The quantification of shading for the built environment in South Africa

Size: px
Start display at page:

Download "The quantification of shading for the built environment in South Africa"

Transcription

1 Contents The quantification of shading for the built environment in South Africa 25 October 2018 Dr. Dirk Conradie

2 Presentation Content Aim of research Climate maps Passive design Solar movement Solar protection Toolkit Conclusions Alexander Forbes building, 115 West Street, Sandton (Johannesburg) CSIR 2015 Slide 2

3 Photographs: D.C.U. Conradie, CSIR

4 76.5% 82.2% 64.6% 75.9% 79.8% 55.1% 70.4% 75.4% 84.1% 80.9% 78.9%

5 Heating Degree Days and Cooling Degree Days 5 Source: D.C.U. Conradie, CSIR

6 Shading Line 1 Bioclimatic design approaches (Watson & Labs) Comfort zone Heating C 9.72 C Aim, Climate Maps, Passive Design, Solar Movement, Solar Protection, Toolkit, Conclusions Natural ventilation C C C 8 7 6A 6B 15 Humidification 9 11 Dehumidification C B 5 mm Hg 14A 17 mm Hg C (dry bulb) temperature 23.8 C dry bulb, Wh/m² Global Horizontal Radiation C Promote evaporative cooling Victor Olgyay ( ) Design with Climate: Bioclimatic Approach to Architectural Regionalism Aw Identification of climate control strategies on the Building Bioclimatic Chart (adapted after Givoni) BIOCLIMATIC NEEDS ANALYSIS Heating (< C) 1-5 Cooling (> ET*) 9-17 Comfort (19.72 C C ET*, 5 mm Hg 80% RH) 7 Dehumidification (> 17 mm Hg or 80% RH) 8-9, Humidification (< 5 mm Hg) 6A, 6B (14) STRATEGIES OF CLIMATE CONTROL Restrict conduction 1-5; 9-11, Restrict infiltration 1-5; Promote solar gain 1-5 Restrict solar gain 6-17 Promote ventilation 9-11 Promote evaporative cooling 6B, 11, 13, 14A, 14B Promote radiant cooling Mechanical cooling 17 Mechanical cooling and dehumidification 15-16

7 Shading Line Aim, Climate Maps, Passive Design, Solar Movement, Solar Protection, Toolkit, Conclusions Bioclimatic design approaches (Climate Consultant) C dry bulb, Wh/m² Global Horizontal Radiation

8 8 Source: D.C.U. Conradie, CSIR

9 Direct incident solar gain per surface The values in column U is for unprotected surfaces and in column P for correctly engineered protected surfaces 9 Source: D.C.U. Conradie, CSIR

10 Annual and Diurnal Solar movement Vernal and Autumnal equinox (23 September and 21 March) Winter Solstice (21 June) N Solar noon 0 γ 45 Summer Solstice (21 December) α α = azimuth clockwise from 0 (north) 90 γ = elevation (or altitude) in degrees above horizon. E Sunrise Sunset W S 10 Source: D.C.U. Conradie, CSIR 225 Horizon

11 Calculate solstices and equinoxes (vertical plane at noon) Summer Solstice Vernal/ Autumnal (21 December) Equinoxes (23 September/ 21 March) Zenith Drawing not to scale Winter Solstice (21 June) South Celestial Pole Recommended angle for solar water heaters and PV cells North (90 - ) Latitude ( ) South 11 Nadir True Obliquity (ε) = 23 26' " = Convert degrees, minutes seconds to decimal degrees: / /3600 = Convert decimal degrees to degrees, minutes, seconds: = [.438 x 60] [.28 x 60] = Source: D.C.U. Conradie, CSIR

12 Types of solar shading Types of solar shading Fixed Moveable (manual/ automatic) Other types External Intermediate Internal 12 Source: D.C.U. Conradie, CSIR

13 Types of solar shading 13 Source: D.C.U. Conradie, CSIR

14 Aim of lecture, South African Climate, Climate Maps, Passive Design, Bioclimatic Design, Sun, Case Studies, Conclusions Geometry of shading devices (Pretoria Forum) 14 Shading angles for a northern wall at latitude of S at Pretoria Forum Source: D.C.U. Conradie, CSIR

15 Methodology 1) Generated typical meteorological weather files by means of Meteonorm for current climate and for an A2 climate change scenario by year ) Developed a software parser to read weather files (8 760 records, 18 essential fields) 3) Calculated solar azimuth and elevation angles for each of the hours and merged with weather file data (Large number of formulas based on NOAA and Jean Meeus algorithms) 4) The initial dataset was interpolated to a set of points (15 minute intervals) to produce a smooth set. 5) Algorithms were developed to calculate a recommended elevation and set of azimuth angles. (Used K-means clustering and Harmonic means to achieve this) 15

