the energy levels and their differences are smeared line broadening 26

27 Van der Waals Force: Long-Range Attraction 27

28 Van der Waals Force: Long-Range Attraction 28

29 Line Profiles Natural line width (Lorentzian [a.k.a, Cauchy] profile) Heisenberg uncertainty principle: ν = E/h Collisional broadening (Lorentzian profile) collisions interrupt photon emission process t coll < t emission ~ 10 9 s dependent on T, ρ Pressure broadening (~ Lorentzian profile) t interaction > t emission nearby particles shift energy levels of emitting particle Stark effect (n = 2, 4) van der Waals force (n = 6) dipole coupling between pairs of same species (n = 3) dependent mostly on ρ, less on T Thermal Doppler broadening (Gaussian profile) emitting particles have a Maxwellian distribution of velocities Rotational Doppler broadening (Gaussian profile) radiation emitted from a spatially unresolved rotating body # /2$ I " = I 0 (" %" 0 ) 2 + # 2 /4 # & Lorentzian FWHM " natural = #E i + #E f h /2$ " collisional = 2 #t coll = 1 #t i + 1 #t f " pressure % r &n ; n = 2,3,4,6 (" %" 0 ) 2 2$ 2 1 I " = 2#$ e% $ & Gaussian FWHM " thermal = # 0 kt mc 2 " rotational = 2# 0 u /c 29

30 Line Profiles: Rotational Broadening 30

31 Line Profiles I ν profiles normalized to the same total area ν 31

32 Line Profiles Natural line width (Lorentzian [a.k.a, Cauchy] profile) Heisenberg uncertainty principle: ν = E/h Collisional broadening (Lorentzian profile) collisions interrupt photon emission process t coll < t emission ~ 10 9 s dependent on T, ρ Pressure broadening (~ Lorentzian profile) t interaction > t emission nearby particles shift energy levels of emitting particle Stark effect (n = 2, 4) van der Waals force (n = 6) dipole coupling between pairs of same species (n = 3) dependent mostly on ρ, less on T Thermal Doppler broadening (Gaussian profile) emitting particles have a Maxwellian distribution of velocities Rotational Doppler broadening (Gaussian profile) radiation emitted from a spatially unresolved rotating body Composite line profile: Lorentzian + Gaussian = Voigt profile # /2$ I " = I 0 (" %" 0 ) 2 + # 2 /4 # & Lorentzian FWHM " natural = #E i + #E f h /2$ " collisional = 2 #t coll = 1 #t i + 1 #t f " pressure % r &n ; n = 2,3,4,6 (" %" 0 ) 2 2$ 2 1 I " = 2#$ e% $ & Gaussian FWHM " thermal = # 0 kt mc 2 " rotational = 2# 0 u /c 32

33 Line Profiles Natural line width (Lorentzian [a.k.a., Cauchy] profile) Heisenberg uncertainty principle: ν = E/h Collisional broadening (Lorentzian profile) collisions interrupt photon emission process t coll < t emission ~ 10 9 s dependent on T, ρ Pressure broadening (~ Lorentzian profile) t interaction > t emission nearby particles shift energy levels of emitting particle Stark effect (n = 2, 4) van der Waals force (n = 6) dipole coupling between pairs of same species (n = 3) dependent mostly on ρ, less on T Thermal Doppler broadening (Gaussian profile) emitting particles have a Maxwellian distribution of velocities Rotational Doppler broadening (Gaussian profile) radiation emitted from a spatially unresolved rotating body Composite line profile: Lorentzian + Gaussian = Voigt profile # /2$ I " = I 0 (" %" 0 ) 2 + # 2 /4 # & Lorentzian FWHM " natural = #E i + #E f h /2$ " collisional = 2 #t coll = 1 #t i + 1 #t f " pressure % r &n ; n = 2,3,4,6 (" %" 0 ) 2 2$ 2 1 I " = 2#$ e% $ & Gaussian FWHM " thermal = # 0 kt mc 2 " rotational = 2# 0 u /c 33

34 Example: Pressure Broadening of the Na D Fine Structure Doublet 34

35 Line Profiles: Equivalent Width (EW) EW = " $ 2 ( F ", cont # F ", line ) d" " 1 " $ 2 F ", cont d" " 1 λ 1 λ 2 35

36 Lorentzian Line Profile at Increasing τ simulation for the Hα line profile 36

37 Lorentzian Line Profile at Increasing τ simulation for the Hα line profile saturation at τ > 5 37

38 Lorentzian Line Profile at Increasing τ simulation for the Hα line profile 38

39 Lorentzian vs. Gaussian Line Profiles: Small τ simulation for the Hα line profile 39

40 Lorentzian vs. Gaussian Line Profiles: Large τ simulation for the Hα line profile core more sensitive to Gaussian parts wings more influenced by Lorentzian parts 40

