Extraterrestrial Life, Astro/Geol 3300 MidTerm #2 April 12, :00-3:15pm Duane G125

Size: px
Start display at page:

Download "Extraterrestrial Life, Astro/Geol 3300 MidTerm #2 April 12, :00-3:15pm Duane G125"

Transcription

1 Extraterrestrial Life, Astro/Geol 3300 MidTerm #2 April 12, :00-3:15pm Duane G125 Name: SOLUTIONS Our next class, Tuesdat April 17, will be meeting at the Planetarium at 2:00. Directions: You have the entire 75 minutes from 2:00-3:15pm today to finish this exam. The total point total is 200. You can see the point value for each question labeled. The short and long answer will be graded with partial credit for work and/or partially correct answers. This test is open book and open note. Laptop computer, Kindles and ipads are allowed - BUT COMMUNICATION BETWEEN STUDENTS OR WITH ANYONE OUTSIDE THE ROOM IS STRICTLY FORBIDDEN! By signing and turning in this test you are bound by the University of Colorado Honor Code. Play fair! Multiple Choice. Simply circle the correct answer. (4 points each) 1. Which is not part of our 5-step requirements for life? a. Reproduction b. Genetics c. Organization d. DNA 2. Which of the following surface conditions makes the possibility of life on Venus so remote? a. runaway greenhouse effect from dense ammonia (NH 3 ) atmosphere b. extreme cold from the high albedo from dense sulfuric acid clouds c. thin atmosphere of hydrocarbons and nitrogen with no free oxygen d. thick atmosphere of CO 2 and proximity to the Sun e. enhanced volcanic activity created by impacts from asteroids 3. Which best characterizes the atmospheric make-up in the Miller-Urey experiment a. highly reducing H, CO 2, H 2 O, NH 3, CH 4 b. highly oxidizing H, H 2 O 2, N 2 O c. intermediate oxidation - H, CO 2, H 2 O d. rich in salts NaCl, SO 4 4. The Murchison Meteorite was important for what was found in it a. liquid water b. amino acids c. only left-handed chirality amino acids d. ATP e. segments of DNA 5. The outer edge of a simple Habitable Zone criteria is determined by? a. Where water freezes. b. Where water evaporates. c. Where water bears die. d. The orbit of Venus.

2 6. The primary current energy source for the moons at Jupiter is caused by? a. Differentiation b. Radioactive decay c. Tides d. Windmills! 7. Of the four largest moons at Jupiter, which is the most volcanically active? a. Io b. Europa c. Ganymede d. Callisto 8. Of the four largest moons at Jupiter, which is not locked in a resonance? a. Io b. Europa c. Ganymede d. Callisto 9. Name of the theory stating that periods of evolution are short and fast, followed by long spells of minimal change. a. Predation and Prey b. Punctuated Equilibrium c. Allopatric d. Mutation 10. If the Earth had no atmosphere, its surface temperature would be? a C b. -17 C c. 17 C d. 170 C 11. The polar caps at Mars are made of what? a. SO 2 frost. (silicon dioxide) b. CO 2 frost c. Snow (frozen water) d. A combination of b. & c. e. A combination of a. & b. 12. What effect will a slowly increasing luminosity over geologic time have on a star s circumstellar habitable zone? a. No effect, because as the star ages planetary orbits increase b. The habitable zone will remain the same as planets change their atmospheric compositions c. high radioactivity from planetary cores will keep the surfaces warm d. the habitable zone will migrate away from the star e. planetary albedos will decrease to compensate

3 13. We find what liquid on the surface of Titan? a. CO 2 b. H 2 O, c. ammonia d. methane e. N 2 Place stuff in order. Place numbers next to the list of answers to place them in order according to the question s directions (4, 4 and 5 points). 1. From smallest to largest: a. Eukaryotic cell (4) b. Prokaryotic cell (3) c. An average protein (2) d. A Silicon Atom (1) 2. From ancestor to descendent: a. A horse (4) b. The first archaea (1) c. The first eurkaryote (2) d. The first multi-cellular organism (3) 3. From furthest in the past until the closest to the present (oldest to youngest) (2) a. The life that existed at Apex Chert (1) b. The age of the Isua rocks in Greenland where we find Carbon isotope signs of life (3) c. The era of Banded Iron formations in which we find signs of photosynthetic cyanobacteria (4) d. The age of the Burgess Shale Community fossils (5) e. The era of the Dinosaurs Short Answer. One sentence should be enough, but you may use ONLY two or three sentences MAXIMUM, answer the following questions. On some mathematical questions, I am interested in the work you did to get the answer and mathematical answer (7 points). 1. If an alien landed on Earth who had cells that replicated using DNA, what would be the possible implications? (Not that the media would freak out or the world would end, rather what would it tell us about this alien, where it came from, and life in the Solar System) It came from Earth explaining the similarities (Panspermia) (or) Life generically evolves towards using DNA- possibly similar initial environments+materials (or) Life on Earth was seeded by this Alien s life via Panspermia 2. What is the evolutionary advantage of DNA having two strands? It is more stable than one single strand of RNA -> less mutations.