16 K-Means Clustering and Harmonic Mean 16 Source: D.C.U. Conradie, CSIR

17 Structure of solar chart Summer Solstice Equinoxes Analemma shapes (15 min intervals) 17 Winter Solstice Cold (Blue): Drybulb temperature <= 18 C Comfortable (green): Drybulb temperature > 18 C and Drybulb temperature < 23.8 C Warm (Magenta): Drybulb temperature >= 23.8 C and Global Horizontal Irradiation < Wh/m² Hot (Red): Drybulb temperature >= 23.8 C and Global Horizontal Irradiation >= Wh/m²

18 Solar charts for Kimberley North 18 Source: D.C.U. Conradie, CSIR

19 Elevation and azimuth protection angles for Kimberley 19 Source: D.C.U. Conradie, CSIR

20 Solar charts for Addis Ababa 20 Source: D.C.U. Conradie, CSIR

21 Conclusions South Africa has significant unrealized passive design potential. Solar protection/ utilisation is the single most important measure/ opportunity in South African climatic zones. The toolkit enables a designer during the early stages of design to quantify and recommend solar protection angles for the different facades of a building turned at any bearing (elevation and azimuth solar angles). This can be developed further by means of detailed energy simulation software (200 types known). The software works in the tropical band as well (Addis Ababa). The software has been tested in the Cofimvaba, Beaufort West Hillside Clinic and Gautrain project. 21

22 Isti mirant stella These [people] look in wonder at the star (Bayeux tapestry, circa 1070 ) Thank you! dconradi@csir.co.za

Earth-Sun Relationships. The Reasons for the Seasons

Earth-Sun Relationships. The Reasons for the Seasons Earth-Sun Relationships The Reasons for the Seasons Solar Radiation The earth intercepts less than one two-billionth of the energy given off by the sun. However, the radiation is sufficient to provide

More information

CHAPTER 3. The sun and the seasons. Locating the position of the sun

CHAPTER 3. The sun and the seasons. Locating the position of the sun zenith 90 observer summer solstice 75 altitude angles equinox 52 winter solstice 29 Figure 3.1: Solar noon altitude angles for Melbourne SOUTH winter midday shadow WEST summer midday shadow summer EAST

More information

Section 1: Overhang. Sizing an Overhang

Section 1: Overhang. Sizing an Overhang Section 1: Overhang A horizontal overhang is a straightforward method for shading solar glazing in summer. Passive heating strategies call for major glazed areas (solar glazing) in a building to be oriented

More information

Seasonal & Diurnal Temp Variations. Earth-Sun Distance. Eccentricity 2/2/2010. ATS351 Lecture 3

Seasonal & Diurnal Temp Variations. Earth-Sun Distance. Eccentricity 2/2/2010. ATS351 Lecture 3 Seasonal & Diurnal Temp Variations ATS351 Lecture 3 Earth-Sun Distance Change in distance has only a minimal effect on seasonal temperature. Note that during the N. hemisphere winter, we are CLOSER to

More information

A2 Principi di Astrofisica. Coordinate Celesti

A2 Principi di Astrofisica. Coordinate Celesti A2 Principi di Astrofisica Coordinate Celesti ESO La Silla Tel. 3.6m Celestial Sphere Our lack of depth perception when we look into space creates the illusion that Earth is surrounded by a celestial sphere.

More information

NAME; LAB # SEASONAL PATH OF THE SUN AND LATITUDE Hemisphere Model #3 at the Arctic Circle

NAME; LAB # SEASONAL PATH OF THE SUN AND LATITUDE Hemisphere Model #3 at the Arctic Circle NAME; PERIOD; DATE; LAB # SEASONAL PATH OF THE SUN AND LATITUDE Hemisphere Model #3 at the Arctic Circle 1 OBJECTIVE Explain how latitude affects the seasonal path of the Sun. I) Path of the Sun and Latitude.

More information

5 - Seasons. Figure 1 shows two pictures of the Sun taken six months apart with the same camera, at the same time of the day, from the same location.

5 - Seasons. Figure 1 shows two pictures of the Sun taken six months apart with the same camera, at the same time of the day, from the same location. ASTR 110L 5 - Seasons Purpose: To plot the distance of the Earth from the Sun over one year and to use the celestial sphere to understand the cause of the seasons. What do you think? Write answers to questions

More information

5 - Seasons. Figure 1 shows two pictures of the Sun taken six months apart with the same camera, at the same time of the day, from the same location.

5 - Seasons. Figure 1 shows two pictures of the Sun taken six months apart with the same camera, at the same time of the day, from the same location. Name: Partner(s): 5 - Seasons ASTR110L Purpose: To measure the distance of the Earth from the Sun over one year and to use the celestial sphere to understand the cause of the seasons. Answer all questions

More information

LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME. a. understand the basic concepts needed for any astronomical coordinate system.

LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME. a. understand the basic concepts needed for any astronomical coordinate system. UNIT 2 UNIT 2 LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME Goals After mastery of this unit, you should: a. understand the basic concepts needed for any astronomical coordinate system. b. understand

More information

ASTRO Fall 2012 LAB #2: Observing the Night Sky

ASTRO Fall 2012 LAB #2: Observing the Night Sky ASTRO 1050 - Fall 2012 LAB #2: Observing the Night Sky ABSTRACT Today we will be calibrating your hand as an angular measuring device, and then heading down to the planetarium to see the night sky in motion.

