Carbon stars from LAMOST DR4

Size: px
Start display at page:

Download "Carbon stars from LAMOST DR4"

Transcription

1 National Astronomical Observatories (NAOC) Center for Oeration and Develoment of Guo Shoujing Telescoe (LAMOST) Carbon stars from LAMOST DR4 Yin-bi Li, A-li Luo, Chang-de Du, et al

2 2 Outline Background How to find carbon stars? Sectra MK Classification Carbon stars from LAMOST DR4 Comared with revious work Multile-wavelength Data 2

3 Background Definition of carbon star C/O > 1 Otical sectra: CH, C2 or CN band Infrared sectra: SiC band Origins of carbon Giants: from the third dredge-u of TP- AGB hase Dwarfs: from their comanion Why is carbon star rare? The short time scale of TP-AGB hase (a few hundred years) Only third dredge-u can convect carbon to surface Only strong dredge-u can roduce carbon stars Why do we study carbon stars? Play an imortant role in the nuclear synthesis rocess Synthesize about half of elements heavier than iron by the s-rocess Synthesize carbon by the trile-alha rocess Hel us to understand the evolution of galaxies As robes to investigate the dark matter halo, Galactic otential, dwarf galaxies or stellar streams. 3

4 Background Detection History Alksnis, A. et al. 2001, 10, carbon stars Christlieb, N. et al. 2001, 375, FHLCs --- HES sectra SDSS Margon, B., et al. 2002, 124, FHLCs Downes, R., A., et al. 2004, 127, FHLCs Green, P. 2013, 765, FHLCs Si, J.M., et al. 2014, 57, carbon stars LAMOST Si, J.M., et al. 2015, 15, carbon stars Ji, W., et al. 2016, 226, carbon stars DFBS Gigoyan, K.S., et al. 2012, 544, A FHLCs Gigoyan, K.S., et al FHLCs Gigoyan, K.S., et al FHLCs 4

5 How to find carbon stars? The rocess of finding carbon stars Construction and Classification of ositive samle set Sectra rerocessing Research of Retrieval algorithms Artificial identification 5

6 How to find carbon stars? Comleteness: at least 95% 6

7 How to find carbon stars? Bagging ToPush Algorithm + over one billion sectra 2651 carbon stars from LAMOST DR of them are new findings 17 carbon-enhanced metal-oor main sequence turn off stars Examles of Sectral Binaries 7

8 How to find carbon stars? Examle of G-tye carbon stars 8

9 How to find carbon stars? Examles of emission line carbon stars 9

10 How to find carbon stars? Examles of carbon-enhanced metal-oor main sequence turn off stars 10

11 Sectral MK Classification Sectral MK Classification Classification Criteria CJ stars --- AJ, 2009, 705, 1298 First successful try to classify CJ stars from sectra features D6168 / D6192 & EW6260 / EW6206 à J index >= 4 First classify CJ stars into three tyes: CJ(N), CJ(H) & CJ(R) CH, CR, CN, and Ba stars --- artificial identification Classification Results C-H: 864 C-R: 226 C-J: 400 CJ(N) : 353 CJ(H): 41 CJ(R): 6 C-N: 266 Ba: 719 Unknown: 164 Binary: 12 (No sectra tye) 11

12 Sectral MK Classification Two C-J(N) stars 12

13 Sectral MK Classification C-J(H) and C-J(R) stars 13

14 Sectral MK Classification C-J(binary) and C-J(EM) stars 14

15 Sectral MK Classification 15

16 Carbon stars from LAMOST DR4 Parameter Catalog for carbon stars of LAMOST DR4 Designation Equatorial Coordinates Signal to Noise ratio PPMXL roer motion UCAC4 roer motion GALEX hotometry Pan-STARRS hotometry 2MASS hotometry Wise hotometry Flag_new: new finding or not Flag_tye: a sectral binary, a G-tye star, a emission line star, or not Sectra_tye: CH, CR, CJ, CN, and Ba 16