4 3. What evidence is there that Mitochondria were in fact independent organisms at one point? -It has its own DNA -It has a double membrane 4. Mercury is in an odd spin-orbit state. It s orbit take 88 days, and its rotation takes 59 days. Its day (the time it takes for the Sun to do one lap) then ends up being quite long. Describe this scenario feel free to use illustrations. This image shows the rotation of Mercury during its orbit. The light side isn t showing what is illuminated, rather it is showing separate halves of the planet so you can see the rotation during the orbit. To see the entire Mercury-Day, we would need one more orbit, rather we see here. -first orbit of Mercury, -first 1 1/3 rotation of Mercury -first half day : from Noon to Midnight 5. We discussed 3 ways that some essential polymers could have originated on earth. Name and quickly describe each method. 1. Miller-Urey Style organic debris mixing in tidal pools or ponds 2. Delivery from ET sources direct from comets/asteroids 3. At Hydrothermal Vents where organics mix at volcanic spots in the ocean flooer with temp gradients to help things combine. 6. What are cell membranes made from and what property of this material probably helped in the construction of the first cell membranes. Lipids have hydrophilic and hydrophobic ends.. which naturally align with each other in a polar solvent like Water. This helps them eventually come together in a bilayer that can then encircle important material.

5 7. What is the difference between a Canal and a Channel? How did this affect the early scientific thoughts about Mars? Canal is man-made, but Channel is natural made. Some mis-transalted canali into Canal, which implied man-made features on Mars. Fast-forward until the 90 s and the triumph called Mars Attacks is created. 8. Quickly explain the importance of the Ribozyme discovery namely, what is unique about what they do? This discovery found that ribozymes could both carry genetic information (like RNA/DNA) and catalyze reactions (like enzymes) 9. What are the main advantages of life forming at Hydrothermal Vents (I can think of three or four clear answers)? 1. Protection from harmful UV radiation 2. Long timescales 3. Hot temperatures to combine things 4. Cool temperatures to allow proteins to survive 5. Healthy source of important organics 10. What are the main advantages (2-3 clear ones) of Carbon being the base element of life instead of Silicon? 1. Abundant (more than Silicon, much more) 2. Smaller (strong bonds) 3. Lighter 11. The peppered moths of England are a textbook case of evolution by natural selection. a. Describe their evolution and the causes for it. The population went from nearly all white to nearly all black during the time that trees were being colored by soot from the Industrial Revolution. As the trees change color the white moths were more susceptible to be hunted (and eaten). Those with the desireable trait of being dark were more likely to survive and pass on their heritable traits. b. We listed two essential criteria for evolution by natural selection. What were they and how do these moths fit the criteria. 1 Variation in a population heritable traits 2 Overproduction

6 Long Answer: Please take your time and construct a coherent answer in the space allotted. 1.) Explain how Mars has evolved over it history. You will need to comment on the following aspects: (36 points) a.) How might an early Mars have looked - in terms of its water content and its early atmosphere? Mars likely outgassed significant CO2 early in its history while it was still very geological active, resulting in a likely reasonably heavy atmosphere one which probably could have supported anywhere from some to significant liquid water. b.) What evidence is there for past water on Mars? How much water? -Gullies -Outflow channels -Hydrated minerals like (Haematite blueberries) and Jarosite -Frozen water below the surface -Polar caps made of ice (and CO2) c.) Mars transitioned and evolved to look like the Mars of today. What was likely the main process behind this transition? When do we think this happened? Mars small size means it has lower gravity AND less internal heat initially from its accretion/differentiation/radiogenics. These two mean that it lost its dynamo around 4 Gyr ago, leading to the loss of its magnetosphere, which then couldn t protect its atmosphere. Being small its atmosphere was then easy pickings for the Solar Wind. d.) Why is Water so important as a solvent what properties does it have that we don t always find in liquid solvents -Abundant H and O -Large range of Temperature as a liquid -High temperature liquid (reactions go faster) -Lower density as a solid (ice) then as a liquid -Polar -High surface tension and Cohesion

7 2. The RNA world scenario is a leading theory for the origin of life. (22 points) a.) First tell me what relatively recent (and local) discovery was the catalyst for this idea and why it is important regarding the origin of life? RIBOZYMES. These are the chicken and the egg, something that can carry genetic information and catalyze reactions. b.) Why is RNA a more likely precursor than DNA? It is simpler, having only one strand. Also, the above answer and other results find that RNA can self-replicate in some situations, which is way easier than the complicated process used for DNA. c.) Finally evaluate whether or not RNA world is compatible with the ideas surrounding life originating at Hydrothermal vents. Sure. A good argument for or against would work here. RNA World really is focused on the first genetic-carrying self-replicating molecules. This would really be the step into organisms that can reproduce and pass on heritable traits. Life forming at Hydrothermal Vents is attractive for how it could be hospitable for polymers to start forming in the hot, organic rich, region around a vent and then collect nearby in the cool waters of the Ocean. This is a step before something like RNA World, and may be the ideal place for the first self-replicating bodies to start forming and living.