More information

Exercise 6. Solar Panel Orientation EXERCISE OBJECTIVE DISCUSSION OUTLINE. Introduction to the importance of solar panel orientation DISCUSSION

Exercise 6. Solar Panel Orientation EXERCISE OBJECTIVE DISCUSSION OUTLINE. Introduction to the importance of solar panel orientation DISCUSSION Exercise 6 Solar Panel Orientation EXERCISE OBJECTIVE When you have completed this exercise, you will understand how the solar illumination at any location on Earth varies over the course of a year. You

More information

Laboratory Exercise #7 - Introduction to Atmospheric Science: The Seasons

Laboratory Exercise #7 - Introduction to Atmospheric Science: The Seasons Laboratory Exercise #7 - Introduction to Atmospheric Science: The Seasons page - 1 Section A - Introduction: This lab consists of both computer-based and noncomputer-based questions dealing with atmospheric

More information

Earth s Orbit. Sun Earth Relationships Ridha Hamidi, Ph.D. ESCI-61 Introduction to Photovoltaic Technology

Earth s Orbit. Sun Earth Relationships Ridha Hamidi, Ph.D. ESCI-61 Introduction to Photovoltaic Technology 1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere 23.5 tilts away from sun) 2 Solar radiation

More information

SEASONAL AND DAILY TEMPERATURES

SEASONAL AND DAILY TEMPERATURES 1 2 3 4 5 6 7 8 9 10 11 12 SEASONAL AND DAILY TEMPERATURES Chapter 3 Earth revolves in elliptical path around sun every 365 days. Earth rotates counterclockwise or eastward every 24 hours. Earth closest

More information

Motion of the Sun. View Comments

Motion of the Sun. View Comments Login 2017 Survey to Improve Photovoltaic Education Christiana Honsberg and Stuart Bowden View Comments Instructions 1. Introduction 2. Properties of Sunlight 2.1. Basics of Light Properties of Light Energy

More information

SOLAR ENERGY: THAT S HOT Grades 4-6

SOLAR ENERGY: THAT S HOT Grades 4-6 NJCCCS: 5.1, 5.2, 5.4 SOLAR ENERGY: THAT S HOT Grades 4-6 Field Trip Overview: This program illuminates the various ways in which our nearest star affects life on Earth. Students will learn about the apparent

More information

Why the Earth has seasons. Why the Earth has seasons 1/20/11

Why the Earth has seasons. Why the Earth has seasons 1/20/11 Chapter 3 Earth revolves in elliptical path around sun every 365 days. Earth rotates counterclockwise or eastward every 24 hours. Earth closest to Sun (147 million km) in January, farthest from Sun (152

More information

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson.

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson. Lesson 211: EARTH'S SEASONS Students learn the complex geometry and planetary motions that cause Earth to have four distinct seasons. Fundamental Questions Attempting to give thorough and reasonable answers

More information

Daily Motions. Daily Motions. Solar and Sidereal Days. Annual Motions of the Sun. Coordinate system on Earth. Annual Motion of the Stars.

Daily Motions. Daily Motions. Solar and Sidereal Days. Annual Motions of the Sun. Coordinate system on Earth. Annual Motion of the Stars. Sun: rises in the east sets in the west travels on an arc across the sky 24 hours Daily Motions Solar Day = 24 hours Stars: stars travel on arcs in the sky moving from east to west. some stars rise and

More information

Earth Motions Packet 14

Earth Motions Packet 14 Earth Motions Packet 14 Your Name Group Members Score Minutes Standard 4 Key Idea 1 Performance Indicator 1.1 Explain complex phenomena, such as tides, variations in day length, solar insolation, apparent

More information

Seasonal Path of the Sun and Latitude

Seasonal Path of the Sun and Latitude Seasonal Path of the Sun and Latitude Overview This lesson is a modification of what Dave Hess and I, Stan Skotnicki, use in our Earth Science classes at Cheektowaga Central High School. It is an extension

More information

Seasons. What causes the seasons?

Seasons. What causes the seasons? Questions: Seasons What causes the seasons? How do we mark the progression of the seasons? What is the seasonal motion of the sun in the sky? What could cause the seasonal motion of the sun to change over

More information

What causes the seasons? 2/11/09

What causes the seasons? 2/11/09 2/11/09 We can recognize solstices and equinoxes by Sun s path across sky: Summer solstice: Highest path, rise and set at most extreme north of due east. Winter solstice: Lowest path, rise and set at most

More information

For most observers on Earth, the sun rises in the eastern

For most observers on Earth, the sun rises in the eastern 632 CHAPTER 25: EARTH, SUN, AND SEASONS WHAT IS THE SUN S APPARENT PATH ACROSS THE SKY? For most observers on Earth, the sun rises in the eastern part of the sky. The sun reaches its greatest angular altitude

More information

COMPUTER PROGRAM FOR THE ANGLES DESCRIBING THE SUN S APPARENT MOVEMENT IN THE SKY

COMPUTER PROGRAM FOR THE ANGLES DESCRIBING THE SUN S APPARENT MOVEMENT IN THE SKY COMPUTER PROGRAM FOR THE ANGLES DESCRIBING THE SUN S APPARENT MOVEMENT IN THE SKY B. BUTUC 1 Gh. MOLDOVEAN 1 Abstract: The paper presents software developed for the determination of the Sun-Earth geometry.