17 Carbon stars from LAMOST DR4 17

18 Carbon stars from LAMOST DR4 18

19 Carbon stars from LAMOST DR4 19

20 Carbon stars from LAMOST DR4 20

21 Comared with Previous Work RAA, 2015, 15, 1671 (183 carbon stars from LAMOST Pilot Survey) 4 stars with low quality sectra are not in our catalog AJS, 2016, 226, 1 (894 carbon stars from LAMOST DR2) Their 5 stars with low quality sectra are not in our catalog Our catalog include all their 894 carbon stars 21

22 Multile-wavelength Data GALEX Ultraviolet Detections 1099 detections 25 FUV-detections --- likely have white dwarf star comanions 1098 NUV-detections 22

23 Multile-wavelength Data Try to classify carbon stars with uv, otical and infrared colors Estimate intrinsic colors Cut samles with large magnitude errors nuv_err <= 0.3, e_w3<=0.1, e_g/r/i/z/y/j/h/ks/w1/w2 <= 0.05 Correct extinctions C0_(H W2) = 0.08 for F, G, K, and M tye stars --- Jian, M.J., Gao, S., Zhao, H, et al. AJ, 2017, 153, 5 2MASS and WISE bands --- relative extinction from Xue, M.Y., Jiang, B.W, Gao, J., et al. 2016, 224, 23 Ultra-violet and otical bands --- extinction coefficients from Yuan, H.B., Liu, X.W., Xiang, M.S , 430, 2188 Calculate intrinsic colors in above 11 colors Extinction of y band --- Mathis, J.S.., 1990, 28, 37 / A(lambda) is ower law 23

24 Multile-wavelength Data C-J: 37 C-N: 11 24

25 Multile-wavelength Data 25

26 Multile-wavelength Data 26

27 Multile-wavelength Data 27

28 Multile-wavelength Data 28

29 Multile-wavelength Data Total number of cool stars: 566 (with intrinsic colors) b >= 30 degree: 33 cool carbon stars H W2 [0.3, 0.5] : 31stars are C-J or C-N cool carbon stars >= 0.5: 16 stars are C-J or C-N cool carbon stars >= 1: 12 stars are C-J or C-N cool carbon stars These carbon stars robably have infrared excess 29

30 Multile-wavelength Data A fraction of carbon stars have infrared excess It is imossible to classify carbon stars into five sectral sub-tyes with colors 30

31 Thank you for your attention! 31

32 Carbon stars from LAMOST DR4 Parameter Catalog for 17 CEMP MSTO stars of LAMOST DR4 Designation Equatorial Coordinates Signal to Noise ratio Atmosheric Parameters Radial Velocities PPMXL roer motion UCAC4 roer motion GALEX hotometry Pan-STARRS hotometry 2MASS hotometry Wise hotometry 32

33 Multile-wavelength Data G-tye stars: 0.3 <= (g - r) <= 0.8 and 3 <= (nuv - r) <= 7.5 Ba stars: 0.3 <= (g - r) <= 1.2 and 7.5 <= (g - r) <= 11 33

34 Multile-wavelength Data G-tye stars: 0.3 <= (g - r) <= 0.8 and 2.5 <= (nuv - g) <= 7 Ba stars: 0.3 <= (g - r) <= 1.2 and 7 <= (g - r) <=

35 Multile-wavelength Data Hot carbon stars: 0 <= (g - r) <= 1 and 0.2 <= (r - i) <= 1.7 Cool CJ and CN stars: Most of them: (r - i) > 1.7 A small fraction of them: (g - r) > 1.0 and (r i) <=

36 Multile-wavelength Data Hot carbon stars: <= (r - i) <= 0.65 and 0.05 <= (i - z) <= 0.9 Cool CJ and CN stars: Most of them: (i - z) > 0.9 A small fraction of them: (r - i) > 0.65 and (i - z) <=