Lecture 25: The Requirements for Life

Lecture 25: The Requirements for Life Lecture 25: The Requirements for Life Astronomy 141 Winter 2012 This lecture explores the requirements for life, and the factors affecting planetary habitability. The basic requirements are a source of

More information

The Origin of Life on Earth

The Origin of Life on Earth Study Guide The Origin of Life on Earth Checking Your Knowledge You should be able to write out the definitions to each of the following terms in your own words: abiotic Miller-Urey experiment ribozyme

More information

CRITICAL THINKING ACTIVITY: INTERPRETING THE GOLDILOCKS EFFECT (1)

CRITICAL THINKING ACTIVITY: INTERPRETING THE GOLDILOCKS EFFECT (1) Student Sheet 1 CRITICAL THINKING ACTIVITY: INTERPRETING THE GOLDILOCKS EFFECT (1) The Goldilocks Effect is derived from a children's story "The Three Bears" in which a little girl named Goldilocks finds

More information

Today s Class. Last Class. Earliest Life Forms. Today s Class: Search for Life. When did life arise on Earth?

Today s Class. Last Class. Earliest Life Forms. Today s Class: Search for Life. When did life arise on Earth? Today s Class: Search for Life Exam #3 on Friday, April 26: Covers all the reading March 23 rd (Earth) through April 23 rd (Exoplanets). Includes homework assignments 7, 8, 9. Includes Space in the News

More information

If your plan is for one year, plant rice. If your plan is for 100 years, educate children. Confucius

If your plan is for one year, plant rice. If your plan is for 100 years, educate children. Confucius If your plan is for one year, plant rice. If your plan is for 100 years, educate children. Confucius Test 1 on Wednesday Feb. 20. Sample test and review are On the course web page now. Grades are there

More information

Chapter 24: Life in the Universe

Chapter 24: Life in the Universe Chapter 24 Lecture Chapter 24: Life in the Universe Life in the Universe 24.1 Life on Earth Our goals for learning: When did life arise on Earth? How did life arise on Earth? What are the necessities of

More information

Investigating Planets Name: Block: E1:R6

Investigating Planets Name: Block: E1:R6 FYI: Planetary Temperatures and Atmospheres Read FYI: A Planet s Temperature, The Importance of an Atmosphere, and The Greenhouse Effect As you read answer the following questions about the readings: Word/Term

More information

NSCI 314 LIFE IN THE COSMOS 9 - SEARCHING FOR LIFE IN OUR SOLAR SYSTEM: EARTH'S MOON (CONTINUED), MERCURY, AND VENUS

NSCI 314 LIFE IN THE COSMOS 9 - SEARCHING FOR LIFE IN OUR SOLAR SYSTEM: EARTH'S MOON (CONTINUED), MERCURY, AND VENUS NSCI 314 LIFE IN THE COSMOS 9 - SEARCHING FOR LIFE IN OUR SOLAR SYSTEM: EARTH'S MOON (CONTINUED), MERCURY, AND VENUS Dr. Karen Kolehmainen Department of Physics CSUSB http://physics.csusb.edu/~karen/ TIDAL

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 29. Search for life on jovian moons. Habitability.

More information

Online Quiz Chapter 16 Due Wednesday at 11:59PM. Online Quiz Chapter 7 Due Wednesday at 11:59PM. Online Quiz Chapter 8 Due Wednesday at 11:59PM

Online Quiz Chapter 16 Due Wednesday at 11:59PM. Online Quiz Chapter 7 Due Wednesday at 11:59PM. Online Quiz Chapter 8 Due Wednesday at 11:59PM Reminders I 1 Online Quiz Chapter 16 Due Wednesday at 11:59PM 2 Online Quiz Chapter 7 Due Wednesday at 11:59PM 3 Online Quiz Chapter 8 Due Wednesday at 11:59PM 4 Online Quiz Chapter 18 Due Friday at 11:59PM

More information

UNIT 3: Chapter 8: The Solar System (pages )

UNIT 3: Chapter 8: The Solar System (pages ) CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be turned in to your teacher

More information

3. The name of a particularly large member of the asteroid belt is A) Halley B) Charon C) Eris D) Ceres E) Triton

3. The name of a particularly large member of the asteroid belt is A) Halley B) Charon C) Eris D) Ceres E) Triton Summer 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

3. The moon with the most substantial atmosphere in the Solar System is A) Iapetus B) Io C) Titan D) Triton E) Europa

3. The moon with the most substantial atmosphere in the Solar System is A) Iapetus B) Io C) Titan D) Triton E) Europa Spring 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus Fall 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as well.

More information

Chapter 19. History of Life on Earth

Chapter 19. History of Life on Earth Chapter 19 History of Life on Earth Opening Activity Draw a picture of what you think Earth s first life form may have looked like and label the parts of the organism. Content Objectives I will be able

More information

Requirements for Life. What is Life? Definition of Life. One of the biggest questions in astronomy is whether life exists elsewhere in the universe

Requirements for Life. What is Life? Definition of Life. One of the biggest questions in astronomy is whether life exists elsewhere in the universe Requirements for Life One of the biggest questions in astronomy is whether life exists elsewhere in the universe Before we discuss the possibility of life elsewhere, we must have a better understanding

More information

THE GAS GIANTS JUPITER VENUS MARS EARTH

THE GAS GIANTS JUPITER VENUS MARS EARTH THE GAS GIANTS JUPITER SATURN URANUS NEPTUNE VENUS The temperature at the cloud tops is 200 C while the interior temperatures reach tens of thousands of degrees. The churning of the atmosphere causes temperatures

More information

Inner Planets (Part II)

Inner Planets (Part II) Inner Planets (Part II) Sept. 18, 2002 1) Atmospheres 2) Greenhouse Effect 3) Mercury 4) Venus 5) Mars 6) Moon Announcements Due to technical difficulties, Monday s quiz doesn t count An extra credit problem