More information

A Warm Up Exercise. The Motion of the Sun. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise

A Warm Up Exercise. The Motion of the Sun. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise A Warm Up Exercise The Motion of the Sun Which of the following is NOT true of a circumpolar star? a) It rises and sets from my latitude b) Its direction can be far North c) Its direction can be far South

More information

The Sky Perceptions of the Sky

The Sky Perceptions of the Sky The Sky Perceptions of the Sky An Observer-Centered Hemisphere Night & Day - Black & Blue - Stars & Sun Atmospheric & Astronomical Phenomena Weather, Clouds, Rainbows,... versus Sun, Moon, Stars, Planets,...

More information

Motions of the Earth

Motions of the Earth Motions of the Earth Our goals for learning: What are the main motions of the Earth in space? How do we see these motions on the ground? How does it affect our lives? How does the orientation of Earth's

More information

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 15 Place and Time

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 15 Place and Time James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 15 Place and Time Place & Time Read sections 15.5 and 15.6, but ignore the math. Concentrate on those sections that help explain the slides.

More information

November 20, NOTES ES Rotation, Rev, Tilt.notebook. vertically. night. night. counterclockwise. counterclockwise. East. Foucault.

November 20, NOTES ES Rotation, Rev, Tilt.notebook. vertically. night. night. counterclockwise. counterclockwise. East. Foucault. NOTES ES, Rev,.notebook, and Rotates on an imaginary axis that runs from the to the South North Pole Pole vertically North The of the axis points to a point in space near day Pole Polaris night Responsible

More information

Chapter Seven. Solar Energy

Chapter Seven. Solar Energy Chapter Seven Solar Energy Why Studying Solar energy To know the heat gain or heat loss in a building In making energy studies In the design of solar passive homes. Thermal Radiation Solar spectrum is

More information

C) wavelength C) eastern horizon B) the angle of insolation is high B) increases, only D) thermosphere D) receive low-angle insolation

C) wavelength C) eastern horizon B) the angle of insolation is high B) increases, only D) thermosphere D) receive low-angle insolation 1. What is the basic difference between ultraviolet, visible, and infrared radiation? A) half-life B) temperature C) wavelength D) wave velocity 2. In New York State, the risk of sunburn is greatest between

More information

Laboratory Exercise #7 - Introduction to Atmospheric Science: The Seasons and Daily Weather

Laboratory Exercise #7 - Introduction to Atmospheric Science: The Seasons and Daily Weather Laboratory Exercise #7 - Introduction to Atmospheric Science: The Seasons and Daily Weather page - Section A - Introduction: This lab consists of questions dealing with atmospheric science. We beginning

More information

Motion of the Sun. motion relative to the horizon. rises in the east, sets in the west on a daily basis. Basis for the unit of time, the DAY

Motion of the Sun. motion relative to the horizon. rises in the east, sets in the west on a daily basis. Basis for the unit of time, the DAY Motion of the Sun motion relative to the horizon rises in the east, sets in the west on a daily basis Basis for the unit of time, the DAY noon: highest point of Sun in sky relative to the horizon 1 altitude:

More information

Project 2. Introduction: 10/23/2016. Josh Rodriguez and Becca Behrens

Project 2. Introduction: 10/23/2016. Josh Rodriguez and Becca Behrens Project 2 Josh Rodriguez and Becca Behrens Introduction: Section I of the site Dry, hot Arizona climate Linen supply and cleaning facility Occupied 4am-10pm with two shifts of employees PHOENIX, ARIZONA

More information

LAB: What Events Mark the Beginning of Each Season?

LAB: What Events Mark the Beginning of Each Season? Name: Date: LAB: What Events Mark the Beginning of Each Season? The relationship between the Sun and Earth have been used since antiquity to measure time. The day is measured by the passage of the Sun

More information

(1) Over the course of a day, the sun angle at any particular place varies. Why?