41 Curve of Growth: Dependence of Line Equivalent Width W on Column Density N N integral of number density of absorbing atoms or molecules along line of sight [cm -2 ] for small N, W N linear part of the curve of growth for larger N, W " ln N after the Gaussian core bottoms out flat part of the curve of growth for even larger N, W " N after the absorption by the Lorentzian wings becomes strong square root part of the curve of growth There is a different curve of growth, W(N), for each spectral line 41

42 Universal Curve of Growth the ratio of W to Doppler line width Δλ depends upon the product of N and a line s oscillator strength f in the same way for every spectral line (e.g. Unsöld 1955). " log W # $ % ' &! ( linear W " N flat square root W " ln N W " N "# = # v c = # c 2kT m m: absorber particle mass ( ) log Nf 42

43 Alkali (Na, K) lines in visible spectra of late-l and T dwarfs become saturated! (Kirkpatrick 2005) 43

44 Curve of Growth: Determining Abundances Measure W for a lot of lines (each with distinct, known f) of a number of atomic or ionic species. Plot W/ λ against xnf where: N is the column density of one species x is the relative abundance of the atomic species that gives rise to the line (ratio of number density of that species to the number density of the first species), Adjust x, N, and λ until the points fit the universal curve of growth. Then one knows these three quantities for each species. 44

45 Outline Overview color-magnitude and color-color diagrams spectral classification Electromagnetic spectra optically thin, synchrotron, and blackbody emission electronic line transitions Stellar diagnostics atmospheres: temperature, pressure, abundance binarity 45

46 Spectroscopic Binary (a) (d) (a) double-lined (SB2) spectra of both stars visible (b) (c) (b) (c) (d) single-lined (SB1) only spectrum of brighter star visible (d) 46

47 Example: SB1 47

48 Example: SB2 48

49 Radial Velocity vs. Time for Double-lined SB in a Circular Orbit 49

50 Radial Velocity vs. Time for Doublelined SB in Elliptical Orbit (e = 0.4) 50

51 51 Peg Ab is an SB1! first planet detected around a main-sequence star primary SpT: G2 V M p sin i = 0.47 M Jup (Mayor & Queloz 1995) 51

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy PHY 688, Lecture 5 Stanimir Metchev Outline Review of previous lecture Stellar atmospheres spectral lines line profiles; broadening

More information

Spectroscopy. AST443, Lecture 14 Stanimir Metchev

Spectroscopy. AST443, Lecture 14 Stanimir Metchev Spectroscopy AST443, Lecture 14 Stanimir Metchev Administrative Homework 2: problem 5.4 extension: until Mon, Nov 2 Homework 3: problems 8.32, 8.41, 10.31, 11.32 of Bradt due in class Mon, Nov 9 Reading:

More information

Fundamental (Sub)stellar Parameters: Surface Gravity. PHY 688, Lecture 11

Fundamental (Sub)stellar Parameters: Surface Gravity. PHY 688, Lecture 11 Fundamental (Sub)stellar Parameters: Surface Gravity PHY 688, Lecture 11 Outline Review of previous lecture binary stars and brown dwarfs (sub)stellar dynamical masses and radii Surface gravity stars,

More information

Substellar Atmospheres II. Dust, Clouds, Meteorology. PHY 688, Lecture 19 Mar 11, 2009

Substellar Atmospheres II. Dust, Clouds, Meteorology. PHY 688, Lecture 19 Mar 11, 2009 Substellar Atmospheres II. Dust, Clouds, Meteorology PHY 688, Lecture 19 Mar 11, 2009 Outline Review of previous lecture substellar atmospheres: opacity, LTE, chemical species, metallicity Dust, Clouds,

More information

Astronomy 421. Lecture 14: Stellar Atmospheres III

Astronomy 421. Lecture 14: Stellar Atmospheres III Astronomy 421 Lecture 14: Stellar Atmospheres III 1 Lecture 14 - Key concepts: Spectral line widths and shapes Curve of growth 2 There exists a stronger jump, the Lyman limit, occurring at the wavelength

More information

Substellar Interiors. PHY 688, Lecture 13

Substellar Interiors. PHY 688, Lecture 13 Substellar Interiors PHY 688, Lecture 13 Outline Review of previous lecture curve of growth: dependence of absorption line strength on abundance metallicity; subdwarfs Substellar interiors equation of