More information

Our Planetary System. Chapter 7

Our Planetary System. Chapter 7 Our Planetary System Chapter 7 Key Concepts for Chapter 7 and 8 Inventory of the Solar System Origin of the Solar System What does the Solar System consist of? The Sun: It has 99.85% of the mass of the

More information

Inner and Outer Planets

Inner and Outer Planets Inner and Outer Planets Inner Planets Terrestrial planets are those that are closest to the Sun. Terrestrial planets are made mostly of rock and have similar characteristics to Earth. There are four terrestrial

More information

see disks around new stars in Orion nebula where planets are probably being formed 3

see disks around new stars in Orion nebula where planets are probably being formed 3 Planet Formation contracting cloud forms stars swirling disk of material around forming star (H, He, C, O, heavier elements, molecules, dust ) form planets New born star heats up material, blows away solar

More information

9.1- Earth Forms and Life Begins

9.1- Earth Forms and Life Begins 9.1- Earth Forms and Life Begins About Earth: Earth was formed about 4.6 billion years ago! The first life on earth appeared about 4 billion years ago Life started out as small, single-celled organisms

More information

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits 7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like

More information

ASTR 380 The Requirements for Life

ASTR 380 The Requirements for Life ASTR 380 The Requirements for Life Outline Chemical requirements? Is water necessary? Type of star? Nature of the Solar System? Location in the Galaxy? An evaluation of other locations in our Solar System

More information

Astronomy 1140 Quiz 3 Review

Astronomy 1140 Quiz 3 Review Astronomy 1140 Quiz 3 Review Anil Pradhan October 26, 2016 I The Inner Planets 1. What are the terrestrial planets? What do they have in common? Terrestrial planets: Mercury, Venus, Earth, Mars. Theses

More information

Astrobiology. Joseph Spitale

Astrobiology. Joseph Spitale Astrobiology Joseph Spitale 1 What is Astrobiology? Science that studies the origin, evolution, distribution, and future of life in the universe - Combines many sciences: Biology, Chemistry, Planetary

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 28. Search for life on jovian moons. March

More information

Inner and Outer Planets

Inner and Outer Planets Inner and Outer Planets SPI 0607.6.2 Explain how the relative distance of objects from the earth affects how they appear. Inner Planets Terrestrial planets are those that are closest to the Sun. Terrestrial

More information

Text Readings. Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # Geologic Time...

Text Readings. Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # Geologic Time... Text Readings Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # 332-145. Geologic Time........ Geological Sources - 4.5 Billion Years Atmospheric Gases: Nitrogen (N 2 ) Water Vapor

More information

Chapter 11. The Archean Era of Precambrian Time

Chapter 11. The Archean Era of Precambrian Time Chapter 11 The Archean Era of Precambrian Time 1 Guiding Questions When and how did Earth and its moon come into being? How did the core, mantle, crust form? Where did Archean rocks form, and what is their

More information

Planets & Life. Planets & Life PHYS 214. Please start all class related s with 214: 214: Dept of Physics (308A)

Planets & Life. Planets & Life PHYS 214. Please start all class related  s with 214: 214: Dept of Physics (308A) Planets & Life Planets & Life PHYS 214 Dr Rob Thacker Dept of Physics (308A) thacker@astro.queensu.ca Please start all class related emails with 214: 214: Today s s Lecture Evolution of the cell Possibility

More information

The Hadean Earth Gya Impacts melt the surface. Volatiles escape to space

The Hadean Earth Gya Impacts melt the surface. Volatiles escape to space Life on Earth. II 4.5-3.9 Gya Impacts melt the surface. Volatiles escape to space The Hadean Earth Source of atmosphere, oceans: outgassing and impacts Early atmosphere: CO 2, H 2 O, N 2, H 2 S, SO 2,

More information

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU Lecture 23: Jupiter Solar System Jupiter s Orbit The semi-major axis of Jupiter s orbit is a = 5.2 AU Jupiter Sun a Kepler s third law relates the semi-major axis to the orbital period 1 Jupiter s Orbit

More information

Science Practice Astronomy (AstronomyJSuber)

Science Practice Astronomy (AstronomyJSuber) Name: Date: 1. The pull of gravity on Earth is a direct result of the A. mass of Earth. B. magnetic field of Earth. C. rotation of Earth on its axis. D. weight of Earth's atmosphere. This online assessment

More information

N = R * f p n e f l f i f c L

N = R * f p n e f l f i f c L Astronomy 230 Section 1 MWF 1400-1450 106 B6 Eng Hall This Class (Lecture 10): Nature of Life Next Class: Nucleic Acids Some Oral Presentation on Feb 16 th and 18 th! Mike Somers Chris Kramer Sarah Goldrich

More information

Astrobiology: The Semester in Review

Astrobiology: The Semester in Review A Universe of Life Astrobiology: The Semester in Review Honors 228 with Dr. Harold Geller Searching for life everywhere Planets, stars, galaxies, Big Bang Conception of size and distance Stars and the

More information

Life in the Universe. Key Concepts: Lecture 35: Admin. 11/21/17. All Formulae (for final):