(1) Over the course of a day, the sun angle at any particular place varies. Why? (1) Over the course of a day, the sun angle at any particular place varies. Why? (Note: Although all responses below are true statements, only one of them actually explains the observation!) (A)The sun

More information

Seasons ASTR 101 2/12/2018

Seasons ASTR 101 2/12/2018 Seasons ASTR 101 2/12/2018 1 What causes the seasons? Perihelion: closest to Sun around January 4 th Northern Summer Southern Winter 147 million km 152 million km Aphelion (farthest to Sun) around July

More information

Practice Questions: Seasons #2

Practice Questions: Seasons #2 1. How many degrees does the Sun appear to move across the sky in four hours? A) 60 B) 45 C) 15 D) 4 Practice Questions: Seasons #2 2. Base your answer to the following question on the diagram below, which

More information

3 - Celestial Sphere

3 - Celestial Sphere 3 - Celestial Sphere Purpose: To construct and use a celestial sphere to show the motion of the Sun and stars in the sky. There are six questions, Q1 Q6, to answer on a separate piece of paper. Due: in

More information

L.O: EARTH'S 23.5 DEGREE TILT ON ITS AXIS GIVES EARTH ITS SEASONS March 21 (SPRING), June 21(SUMMER), Sept 22 (AUTUMN) & Dec 21(WINTER)

L.O: EARTH'S 23.5 DEGREE TILT ON ITS AXIS GIVES EARTH ITS SEASONS March 21 (SPRING), June 21(SUMMER), Sept 22 (AUTUMN) & Dec 21(WINTER) L.O: EARTH'S 23.5 DEGREE TILT ON ITS AXIS GIVES EARTH ITS SEASONS March 21 (SPRING), June 21(SUMMER), Sept 22 (AUTUMN) & Dec 21(WINTER) 1. The apparent daily path of the Sun changes with the seasons because

More information

HEATING THE ATMOSPHERE

HEATING THE ATMOSPHERE HEATING THE ATMOSPHERE Earth and Sun 99.9% of Earth s heat comes from Sun But

More information

Discovering the Night Sky

Discovering the Night Sky Discovering the Night Sky Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

More information

Discovering the Night Sky

Discovering the Night Sky Guiding Questions Discovering the Night Sky 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

More information

ARCHITECTURE IN THE DAYLIGHT

ARCHITECTURE IN THE DAYLIGHT ARCHITECTURE IN THE DAYLIGHT Site Location MANUS LEUNG HARVARD GSD FALL 2015 The house is located in Jl. Intern Corn Kebun Jeruk Blok U3 No.18, Kembangan District of Jakarta 11640 Indonesia. 01 OBJECTIVES

More information

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations Knowing the Heavens Chapter Two Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same

More information

March 21. Observer located at 42 N. Horizon

March 21. Observer located at 42 N. Horizon March 21 Sun Observer located at 42 N Horizon 48 June 21 March 21 A 48 90 S 23.5 S 0 23.5 N 42 N 90 N Equator (June 21) C (March 21) B A 71.5 48 Horizon 24.5 Observer Sun 40 Observer Sun 22 Observer Sun

More information

LECTURE ONE The Astronomy of Climate

LECTURE ONE The Astronomy of Climate LECTURE ONE The Astronomy of Climate Agricultural Science Climatology Semester 2, 2006 Richard Thompson http://www.physics.usyd.edu.au/ag/agschome.htm Course Coordinator: Mike Wheatland AMMENDED TIMETABLE

More information

Student Exploration: Seasons: Earth, Moon, and Sun

Student Exploration: Seasons: Earth, Moon, and Sun Name: Date: Student Exploration: Seasons: Earth, Moon, and Sun Vocabulary: altitude, axis, azimuth, equinox, horizon, latitude, revolution, rotation, solstice Prior Knowledge Questions (Do these BEFORE

More information

2/22/ Atmospheric Characteristics

2/22/ Atmospheric Characteristics 17.1 Atmospheric Characteristics Atmosphere: the gaseous layer that surrounds the Earth I. In the past, gases came from volcanic eruptions A. Water vapor was a major component of outgassing B. Other gases

More information

Name Date. What s the weather like today? Watch the beginning of the video Basics of geography- climate.

Name Date. What s the weather like today? Watch the beginning of the video Basics of geography- climate. FACTORS THAT INFLUENCE CLIMATE worksheet 1 STARTER Look at the weather symbols and answer: What s the weather like today? WHAT S CLIMATE? Watch the beginning of the video Basics of geography- climate.

More information

FOR DISCUSSION TODAY: THE ANNUAL MOTION OF THE SUN

FOR DISCUSSION TODAY: THE ANNUAL MOTION OF THE SUN ANNOUNCEMENTS Homework #1 due today at end of class. HW #2 due next Thursday. Homework #1 question #1 and Homework #2 meridian slice questions will be discussed in the course of the lecture today. Observing

More information

Reminder: Seasonal Motion

Reminder: Seasonal Motion Seasonal Motion Reminder: Seasonal Motion If you observe the sky at the same time, say midnight, but on a different date, you find that the celestial sphere has turned: different constellations are high

More information

Chapter 4 Earth, Moon, and Sky 107

Chapter 4 Earth, Moon, and Sky 107 Chapter 4 Earth, Moon, and Sky 107 planetariums around the world. Figure 4.4 Foucault s Pendulum. As Earth turns, the plane of oscillation of the Foucault pendulum shifts gradually so that over the course

More information

ARCH 1250 APPLIED ENVIRONMENTAL STUDIES. CLASS TWO - CLIMATE Macroclimate and Microclimate

ARCH 1250 APPLIED ENVIRONMENTAL STUDIES. CLASS TWO - CLIMATE Macroclimate and Microclimate APPLIED ENVIRONMENTAL STUDIES CLASS TWO - Macroclimate and Microclimate Part 1: Climate Overview John Seitz, RA, LEED AP Assistant Adjunct Professor Professor Paul C. King, RA, AIA, ARA Assistant Professor

More information

Physics Lab #4:! Starry Night Student Exercises I!