More information

ASTRONOMY QUALIFYING EXAM August Possibly Useful Quantities

ASTRONOMY QUALIFYING EXAM August Possibly Useful Quantities L = 3.9 x 10 33 erg s 1 M = 2 x 10 33 g M bol = 4.74 R = 7 x 10 10 cm 1 A.U. = 1.5 x 10 13 cm 1 pc = 3.26 l.y. = 3.1 x 10 18 cm a = 7.56 x 10 15 erg cm 3 K 4 c= 3.0 x 10 10 cm s 1 σ = ac/4 = 5.7 x 10 5

More information

Opacity and Optical Depth

Opacity and Optical Depth Opacity and Optical Depth Absorption dominated intensity change can be written as di λ = κ λ ρ I λ ds with κ λ the absorption coefficient, or opacity The initial intensity I λ 0 of a light beam will be

More information

Ay Fall 2004 Lecture 6 (given by Tony Travouillon)

Ay Fall 2004 Lecture 6 (given by Tony Travouillon) Ay 122 - Fall 2004 Lecture 6 (given by Tony Travouillon) Stellar atmospheres, classification of stellar spectra (Many slides c/o Phil Armitage) Formation of spectral lines: 1.excitation Two key questions:

More information

Atomic Physics 3 ASTR 2110 Sarazin

Atomic Physics 3 ASTR 2110 Sarazin Atomic Physics 3 ASTR 2110 Sarazin Homework #5 Due Wednesday, October 4 due to fall break Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any

More information

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11)

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11) Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11) Kenneth Wood, Room 316 kw25@st-andrews.ac.uk http://www-star.st-and.ac.uk/~kw25 What is a Stellar Atmosphere? Transition from dense

More information

Lecture 2 Line Radiative Transfer for the ISM

Lecture 2 Line Radiative Transfer for the ISM Lecture 2 Line Radiative Transfer for the ISM Absorption lines in the optical & UV Equation of transfer Absorption & emission coefficients Line broadening Equivalent width and curve of growth Observations

More information

Fundamental (Sub)stellar Parameters: Masses and Radii. PHY 688, Lecture 10

Fundamental (Sub)stellar Parameters: Masses and Radii. PHY 688, Lecture 10 Fundamental (Sub)stellar Parameters: Masses and Radii PHY 688, Lecture 10 Outline Review of previous lecture brown dwarf effective temperatures finding cool brown dwarfs current problem: what are the coolest

More information

SISD Training Lectures in Spectroscopy

SISD Training Lectures in Spectroscopy SISD Training Lectures in Spectroscopy Anatomy of a Spectrum Visual Spectrum of the Sun Blue Spectrum of the Sun Morphological Features in Spectra λ 2 Line Flux = Fλ dλ λ1 (Units: erg s -1 cm -2 ) Continuum

More information

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer 1. Atomic absorption lines 2. Application of radiative transfer to absorption & emission 3. Line broadening & curve of growth 4. Optical/UV

More information

Sources of radiation

Sources of radiation Sources of radiation Most important type of radiation is blackbody radiation. This is radiation that is in thermal equilibrium with matter at some temperature T. Lab source of blackbody radiation: hot

More information

Spectral Line Shapes. Line Contributions

Spectral Line Shapes. Line Contributions Spectral Line Shapes Line Contributions The spectral line is termed optically thin because there is no wavelength at which the radiant flux has been completely blocked. The opacity of the stellar material

More information

Diffuse Interstellar Medium

Diffuse Interstellar Medium Diffuse Interstellar Medium Basics, velocity widths H I 21-cm radiation (emission) Interstellar absorption lines Radiative transfer Resolved Lines, column densities Unresolved lines, curve of growth Abundances,

More information

AST 301, Lecture 2. James Lattimer. Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University. January 29, 2019

AST 301, Lecture 2. James Lattimer. Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University. January 29, 2019 AST 301, Lecture 2 James Lattimer Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University January 29, 2019 Cosmic Catastrophes (AKA Collisions) james.lattimer@stonybrook.edu Properties of

More information

Stellar Spectra ASTR 2120 Sarazin. Solar Spectrum

Stellar Spectra ASTR 2120 Sarazin. Solar Spectrum Stellar Spectra ASTR 2120 Sarazin Solar Spectrum Solar Prominence Sep. 14, 1999 Solar Activity Due to rotation, convection, and magnetic field (Section 7.2 review) Charged Particles in Magnetic Fields

More information

ASTR-1010: Astronomy I Course Notes Section IV

ASTR-1010: Astronomy I Course Notes Section IV ASTR-1010: Astronomy I Course Notes Section IV Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use