Life in the Universe. Key Concepts: Lecture 35: Admin. 11/21/17. All Formulae (for final): Admin. 11/21/17 Key Concepts: Lecture 35: 1. Class website http://www.astro.ufl.edu/~jt/teaching/ast1002/ 2. Optional Discussion sections: Tue. ~11.30am (period 5), Bryant 3; Thur. ~12.30pm (end of period

More information

Earth s Formation: 4.6 Billion Years ago

Earth s Formation: 4.6 Billion Years ago Earth s Formation: 4.6 Billion Years ago Formed from interstellar gas & dust into molten planet Earth s early atmosphere was hostile, made of carbon monoxide, methane, ammonia, nitrogen, nitrogen, sulfur,

More information

UNIT 4: EVOLUTION Chapter 12: The History of Life. I. The Fossil Record (12.1) A. Fossils can form in several ways

UNIT 4: EVOLUTION Chapter 12: The History of Life. I. The Fossil Record (12.1) A. Fossils can form in several ways UNIT IV Chapter 12 The History Of Life UNIT 4: EVOLUTION Chapter 12: The History of Life I. The Fossil Record (12.1) A. Fossils can form in several ways 1. Permineralization- minerals carried by water

More information

OCN 201: Earth Structure

OCN 201: Earth Structure OCN 201: Earth Structure Eric Heinen Eric H. De Carlo, Carlo: OCN 201, OCN Sp2010 201, Fall 2004 Early History of the Earth Rapid accretion of Earth and attendant dissipation of kinetic energy caused tremendous

More information

n p = n e for stars like Sun f s = fraction of stars with suitable properties

n p = n e for stars like Sun f s = fraction of stars with suitable properties Habitable Planets n e Number of planets, per planetary system that are suitable for life n e = n p x f s planetary stellar n p = n e for stars like Sun f s = fraction of stars with suitable properties

More information

Motion of the planets

Motion of the planets Our Solar system Motion of the planets Our solar system is made up of the sun and the 9 planets that revolve around the sun Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto (maybe?)

More information

Classification & History of Life

Classification & History of Life Classification & History of Life Today & next time Taxonomy Modes of Life Origin of Life Traditional new History of life Taxonomy: Organize life into related groups Traditional Taxonomy Grouped by shared

More information

Revision Based on Chapter 19 Grade 11

Revision Based on Chapter 19 Grade 11 Revision Based on Chapter 19 Grade 11 Biology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Most fossils are found in rusty water. volcanic rock. sedimentary

More information

First, an supershort History of the Earth by Eon

First, an supershort History of the Earth by Eon HISTORY OF LIFE WRITTEN IN THE ROCKS (geological record): notice how at first no life, very simple if for billions of years, complex life only recently 600 mya In these chapters, two primary themes: History

More information

Astronomy 330 HW 2. Presentations. Outline. ! Nicholas Langhammer esp_sociopol_washingtondc01.

Astronomy 330 HW 2. Presentations. Outline. ! Nicholas Langhammer  esp_sociopol_washingtondc01. Astronomy 330 This class (Lecture 13): What is n p? Anna Dorn Praneet Sahgal HW 2 Nicholas Langhammer http://www.bibliotecapleyades.net/sociopolitica/ esp_sociopol_washingtondc01.htm Next Class: Life on

More information

OUR SOLAR SYSTEM. James Martin. Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC

OUR SOLAR SYSTEM. James Martin. Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC OUR SOLAR SYSTEM James Martin Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC It s time for the human race to enter the solar system. -Dan Quayle Structure of the Solar System Our Solar System contains

More information

The Solar System consists of

The Solar System consists of The Universe The Milky Way Galaxy, one of billions of other galaxies in the universe, contains about 400 billion stars and countless other objects. Why is it called the Milky Way? Welcome to your Solar

More information

Jupiter and its Moons

Jupiter and its Moons Jupiter and its Moons Summary 1. At an average distance of over 5 AU, Jupiter takes nearly 12 years to orbit the Sun 2. Jupiter is by far the largest and most massive planet in the solar system being over

More information

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets Lecture #11: Plan Terrestrial Planets (cont d) Jovian Planets Mercury (review) Density = 5.4 kg / liter.. ~ Earth s Rocky mantle + iron/nickel core Slow spin: 59 days (orbital period = 88 days) No satellites

More information

Today. Events. Terrestrial Planet Atmospheres (continued) Homework DUE. Review next time? Exam next week

Today. Events. Terrestrial Planet Atmospheres (continued) Homework DUE. Review next time? Exam next week Today Terrestrial Planet Atmospheres (continued) Events Homework DUE Review next time? Exam next week Planetary Temperature A planet's surface temperature is determined by the balance between energy from

More information

Chapter 24 Life in the Universe. Earliest Life Forms. When did life arise on Earth? Fossils in Sedimentary Rock. Fossils in Sedimentary Rock

Chapter 24 Life in the Universe. Earliest Life Forms. When did life arise on Earth? Fossils in Sedimentary Rock. Fossils in Sedimentary Rock Chapter 24 Life in the Universe 24.1 Life on Earth Our goals for learning When did life arise on Earth? How did life arise on Earth? What are the necessities of life? When did life arise on Earth? Earliest

More information

Overview of Solar System

Overview of Solar System Overview of Solar System The solar system is a disk Rotation of sun, orbits of planets all in same direction. Most planets rotate in this same sense. (Venus, Uranus, Pluto are exceptions). Angular momentum