Physics Lab #4:! Starry Night Student Exercises I! Physics 10293 Lab #4: Starry Night Student Exercises I Introduction For today s lab, we are going to let the Starry Night software do much of the work for us. We re going to walk through some of the sample

More information

Astronomy 100 Section 2 MWF Greg Hall

Astronomy 100 Section 2 MWF Greg Hall Astronomy 100 Section 2 MWF 1200-1300 100 Greg Hall Leslie Looney Phone: 217-244-3615 Email: lwl @ uiuc. edu Office: Astro Building #218 Office Hours: MTF 10:30-11:30 a.m. or by appointment Class Web Page

More information

Solutions Manual to Exercises for Weather & Climate, 8th ed. Appendix A Dimensions and Units 60 Appendix B Earth Measures 62 Appendix C GeoClock 63

Solutions Manual to Exercises for Weather & Climate, 8th ed. Appendix A Dimensions and Units 60 Appendix B Earth Measures 62 Appendix C GeoClock 63 Solutions Manual to Exercises for Weather & Climate, 8th ed. 1 Vertical Structure of the Atmosphere 1 2 Earth Sun Geometry 4 3 The Surface Energy Budget 8 4 The Global Energy Budget 10 5 Atmospheric Moisture

More information

Physics Lab #2: Learning Starry Night, Part 1

Physics Lab #2: Learning Starry Night, Part 1 Physics 10293 Lab #2: Learning Starry Night, Part 1 Introduction In this lab, we'll learn how to use the Starry Night software to explore the sky, and at the same time, you ll get a preview of many of

More information

Winter Thermal Comfort in 19 th Century Traditional Buildings of the Town of Florina, in North-Western Greece

Winter Thermal Comfort in 19 th Century Traditional Buildings of the Town of Florina, in North-Western Greece PLEA2 - The 22 nd Conference on Passive and Low Energy Architecture. Beirut, Lebanon, 13-16 November 2 Winter Thermal Comfort in 19 th Century Traditional Buildings of the Town of Florina, in North-Western

More information

Heat Transfer. Energy from the Sun. Introduction

Heat Transfer. Energy from the Sun. Introduction Heat Transfer Energy from the Sun Introduction The sun rises in the east and sets in the west, but its exact path changes over the course of the year, which causes the seasons. In order to use the sun

More information

Seasons Page 520. A. What Causes Seasons?

Seasons Page 520. A. What Causes Seasons? Seasons Page 520 A. What Causes Seasons? 1. Seasons are caused by the tilt of the earth s axis as it moves around the sun. 2. Seasons happen because the Earth is tilted on its axis at a 23.5 angle. 3.

More information

LAB 2: Earth Sun Relations

LAB 2: Earth Sun Relations LAB 2: Earth Sun Relations Name School The amount of solar energy striking the Earth s atmosphere is not uniform; distances, angles and seasons play a dominant role on this distribution of radiation. Needless

More information

ZW2000 and Your Vertical Sundial Carl Sabanski

ZW2000 and Your Vertical Sundial Carl Sabanski 1 The Sundial Primer created by At this point I assume that you have downloaded and set up ZW2000 on your computer and have also read the overview document. If not please read Getting Started with ZW2000

More information

ME 476 Solar Energy UNIT THREE SOLAR RADIATION

ME 476 Solar Energy UNIT THREE SOLAR RADIATION ME 476 Solar Energy UNIT THREE SOLAR RADIATION Unit Outline 2 What is the sun? Radiation from the sun Factors affecting solar radiation Atmospheric effects Solar radiation intensity Air mass Seasonal variations

More information

ClassAction: Coordinates and Motions Module Instructor s Manual

ClassAction: Coordinates and Motions Module Instructor s Manual ClassAction: Coordinates and Motions Module Instructor s Manual Table of Contents Section 1: Warm-up Questions...3 The Sun s Path 1 4 Section 2: General Questions...5 Sledding or Going to the Beach...6

More information

Physics 312 Introduction to Astrophysics Lecture 3

Physics 312 Introduction to Astrophysics Lecture 3 Physics 312 Introduction to Astrophysics Lecture 3 James Buckley buckley@wuphys.wustl.edu Lecture 3 Celestial Coordinates the Planets and more History Reason for the Seasons Summer Solstice: Northern Hemisphere

More information

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy.