More information

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and 6-1 6. Interstellar Medium 6.1 Nebulae Emission nebulae are diffuse patches of emission surrounding hot O and early B-type stars. Gas is ionized and heated by radiation from the parent stars. In size,

More information

Atomic Physics ASTR 2110 Sarazin

Atomic Physics ASTR 2110 Sarazin Atomic Physics ASTR 2110 Sarazin Homework #5 Due Wednesday, October 4 due to fall break Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

The Formation of Spectral Lines. I. Line Absorption Coefficient II. Line Transfer Equation

The Formation of Spectral Lines. I. Line Absorption Coefficient II. Line Transfer Equation The Formation of Spectral Lines I. Line Absorption Coefficient II. Line Transfer Equation Line Absorption Coefficient Main processes 1. Natural Atomic Absorption 2. Pressure Broadening 3. Thermal Doppler

More information

Properties of Stars (continued) Some Properties of Stars. What is brightness?

Properties of Stars (continued) Some Properties of Stars. What is brightness? Properties of Stars (continued) Some Properties of Stars Luminosity Temperature of the star s surface Mass Physical size 2 Chemical makeup 3 What is brightness? Apparent brightness is the energy flux (watts/m

More information

2. Basic Assumptions for Stellar Atmospheres

2. Basic Assumptions for Stellar Atmospheres 2. Basic Assumptions for Stellar Atmospheres 1. geometry, stationarity 2. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres!

More information

Review from last class:

Review from last class: Review from last class: Properties of photons Flux and luminosity, apparent magnitude and absolute magnitude, colors Spectroscopic observations. Doppler s effect and applications Distance measurements

More information

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Observing Highlights. Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Observing Highlights. Stars, Galaxies & the Universe Lecture Outline Stars, Galaxies & the Universe Announcements Lab Observing Trip Next week: Tues (9/28) & Thurs (9/30) let me know ASAP if you have an official conflict (class, work) - website: http://astro.physics.uiowa.edu/~clang/sgu_fall10/observing_trip.html

More information

The Stellar Opacity. F ν = D U = 1 3 vl n = 1 3. and that, when integrated over all energies,

The Stellar Opacity. F ν = D U = 1 3 vl n = 1 3. and that, when integrated over all energies, The Stellar Opacity The mean absorption coefficient, κ, is not a constant; it is dependent on frequency, and is therefore frequently written as κ ν. Inside a star, several different sources of opacity

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Problem Set 2 Solutions Problem 1: A A hot blackbody will emit more photons per unit time per unit surface area than a cold blackbody. It does not, however, necessarily need to have a higher luminosity,

More information

3. Stellar Atmospheres: Opacities

3. Stellar Atmospheres: Opacities 3. Stellar Atmospheres: Opacities 3.1. Continuum opacity The removal of energy from a beam of photons as it passes through matter is governed by o line absorption (bound-bound) o photoelectric absorption

More information

Midterm Review. AST443 Stanimir Metchev

Midterm Review. AST443 Stanimir Metchev Midterm Review AST443 Stanimir Metchev Administrative Homework 2: problems 4.4, 5.1, 5.3, 5.4 of W&J due date extended until Friday, Oct 23 drop off in my office before 6pm Midterm: Monday, Oct 26 8:20

More information

Spectroscopy, the Doppler Shift and Masses of Binary Stars

Spectroscopy, the Doppler Shift and Masses of Binary Stars Doppler Shift At each point the emitter is at the center of a circular wavefront extending out from its present location. Spectroscopy, the Doppler Shift and Masses of Binary Stars http://apod.nasa.gov/apod/astropix.html

More information

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation!

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the scantrons

More information

Lecture 2: Formation of a Stellar Spectrum

Lecture 2: Formation of a Stellar Spectrum Abundances and Kinematics from High- Resolution Spectroscopic Surveys Lecture 2: Formation of a Stellar Spectrum Eline Tolstoy Kapteyn Astronomical Institute, University of Groningen I have a spectrum:

More information

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES DAVID F. GRAY University of Western Ontario, London, Ontario, Canada CAMBRIDGE UNIVERSITY PRESS Contents Preface to the first edition Preface to the

More information

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then 6 LECTURE 2 Equation of Radiative Transfer Condition that I ν is constant along rays means that di ν /dt = 0 = t I ν + ck I ν, (29) where ck = di ν /ds is the ray-path derivative. This is equation is the

More information

Preliminary Examination: Astronomy

Preliminary Examination: Astronomy Preliminary Examination: Astronomy Department of Physics and Astronomy University of New Mexico Spring 2017 Instructions: Answer 8 of the 10 questions (10 points each) Total time for the test is three