More information

Evolution Problem Drill 09: The Tree of Life

Evolution Problem Drill 09: The Tree of Life Evolution Problem Drill 09: The Tree of Life Question No. 1 of 10 Question 1. The age of the Earth is estimated to be about 4.0 to 4.5 billion years old. All of the following methods may be used to estimate

More information

Exam# 2 Review. Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280

Exam# 2 Review. Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280 Exam# 2 Review Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280 Bring Gator 1 ID card Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the

More information

The Nature & Origin of Life

The Nature & Origin of Life The Nature & Origin of Life OCN 201 Biology Section Lecture 1 Grieg Steward Department of Oceanography grieg@hawaii.edu What is Life?!2 What is Life? General Defining Features Of Life: Self-replication

More information

The History of Life. Before You Read. Read to Learn

The History of Life. Before You Read. Read to Learn 14 The History of Life section 1 Fossil Evidence of Change Before You Read Throughout Earth s history, many species have become extinct. On the lines below, name some organisms that have become extinct.

More information

Calculating extra credit from clicker points. Total points through last week: Participation: 6 x 2 = 12 Performance: = 26

Calculating extra credit from clicker points. Total points through last week: Participation: 6 x 2 = 12 Performance: = 26 Clicker Questions, Test 2 February 10, 2016, Outline 7 1. Darwin coined the term Natural Selection to contrast with what other term? A. Evolutionary Selection B. Competition C. Artificial Selection D.

More information

The Nature & Origin of Life

The Nature & Origin of Life The Nature & Origin of Life Steward OCN 201 Biology Section Lecture 1 What is Life? General Defining Features Of Life: Self-replication Maintenance of disequilibrium (order!) Controlled collection and

More information

Our Created Solar System Video

Our Created Solar System Video Our Created Solar System Video After the first segment of the video (0:00 8:54 min.) is played, the video will be stopped. Then, answer the following questions: 1) In short, what is the solar system? 2)

More information

The Terrestrial Planets

The Terrestrial Planets The Terrestrial Planets Large Bodies: Earth (1 R E, 1 M E ) Venus (0.95 R E, 0.82 M E ) Small Bodies: Mars (0.53 R E, 0.11 M E ) Mercury (0.38 R E, 0.055 M E ) Moon (0.27 R E, 0.012 M E ) The surfaces

More information

9. Moon, Mercury, Venus

9. Moon, Mercury, Venus 9. Moon, Mercury, Venus All the heavier elements were manufactured by stars later, either by thermonuclear fusion reactions deep in their interiors or by the violent explosions that mark the end of massive

More information

Climate Regulation. - What stabilizes the climate - Greenhouse effect

Climate Regulation. - What stabilizes the climate - Greenhouse effect Climate Regulation - What stabilizes the climate - Greenhouse effect Last time! Processes that shaped Earth: Volcanism, tectonics! How we retain atmospheric molecules ( escape speed )! A magnetic field

More information

sparked by just the right combination of physical events & chemical processes Life s Origin & Early Evolution (Ch. 20)

sparked by just the right combination of physical events & chemical processes Life s Origin & Early Evolution (Ch. 20) sparked by just the right combination of physical events & chemical processes Life s Origin & Early Evolution (Ch. 20) 2007-2008 ARCHEAN Millions of years ago PRECAMBRIAN PROTEROZOIC 0 500 1000 Cenozoic

More information

NSCI 314 LIFE IN THE COSMOS

NSCI 314 LIFE IN THE COSMOS NSCI 314 LIFE IN THE COSMOS 10 - SEARCHING FOR LIFE IN OUR SOLAR SYSTEM: THE OUTER PLANETS AND THEIR MOONS Dr. Karen Kolehmainen Department of Physics CSUSB http://physics.csusb.edu/~karen/ JUPITER DIAMETER:

More information

ASTR 2020, Spring 2018

ASTR 2020, Spring 2018 ASTR 2020, Spring 2018 Last Name First Name Professor Jack Burns Exam #3 April 27, 2018 Student ID Number A INSTRUCTIONS: Closed books, one page (2 sides) of notes allowed, calculators may be used, strictly

More information

The Sun and Planets Lecture Notes 6.

The Sun and Planets Lecture Notes 6. The Sun and Planets Lecture Notes 6. Lecture 6 Venus 1 Spring Semester 2017 Prof Dr Ravit Helled Cover photo: Venus in true color (Courtesy of NASA) Venus Properties Venus is the second brightest natural

More information

PTYS 214 Spring Announcements. Next midterm 3/1!

PTYS 214 Spring Announcements. Next midterm 3/1! PTYS 214 Spring 2018 Announcements Next midterm 3/1! 1 Previously Solar flux decreases as radiation spreads out away from the Sun Planets are exposed to some small amount of the total solar radiation A

More information

Moons of Sol Lecture 13 3/5/2018

Moons of Sol Lecture 13 3/5/2018 Moons of Sol Lecture 13 3/5/2018 Tidal locking We always see the same face of the Moon. This means: period of orbit = period of spin Top view of Moon orbiting Earth Earth Why? The tidal bulge in the solid

More information

Chapter 11 Review Clickers. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc.