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy. Fluid Circulation Review Vocabulary Absorption - taking in energy as in radiation. For example, the ground will absorb the sun s radiation faster than the ocean water. Air pressure Albedo - Dark colored

More information

1. Which continents are experiencing daytime? 2. Which continents are experiencing nighttime?

1. Which continents are experiencing daytime? 2. Which continents are experiencing nighttime? Name: Section: Astronomy 101: Seasons Lab Objective: When you have completed this lab, you will be able to describe the seasons of the year and explain the reasons for those seasons. Answer the questions

More information

The Earth is a Rotating Sphere

The Earth is a Rotating Sphere The Earth is a Rotating Sphere The Shape of the Earth Earth s Rotation ( and relative movement of the Sun and Moon) The Geographic Grid Map Projections Global Time The Earth s Revolution around the Sun

More information

INFLUENCE OF THE AVERAGING PERIOD IN AIR TEMPERATURE MEASUREMENT

INFLUENCE OF THE AVERAGING PERIOD IN AIR TEMPERATURE MEASUREMENT INFLUENCE OF THE AVERAGING PERIOD IN AIR TEMPERATURE MEASUREMENT Hristomir Branzov 1, Valentina Pencheva 2 1 National Institute of Meteorology and Hydrology, Sofia, Bulgaria, Hristomir.Branzov@meteo.bg

More information

C) the seasonal changes in constellations viewed in the night sky D) The duration of insolation will increase and the temperature will increase.

C) the seasonal changes in constellations viewed in the night sky D) The duration of insolation will increase and the temperature will increase. 1. Which event is a direct result of Earth's revolution? A) the apparent deflection of winds B) the changing of the Moon phases C) the seasonal changes in constellations viewed in the night sky D) the

More information

Phys Lab #1: The Sun and the Constellations

Phys Lab #1: The Sun and the Constellations Phys 10293 Lab #1: The Sun and the Constellations Introduction Astronomers use a coordinate system that is fixed to Earth s latitude and longitude. This way, the coordinates of a star or planet are the

More information

Practice Questions: Seasons #1

Practice Questions: Seasons #1 1. Seasonal changes on Earth are primarily caused by the A) parallelism of the Sun's axis as the Sun revolves around Earth B) changes in distance between Earth and the Sun C) elliptical shape of Earth's

More information

Solar Resource Mapping in South Africa

Solar Resource Mapping in South Africa Solar Resource Mapping in South Africa Tom Fluri Stellenbosch, 27 March 2009 Outline The Sun and Solar Radiation Datasets for various technologies Tools for Solar Resource Mapping Maps for South Africa

More information

Celestial Sphere. Altitude [of a celestial object] Zenith. Meridian. Celestial Equator

Celestial Sphere. Altitude [of a celestial object] Zenith. Meridian. Celestial Equator Earth Science Regents Interactive Path of the Sun University of Nebraska Resources Copyright 2011 by Z. Miller Name Period COMPANION WEBSITES: http://www.analemma.com/ http://www.stellarium.org/ INTRODUCTION:

More information

Sunlight and its Properties Part I. EE 446/646 Y. Baghzouz

Sunlight and its Properties Part I. EE 446/646 Y. Baghzouz Sunlight and its Properties Part I EE 446/646 Y. Baghzouz The Sun a Thermonuclear Furnace The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction

More information

Astronomy 101 Lab: Seasons

Astronomy 101 Lab: Seasons Name: Astronomy 101 Lab: Seasons Pre-Lab Assignment: In class, we've talked about the cause of the seasons. In this lab, you will use globes to study the relative positions of Earth and the Sun during

More information

What causes Earth to have seasons?

What causes Earth to have seasons? Seasons What causes Earth to have seasons? The distance to Earth does NOT cause seasons seasons are caused by : 1. the tilt of the earth on its axis (23.5 degrees) 2.revolution of earth around the sun

More information

Seasons, Global Wind and Climate Study Guide

Seasons, Global Wind and Climate Study Guide Seasons, Global Wind and Climate Study Guide Seasons 1. Know what is responsible for the change in seasons on Earth. 2. Be able to determine seasons in the northern and southern hemispheres given the position

More information

Page 1. Name:

Page 1. Name: Name: 1) What is the primary reason New York State is warmer in July than in February? A) The altitude of the noon Sun is greater in February. B) The insolation in New York is greater in July. C) The Earth

More information

Solar Time, Angles, and Irradiance Calculator: User Manual

Solar Time, Angles, and Irradiance Calculator: User Manual Solar Time, Angles, and Irradiance Calculator: User Manual Circular 674 Thomas Jenkins and Gabriel Bolivar-Mendoza 1 Cooperative Extension Service Engineering New Mexico Resource Network College of Agricultural,

More information

Astronomy 291. Professor Bradley M. Peterson

Astronomy 291. Professor Bradley M. Peterson Astronomy 291 Professor Bradley M. Peterson The Sky As a first step, we need to understand the appearance of the sky. Important points (to be explained): The relative positions of stars remain the same

More information

Basic human requirements

Basic human requirements Basic human requirements Core Temperature 37 0 C 36 0 C 34 0 C 32 0 C 31 0 C 28 0 C Room Temperature 0 o C 20 o C 35 o C Energy [kw/(m² μm)] 2.0-1.5 - Black body at 800 K Solar radiation at atmosphere

More information

Lecture 2 Motions in the Sky September 10, 2018

Lecture 2 Motions in the Sky September 10, 2018 1 Lecture 2 Motions in the Sky September 10, 2018 2 What is your year in school? A. New freshman B. Returning freshman C. Sophomore D. Junior E. Senior F. I ve been here, like, forever 3 What is your major?