More information

Structure and Evolution of Stars Lecture 3: Spectral Classification and the Hertzsprung-Russell Diagram

Structure and Evolution of Stars Lecture 3: Spectral Classification and the Hertzsprung-Russell Diagram Structure and Evolution of Stars Lecture 3: Spectral Classification and the Hertzsprung-Russell Diagram Absorption lines in stellar atmospheres and historical spectral classification The MK (Morgan-Keenan)

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

Substellar Atmospheres. PHY 688, Lecture 18 Mar 9, 2009

Substellar Atmospheres. PHY 688, Lecture 18 Mar 9, 2009 Substellar Atmospheres PHY 688, Lecture 18 Mar 9, 2009 Outline Review of previous lecture the Kepler mission launched successfully results P < 1 month planets by September 09 giant planet interiors comparison

More information

Outline. Today we will learn what is thermal radiation

Outline. Today we will learn what is thermal radiation Thermal Radiation & Outline Today we will learn what is thermal radiation Laws Laws of of themodynamics themodynamics Radiative Radiative Diffusion Diffusion Equation Equation Thermal Thermal Equilibrium

More information

! p. 1. Observations. 1.1 Parameters

! p. 1. Observations. 1.1 Parameters 1 Observations 11 Parameters - Distance d : measured by triangulation (parallax method), or the amount that the star has dimmed (if it s the same type of star as the Sun ) - Brightness or flux f : energy

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

(c) Sketch the ratio of electron to gas pressure for main sequence stars versus effective temperature. [1.5]

(c) Sketch the ratio of electron to gas pressure for main sequence stars versus effective temperature. [1.5] 1. (a) The Saha equation may be written in the form N + n e N = C u+ u T 3/2 exp ( ) χ kt where C = 4.83 1 21 m 3. Discuss its importance in the study of stellar atmospheres. Carefully explain the meaning

More information

Lecture 3: Emission and absorption

Lecture 3: Emission and absorption Lecture 3: Emission and absorption Senior Astrophysics 2017-03-10 Senior Astrophysics Lecture 3: Emission and absorption 2017-03-10 1 / 35 Outline 1 Optical depth 2 Sources of radiation 3 Blackbody radiation

More information

Example: model a star using a two layer model: Radiation starts from the inner layer as blackbody radiation at temperature T in. T out.

Example: model a star using a two layer model: Radiation starts from the inner layer as blackbody radiation at temperature T in. T out. Next, consider an optically thick source: Already shown that in the interior, radiation will be described by the Planck function. Radiation escaping from the source will be modified because the temperature

More information

X-ray Radiation, Absorption, and Scattering

X-ray Radiation, Absorption, and Scattering X-ray Radiation, Absorption, and Scattering What we can learn from data depend on our understanding of various X-ray emission, scattering, and absorption processes. We will discuss some basic processes:

More information

Gas 1: Molecular clouds

Gas 1: Molecular clouds Gas 1: Molecular clouds > 4000 known with masses ~ 10 3 to 10 5 M T ~ 10 to 25 K (cold!); number density n > 10 9 gas particles m 3 Emission bands in IR, mm, radio regions from molecules comprising H,

More information

3: Interstellar Absorption Lines: Radiative Transfer in the Interstellar Medium. James R. Graham University of California, Berkeley

3: Interstellar Absorption Lines: Radiative Transfer in the Interstellar Medium. James R. Graham University of California, Berkeley 3: Interstellar Absorption Lines: Radiative Transfer in the Interstellar Medium James R. Graham University of California, Berkeley Interstellar Absorption Lines Example of atomic absorption lines Structure

More information

TRANSFER OF RADIATION

TRANSFER OF RADIATION TRANSFER OF RADIATION Under LTE Local Thermodynamic Equilibrium) condition radiation has a Planck black body) distribution. Radiation energy density is given as U r,ν = 8πh c 3 ν 3, LTE), tr.1) e hν/kt

More information

1. Why photons? 2. Photons in a vacuum

1. Why photons? 2. Photons in a vacuum Photons and Other Messengers 1. Why photons? Ask class: most of our information about the universe comes from photons. What are the reasons for this? Let s compare them with other possible messengers,

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

ν is the frequency, h = ergs sec is Planck s constant h S = = x ergs sec 2 π the photon wavelength λ = c/ν

ν is the frequency, h = ergs sec is Planck s constant h S = = x ergs sec 2 π the photon wavelength λ = c/ν 3-1 3. Radiation Nearly all our information about events beyond the Solar system is brought to us by electromagnetic radiation radio, submillimeter, infrared, visual, ultraviolet, X-rays, γ-rays. The particles