Chapter 11 Review Clickers. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc. Review Clickers The Cosmic Perspective Seventh Edition Jovian Planet Systems If Jupiter was the size of a basketball, Earth would be the size of a(n) a) bacterium. b) grain of rice. c) marble. d) orange.

More information

Simon P. Balm Astro 5 Midterm #2 Sample Questions

Simon P. Balm Astro 5 Midterm #2 Sample Questions Simon P. Balm Astro 5 Midterm #2 Sample Questions 1. Which is the MOST important property of the element carbon that makes it ideal as a fundamental building block of biological molecules? A. it is a very

More information

9/22/ A Brief Tour of the Solar System. Chapter 6: Formation of the Solar System. What does the solar system look like?

9/22/ A Brief Tour of the Solar System. Chapter 6: Formation of the Solar System. What does the solar system look like? 9/22/17 Lecture Outline 6.1 A Brief Tour of the Solar System Chapter 6: Formation of the Solar System What does the solar system look like? Our goals for learning: What does the solar system look like?

More information

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth The Moon Mass = 7.4 x 1025 g = 0.012 MEarth Radius = 1738 km = 0.27 REarth Density = 3.3 g/cm3 (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth Dark side of the moon We always see the same face of the Moon.

More information

7 Good Reasons Why There Might Be Life On Other Planets Reason #1: Extremophiles on Earth

7 Good Reasons Why There Might Be Life On Other Planets Reason #1: Extremophiles on Earth Reason #1: Extremophiles on Earth One of the big questions is whether life could evolve and survive on a world radically different than Earth. The answer appears to be yes, if you consider that even Earth

More information

Life on Earth, Lessons Learned

Life on Earth, Lessons Learned Life on Earth, Lessons Learned 11-30-2005 Opening Discussion Have you seen anything interesting in the news? How much does the carbon cycle matter to the global warming debate? The key is the timescale.

More information

Shape and Size of the Earth

Shape and Size of the Earth Planet Earth Shape and Size of the Earth Gravity is what gives Earth its spherical shape Only effective if the body is of a critical size Critical radius is about 350 km Shape and Size of the Earth Earth

More information

PTYS/ASTR Section 2 - Spring 2007 Practice Exam 2

PTYS/ASTR Section 2 - Spring 2007 Practice Exam 2 PTYS/ASTR 206 - Section 2 - Spring 2007 Practice Exam 2 Note: The exam is scheduled for Thursday, March 29, 2007. It will be held in-class; you will have 75 minutes to finish the exam, though many of you

More information

Date Class Block. Science SOL Review 6 th grade material

Date Class Block. Science SOL Review 6 th grade material Name Science SOL Review 6 th grade material Date Class Block Interrelationship of Earth and Space Systems Vocabulary: gravity, comet, meteorite, meteor, asteroid, meteoroid, rotation, revolution, year,

More information

Energy Requirement Energy existed in several forms satisfied condition 2 (much more UV than present no ozone layer!)

Energy Requirement Energy existed in several forms satisfied condition 2 (much more UV than present no ozone layer!) Biology 10 Chapter 19-3 p 553-558 Earth s Early History Objectives Describe the hypotheses scientists have about early Earth, and the origin of life. Describe the theory of how eukaryotic cells formed.

More information

PTYS 214 Spring Announcements. Midterm 3 next Thursday!

PTYS 214 Spring Announcements. Midterm 3 next Thursday! PTYS 214 Spring 2018 Announcements Midterm 3 next Thursday! 1 Previously Habitable Zone Energy Balance Emission Temperature Greenhouse Effect Vibration/rotation bands 2 Recap: Greenhouse gases In order

More information

Lecture Outlines. Chapter 28. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 28. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 28 Astronomy Today 8th Edition Chaisson/McMillan Chapter 28 Life in the Universe Units of Chapter 28 28.1 Cosmic Evolution Discovery 28-1 The Virus 28.2 Life in the Solar System

More information

Terrestrial Bodies of the Solar System. Valerie Rapson

Terrestrial Bodies of the Solar System. Valerie Rapson Terrestrial Bodies of the Solar System Valerie Rapson March 22, 2012 Terrestrial Bodies Many different bodies in the Solar System Gaspra Terrestrial bodies are those with solid surfaces on which one could

More information

Planetary Atmospheres (Chapter 10)

Planetary Atmospheres (Chapter 10) Planetary Atmospheres (Chapter 10) Based on Chapter 10 This material will be useful for understanding Chapters 11 and 13 on Jovian planet systems and Extrasolar planets Chapters 4, 5, and 8 on Momentum,

More information

Planet 2. Planet 1 Gas Giant. Planet 3. Earth

Planet 2. Planet 1 Gas Giant. Planet 3. Earth Planet 1 Gas Giant Planet 2 The temperature at the cloud tops is 200 C while the interior temperatures reach tens of thousands of degrees. The churning of the atmosphere causes temperatures of the circulating

More information

Jovian (Jupiter like) Planets

Jovian (Jupiter like) Planets Jovian (Jupiter like) Planets Jupiter Internal structure Heat source Moons & rings Terrestrial vs. Jovian - Size & Density Density (g/cm 3 ) Density (g/cm^3) 6 5 4 3 2 1 0 Mercury Venus Earth Mars Jupiter

More information

Starting from closest to the Sun, name the orbiting planets in order.