More information

Designing with the Pilkington Sun Angle Calculator

Designing with the Pilkington Sun Angle Calculator Designing with the Pilkington Sun Angle Calculator In 1951, Libbey-Owens-Ford introduced the first Sun Angle Calculator, to provide a relatively simple method of determining solar geometry variables for

More information

SUBJECT : GEOGRAPHY ROTATION AND REVOLUTION This paper consists of 5 printed pages.

SUBJECT : GEOGRAPHY ROTATION AND REVOLUTION This paper consists of 5 printed pages. SUBJECT : GEOGRAPHY ROTATION AND REVOLUTION 2017-2018 This paper consists of 5 printed pages. 1. Name the motions of the earth. A. They are Rotation and Revolution. 2. What is Rotation? A. Rotation is

More information

Aileen A. O Donoghue Priest Associate Professor of Physics

Aileen A. O Donoghue Priest Associate Professor of Physics SOAR: The Sky in Motion Life on the Tilted Teacup Ride The Year Aileen A. O Donoghue Priest Associate Professor of Physics Celestial Coordinates Right Ascension RA or From prime meridian (0 h ) to 23 h

More information

Student Exploration: Seasons in 3D

Student Exploration: Seasons in 3D Name: Date: Student Exploration: Seasons in 3D Vocabulary: axis, equinox, latitude, Northern Hemisphere, revolve, rotate, solar energy, solar intensity, Southern Hemisphere, summer solstice, winter solstice

More information

Introduction To Modern Astronomy I: Solar System

Introduction To Modern Astronomy I: Solar System ASTR 111 003 Fall 2007 Lecture 02 Sep. 10, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap. 16: Our Sun Chap. 28: Search for

More information

Summary Sheet #1 for Astronomy Main Lesson

Summary Sheet #1 for Astronomy Main Lesson Summary Sheet #1 for Astronomy Main Lesson From our perspective on earth The earth appears flat. We can see half the celestial sphere at any time. The earth s axis is always perpendicular to the equator.

More information

Lecture 3: Global Energy Cycle

Lecture 3: Global Energy Cycle Lecture 3: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Flux and Flux Density Solar Luminosity (L)

More information

9/1/14. Chapter 2: Heating Earth s Surface and Atmosphere. The Atmosphere: An Introduction to Meteorology, 12 th. Lutgens Tarbuck

9/1/14. Chapter 2: Heating Earth s Surface and Atmosphere. The Atmosphere: An Introduction to Meteorology, 12 th. Lutgens Tarbuck Chapter 2: Heating Earth s Surface and Atmosphere The Atmosphere: An Introduction to Meteorology, 12 th Lutgens Tarbuck Lectures by: Heather Gallacher, Cleveland State University! Earth s two principal

More information

Seasons and Angle of Insolation

Seasons and Angle of Insolation Computer Seasons and Angle of Insolation 29 (Adapted from Exp 29 Seasons and Angle of Insolation from the Earth Science with Vernier lab manual.) Have you ever wondered why temperatures are cooler in the

More information

Insolation and Temperature variation. The Sun & Insolation. The Sun (cont.) The Sun

Insolation and Temperature variation. The Sun & Insolation. The Sun (cont.) The Sun Insolation and Temperature variation Atmosphere: blanket of air surrounding earth Without our atmosphere: cold, quiet, cratered place Dynamic: currents and circulation cells June 23, 2008 Atmosphere important

More information

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations.

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations. Chapter 1: Discovering the Night Sky Constellations: Recognizable patterns of the brighter stars that have been derived from ancient legends. Different cultures have associated the patterns with their

More information

Astronomy 101 Exam 1 Form A

Astronomy 101 Exam 1 Form A Astronomy 101 Exam 1 Form A Name: Lab section number: (In the format M0**. See back page; if you get this wrong you may not get your exam back!) Exam time: one hour and twenty minutes Please put bags under

More information

Agricultural Science Climatology Semester 2, Anne Green / Richard Thompson

Agricultural Science Climatology Semester 2, Anne Green / Richard Thompson Agricultural Science Climatology Semester 2, 2006 Anne Green / Richard Thompson http://www.physics.usyd.edu.au/ag/agschome.htm Course Coordinator: Mike Wheatland Course Goals Evaluate & interpret information,

More information

NABCEP Entry Level Exam Review Solfest practice test by Sean White

NABCEP Entry Level Exam Review Solfest practice test by Sean White 1. A fall protection system must be in place for all work done at heights in excess of a. 4 feet b. 6 feet c. 8 feet d. 10 feet 2. A circuit breaker performs the same function a. as a fuse b. as a switch

More information

PHYS 160 Astronomy Test #1 Fall 2017 Version B

PHYS 160 Astronomy Test #1 Fall 2017 Version B PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,

More information