More information

Optical Depth & Radiative transfer

Optical Depth & Radiative transfer University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica, read by prof. Massimo Capaccioli Lecture 8 Optical Depth & Radiative transfer Learning outcomes The student will :

More information

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question Key Concepts: Lecture 21: Measuring the properties of stars (cont.) The Hertzsprung-Russell (HR) Diagram (L versus T) The Hertzprung-Russell Diagram The Stefan-Boltzmann Law: flux emitted by a black body

More information

Radiative Processes in Flares I: Bremsstrahlung

Radiative Processes in Flares I: Bremsstrahlung Hale COLLAGE 2017 Lecture 20 Radiative Processes in Flares I: Bremsstrahlung Bin Chen (New Jersey Institute of Technology) The standard flare model e - magnetic reconnection 1) Magnetic reconnection and

More information

Topics ASTR 3730: Fall 2003

Topics ASTR 3730: Fall 2003 Topics Qualitative questions: might cover any of the main topics (since 2nd midterm: star formation, extrasolar planets, supernovae / neutron stars, black holes). Quantitative questions: worthwhile to

More information

Astronomy 421. Lecture 13: Stellar Atmospheres II. Skip Sec 9.4 and radiation pressure gradient part of 9.3

Astronomy 421. Lecture 13: Stellar Atmospheres II. Skip Sec 9.4 and radiation pressure gradient part of 9.3 Astronomy 421 Lecture 13: Stellar Atmospheres II Skip Sec 9.4 and radiation pressure gradient part of 9.3 1 Announcements: Homework #4 is due Oct 3 Outline is due October 8 See example on the class web

More information

Short/Simple Definitions:

Short/Simple Definitions: Eric Joseph Bubar Stellar Atmosphere/Interiors Portfolio CHAPTER : CURVES OF GROWTH Short/Simple Definitions: Curve of Growth: Plot of equivalent widths versus number of absorbing atoms that created that

More information

Today. Homework Due. Stars. Properties (Recap) Nuclear Reactions. proton-proton chain. CNO cycle. Stellar Lifetimes

Today. Homework Due. Stars. Properties (Recap) Nuclear Reactions. proton-proton chain. CNO cycle. Stellar Lifetimes Today Stars Properties (Recap) Nuclear Reactions proton-proton chain CNO cycle Stellar Lifetimes Homework Due Stellar Properties Luminosity Surface Temperature Size Mass Composition Stellar Properties

More information

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases Radiation in the Earth's Atmosphere Part 1: Absorption and Emission by Atmospheric Gases Electromagnetic Waves Electromagnetic waves are transversal. Electric and magnetic fields are perpendicular. In

More information

Spectroscopy Lecture 2

Spectroscopy Lecture 2 Spectroscopy Lecture 2 I. Atomic excitation and ionization II. Radiation Terms III. Absorption and emission coefficients IV. Einstein coefficients V. Black Body radiation I. Atomic excitation and ionization

More information

PHAS3135 The Physics of Stars

PHAS3135 The Physics of Stars PHAS3135 The Physics of Stars Exam 2013 (Zane/Howarth) Answer ALL SIX questions from Section A, and ANY TWO questions from Section B The numbers in square brackets in the right-hand margin indicate the

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

AG Draconis. A high density plasma laboratory. Dr Peter Young Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B.

AG Draconis. A high density plasma laboratory. Dr Peter Young Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B. AG Draconis A high density plasma laboratory Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B. Ake p.r.young@rl.ac.uk Overview CHIANTI database Symbiotic Stars AG Draconis FUSE FUSE observations of AG

More information

10/31/2018. Chapter 7. Atoms Light and Spectra. Thursday Lab Announcement. Topics For Today s Class Black Body Radiation Laws

10/31/2018. Chapter 7. Atoms Light and Spectra. Thursday Lab Announcement. Topics For Today s Class Black Body Radiation Laws Phys1411 Introductory Astronomy Instructor: Dr. Goderya Chapter 7 Atoms Light and Spectra Thursday Lab Announcement Jonah will start the Lab at 6:00 PM. Two pieces of Glass and HST Lunar Phases Topics

More information

Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT

Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT 1 Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT 3 Continuous Spectra: Thermal Radiation The equations below quantitatively summarize the light-emitting

More information

Addition of Opacities and Absorption

Addition of Opacities and Absorption Addition of Opacities and Absorption If the only way photons could interact was via simple scattering, there would be no blackbodies. We ll go into that in much more detail in the next lecture, but the

More information

Chapter 5 Light and Matter

Chapter 5 Light and Matter Chapter 5 Light and Matter Stars and galaxies are too far for us to send a spacecraft or to visit (in our lifetimes). All we can receive from them is light But there is much we can learn (composition,

More information

aka Light Properties of Light are simultaneously

aka Light Properties of Light are simultaneously Today Interaction of Light with Matter Thermal Radiation Kirchhoff s Laws aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves).