Starting from closest to the Sun, name the orbiting planets in order. Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist

More information

Name: Date: Hour: 179 degrees celsius. 5% of Earth A 70 pound person would weigh 27 pounds on Mercury.

Name: Date: Hour: 179 degrees celsius. 5% of Earth A 70 pound person would weigh 27 pounds on Mercury. Planet Exploration- http://www.kidsastronomy.com/solar_.htm Mercury 1 87.9 days 58.6 days 57 million Km 465 degrees celsius Minimum -184 degrees celsius 179 degrees celsius Moons Terrestrial or Gaseous?

More information

Welcome to Class 13: Is (or was) Life on Mars? Remember: sit only in the first 10 rows of the room

Welcome to Class 13: Is (or was) Life on Mars? Remember: sit only in the first 10 rows of the room Welcome to Class 13: Is (or was) Life on Mars? Remember: sit only in the first 10 rows of the room What are we going to discuss today? Why didn t Mars maintain a warm, wet climate? If life could exist

More information

Lecture 20. Origin of the atmosphere (Chap. 10) The carbon cycle and long-term climate (Chap. 8 of the textbook: p )

Lecture 20. Origin of the atmosphere (Chap. 10) The carbon cycle and long-term climate (Chap. 8 of the textbook: p ) Lecture 20 Origin of the atmosphere (Chap. 10) The carbon cycle and long-term climate (Chap. 8 of the textbook: p.158-170) end of last ice-age; begin civilization beginning of modern era of ice-ages asteroid

More information

PTYS 214 Spring Announcements

PTYS 214 Spring Announcements PTYS 214 Spring 2018 Announcements Midterm #2 next Thursday (2/8)!!! Woah!!! Lunar eclipse tomorrow morning! - Begin: 3:51 am - Max: 6:30 am - Sets: 7:15 am - End: 9:08 am Observing project (may replace

More information

Earth s Formation Unit [Astronomy] Student Success Sheets (SSS)

Earth s Formation Unit [Astronomy] Student Success Sheets (SSS) Page1 Earth s Formation Unit [Astronomy] Student Success Sheets (SSS) HS-ESSI-1; HS-ESS1-2; HS-ESS1-3; HS-ESSI-4 NGSS Civic Memorial High School - Earth Science A Concept # What we will be learning Mandatory

More information

AST 205. Lecture 18. November 19, 2003 Microbes and the Origin of Life. Precept assignment for week of Dec 1

AST 205. Lecture 18. November 19, 2003 Microbes and the Origin of Life. Precept assignment for week of Dec 1 AST 205. Lecture 18. November 19, 2003 Microbes and the Origin of Life Context Definition of life Cells, the atoms of life Major classes & families of cells Origin/evolution of biochemistry of life Origin/evolution

More information

Unit 6 Lesson 4 What Are the Planets in Our Solar System? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 6 Lesson 4 What Are the Planets in Our Solar System? Copyright Houghton Mifflin Harcourt Publishing Company Unit 6 Lesson 4 What Are the Planets in Our Solar System? What other objects are near Earth in this part of space? Earth and millions of other objects make up our solar system. In Our Corner of Space A

More information

dition-test-bank

dition-test-bank Link download full: Biology Exploring the Diversity of Life 2nd Edition Test Bank https://digitalcontentmarket.org/download/biology-exploring-the-diversity-of-life-2nd-e dition-test-bank CHAPTER 3 Defining

More information

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Reminder: When I write these questions, I believe that there is one one correct answer. The questions consist of all parts a e. Read the entire

More information

12/5/ Life on Earth. Chapter 19: Life in the Universe. When did life arise on Earth? Earliest Life Forms. Important Stuff (Section 001)

12/5/ Life on Earth. Chapter 19: Life in the Universe. When did life arise on Earth? Earliest Life Forms. Important Stuff (Section 001) Important Stuff (Section 001) The Final Exam is Thursday, December 22, 8:00 10:00 am The Final Exam will be given in: Willey 175 Don t come to Anderson 210. No one will be there. No one. Bring 2 pencils

More information

Outline 9: Origin of the Earth: solids, liquids, and gases. The Early Archean Earth

Outline 9: Origin of the Earth: solids, liquids, and gases. The Early Archean Earth Outline 9: Origin of the Earth: solids, liquids, and gases The Early Archean Earth Origin of Earth s Matter The earth is made of recycled elements formed in stars that existed prior to our Sun. Supernova

More information

The Nature & Origin of Life

The Nature & Origin of Life The Nature & Origin of Life Steward OCN 201 Biology Section Lecture 1 What is Life? General Defining Features Of Life: Self-replication Maintenance of disequilibrium (order!) Controlled collection and

More information

The Jovian Planets and Their Moons

The Jovian Planets and Their Moons The Jovian Planets and Their Moons Jupiter 1 Physical Properties of Earth and Jupiter Jupiter Earth Equatorial lradius 11.2 R Earth 6378 km Mass 318 M Earth 5.976 10 24 kg Average Density 1.34 g/cm 3 5.497

More information

Outline 9: Origin of the Earth: solids, liquids, and gases

Outline 9: Origin of the Earth: solids, liquids, and gases Outline 9: Origin of the Earth: solids, liquids, and gases The Early Archean Earth Origin of Earth s Matter The earth is made of recycled elements formed in stars that existed prior to our Sun. Supernova

More information