More information

Assignments. For Wed. 1 st Midterm is Friday, Oct. 12. Do Online Exercise 08 ( Doppler shift tutorial)

Assignments. For Wed. 1 st Midterm is Friday, Oct. 12. Do Online Exercise 08 ( Doppler shift tutorial) Assignments For Wed. Do Online Exercise 08 ( Doppler shift tutorial) 1 st Midterm is Friday, Oct. 12 Chapter 5 Light: The Cosmic Messenger Which forms of light are lower in energy and frequency than the

More information

Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence.

Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence. Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence http://apod.nasa.gov/apod/astropix.html Outline of today s lecture Hydrostatic equilibrium: balancing gravity and pressure

More information

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk Accretion Disks Accretion Disks 1. Accretion Efficiency 2. Eddington Luminosity 3. Bondi-Hoyle Accretion 4. Temperature profile and spectrum of accretion disk 5. Spectra of AGN 5.1 Continuum 5.2 Line Emission

More information

ASTR2050 Spring Please turn in your homework now! In this class we will discuss the Interstellar Medium:

ASTR2050 Spring Please turn in your homework now! In this class we will discuss the Interstellar Medium: ASTR2050 Spring 2005 Lecture 10am 29 March 2005 Please turn in your homework now! In this class we will discuss the Interstellar Medium: Introduction: Dust and Gas Extinction and Reddening Physics of Dust

More information

Tuesday, August 27, Stellar Astrophysics

Tuesday, August 27, Stellar Astrophysics Stellar Astrophysics Policies No Exams Homework 65% Project 35% Oral Presentation 5% More on the project http://myhome.coloradomesa.edu/ ~jworkman/teaching/fall13/396/ syllabus396.pdf You need to self

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

CHAPTER 27. Continuum Emission Mechanisms

CHAPTER 27. Continuum Emission Mechanisms CHAPTER 27 Continuum Emission Mechanisms Continuum radiation is any radiation that forms a continuous spectrum and is not restricted to a narrow frequency range. In what follows we briefly describe five

More information

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Lecture 10. Lidar Effective Cross-Section vs. Convolution Lecture 10. Lidar Effective Cross-Section vs. Convolution q Introduction q Convolution in Lineshape Determination -- Voigt Lineshape (Lorentzian Gaussian) q Effective Cross Section for Single Isotope --

More information

Family of stars. Fred Sarazin Physics Department, Colorado School of Mines. PHGN324: Family of stars

Family of stars. Fred Sarazin Physics Department, Colorado School of Mines. PHGN324: Family of stars Family of stars Reminder: the stellar magnitude scale In the 1900 s, the magnitude scale was defined as follows: a difference of 5 in magnitude corresponds to a change of a factor 100 in brightness. Dm

More information

Electrodynamics of Radiation Processes

Electrodynamics of Radiation Processes Electrodynamics of Radiation Processes 7. Emission from relativistic particles (contd) & Bremsstrahlung http://www.astro.rug.nl/~etolstoy/radproc/ Chapter 4: Rybicki&Lightman Sections 4.8, 4.9 Chapter

More information

Plasma Spectroscopy Inferences from Line Emission

Plasma Spectroscopy Inferences from Line Emission Plasma Spectroscopy Inferences from Line Emission Ø From line λ, can determine element, ionization state, and energy levels involved Ø From line shape, can determine bulk and thermal velocity and often

More information

Stellar Atmospheres: Basic Processes and Equations

Stellar Atmospheres: Basic Processes and Equations Stellar Atmospheres: Basic Processes and Equations Giovanni Catanzaro Abstract The content of this chapter is a very quick summary of key concepts that concern the interaction between photons created in

More information

Astrophysics (Physics 489) Final Exam

Astrophysics (Physics 489) Final Exam Astrophysics (Physics 489) Final Exam 1. A star emits radiation with a characteristic wavelength! max = 100 nm. (! max is the wavelength at which the Planck distribution reaches its maximum.) The apparent

More information

P M 2 R 4. (3) To determine the luminosity, we now turn to the radiative diffusion equation,

P M 2 R 4. (3) To determine the luminosity, we now turn to the radiative diffusion equation, Astronomy 715 Final Exam Solutions Question 1 (i). The equation of hydrostatic equilibrium is dp dr GM r r 2 ρ. (1) This corresponds to the scaling P M R ρ, (2) R2 where P and rho represent the central

More information

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Goals: The Birth Of Stars How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Interstellar Medium Gas and dust between stars is the interstellar

More information

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields Deducing Temperatures and Luminosities of Stars (and other objects ) Review: Electromagnetic Radiation Gamma Rays X Rays Ultraviolet (UV) Visible Light Infrared (IR) Increasing energy Microwaves Radio

More information

A Stellar Spectra 3. Stars shine at night (during the day too!). A star is a self-luminous sphere of gas. Stars are held together by gravity.

A Stellar Spectra 3. Stars shine at night (during the day too!). A star is a self-luminous sphere of gas. Stars are held together by gravity. Stellar Spectra Relativity and Astrophysics Lecture 12 Terry Herter Outline What is a star? Stellar Spectra Kirchhoff s Laws Spectral Classification Spectral Types: O B A F G K M L T Stellar Photometry

More information

Characterizing Stars

Characterizing Stars Characterizing Stars 1 Guiding Questions 1. How far away are the stars? 2. What evidence do astronomers have that the Sun is a typical star? 3. What is meant by a first-magnitude or second magnitude star?

More information

Teacher of the Week DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

Teacher of the Week DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS Teacher of the Week DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON E-2 STELLAR RADIATION IB Assessment Statements Topic E-2, Stellar Radiation and Stellar Types Energy Source E.2.1.

More information

Characterizing Stars. Guiding Questions. Parallax. Careful measurements of the parallaxes of stars reveal their distances

Characterizing Stars. Guiding Questions. Parallax. Careful measurements of the parallaxes of stars reveal their distances Guiding Questions Characterizing Stars 1. How far away are the stars? 2. What evidence do astronomers have that the Sun is a typical star? 3. What is meant by a first-magnitude or second magnitude star?

More information

The Physics of Light, part 2. Astronomy 111

The Physics of Light, part 2. Astronomy 111 Lecture 7: The Physics of Light, part 2 Astronomy 111 Spectra Twinkle, twinkle, little star, How I wonder what you are. Every type of atom, ion, and molecule has a unique spectrum Ion: an atom with electrons

More information

Section 11.5 and Problem Radiative Transfer. from. Astronomy Methods A Physical Approach to Astronomical Observations Pages , 377

Section 11.5 and Problem Radiative Transfer. from. Astronomy Methods A Physical Approach to Astronomical Observations Pages , 377 Section 11.5 and Problem 11.51 Radiative Transfer from Astronomy Methods A Physical Approach to Astronomical Observations Pages 365-375, 377 Cambridge University Press 24 by Hale Bradt Hale Bradt 24 11.5

More information

Chapter 2 Bremsstrahlung and Black Body

Chapter 2 Bremsstrahlung and Black Body Chapter 2 Bremsstrahlung and Black Body 2.1 Bremsstrahlung We will follow an approximate derivation. For a more complete treatment see [2] and [1]. We will consider an electron proton plasma. Definitions:

More information

1 Radiative transfer etc

1 Radiative transfer etc Radiative transfer etc Last time we derived the transfer equation dτ ν = S ν I v where I ν is the intensity, S ν = j ν /α ν is the source function and τ ν = R α ν dl is the optical depth. The formal solution

More information

3/26/2018. Atoms Light and Spectra. Topics For Today s Class. Reminder. Topics For Today s Class. The Atom. Phys1403 Stars and Galaxies

3/26/2018. Atoms Light and Spectra. Topics For Today s Class. Reminder. Topics For Today s Class. The Atom. Phys1403 Stars and Galaxies Foundations of Astronomy 13e Seeds Foundations of Astronomy 13e Seeds Phys1403 Stars and Galaxies Instructor: Dr. Goderya Chapter 7 Atoms Light and Spectra Reminder Homework for Chapter 5, 6 and 7 is posted

More information

X Rays must be viewed from space used for detecting exotic objects such as neutron stars and black holes also observing the Sun.

X Rays must be viewed from space used for detecting exotic objects such as neutron stars and black holes also observing the Sun. 6/25 How do we get information from the telescope? 1. Galileo drew pictures. 2. With the invention of photography, we began taking pictures of the view in the telescope. With telescopes that would rotate

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

Examination paper for FY2450 Astrophysics

Examination paper for FY2450 Astrophysics 1 Department of Physics Examination paper for FY2450 Astrophysics Academic contact during examination: Rob Hibbins Phone: 94820834 Examination date: 31-05-2014 Examination time: 09:00 13:00 Permitted examination

More information