37 Multile-wavelength Data Hot carbon stars: <= (z - y) <= 0.7 and -0.1 <= (i - z) <= 0.4 Cool CJ and CN stars: Most of them: (z - y) > 0.7 A small fraction of them: (i - z) > 0.4 and (i - z) <=

38 Multile-wavelength Data Hot carbon stars are distinguished from cool CJ and CN stars: (z y) 0.8 (y J)+1.45 Roughly criterion: (y J)

39 Multile-wavelength Data Hot carbon stars are distinguished from cool CJ and CN stars: (y J) 3 (J H)+4.3 Roughly criterion: (J H)

40 Multile-wavelength Data Hot carbon stars are distinguished from cool CJ and CN stars: (J H) 3 (H K) Roughly criterion: (H K) 0.35 and (J H)

41 Multile-wavelength Data Hot carbon stars are distinguished from cool CJ and CN stars: (H K) 0.6 (K W1)

42 Multile-wavelength Data Hot carbon stars are distinguished from cool CJ and CN stars: (K W1) 0.9 (W1 W2)

43 Multile-wavelength Data Hot carbon stars are distinguished from cool CJ and CN stars: (W1 W2) 0.05 (W2 W3)

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 How to find carbon stars? Construction and Classification of Positive Samle Set SDSS + LAMOST (1682) Four stes Positive Samle Set(1050) K-mean Clustering (50 grous) Similarity Measurement 54

55 How to find carbon stars? Research of Retrieval algorithms Six Machine Learning Algorithm Comarison Time Consuming of Key stes of Bagging ToPush Algorithm 55

56 Our Motivations Increase the number of carbon star samles Construct a comlete carbon star catalog as much as ossible for LAMOST Construct new carbon star temlates to imrove the erformance of 1D ieline to classify carbon stars (about 63%) --- correct 978 (about 37%) --- wrong Wrongly classified as A9, F, G, K, M4 and unknown. Carbon star temlate sectra of LAMOST 1D ieline 56

arxiv: v2 [astro-ph.sr] 31 Jan 2018

arxiv: v2 [astro-ph.sr] 31 Jan 2018 Carbon stars identified from LAMOST DR4 using Machine Learning Yin-Bi Li 1, A-Li Luo 1, Chang-De Du 1,2,3, Fang, Zuo 1, Meng-Xin Wang 1,2, Gang Zhao 1, arxiv:1712.07784v2 [astro-ph.sr] 31 Jan 2018 Bi-Wei

More information

Distance and extinction determination for stars in LAMOST and APOGEE survey

Distance and extinction determination for stars in LAMOST and APOGEE survey Distance and extinction determination for stars in LAMOST and APOGEE survey 王建岭 (LAMOST, References: NAOC) Wang et al. 2015a, MNRAS, submitted Wang et al. 2015b, In preparation Outline Background: why

More information

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition Our Galaxy 19.1 The Milky Way Revealed What does our galaxy look like? How do stars orbit in our galaxy? Where are globular clusters located

More information

A very bright (i = 16.44) quasar in the redshift desert discovered by the Guoshoujing Telescope (LAMOST)

A very bright (i = 16.44) quasar in the redshift desert discovered by the Guoshoujing Telescope (LAMOST) Research in Astron. Astrophys. 2010 Vol. 10 No. 8, 737 744 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics A very bright (i = 16.44) quasar in the redshift

More information

SDSS-IV MaStar: a Large, Comprehensive, and High Quality Empirical Stellar Library

SDSS-IV MaStar: a Large, Comprehensive, and High Quality Empirical Stellar Library 3rd International Workshop on Spectral Stellar Libraries ASI Conference Series, 2017, Vol. 14, pp 99 103 Editors: P. Coelho, L. Martins & E. Griffin SDSS-IV MaStar: a Large, Comprehensive, and High Quality

More information

The Properties of Stars

The Properties of Stars 10/7/011 The Proerties of Stars Distance, Luminosity, and Radius Trigonometric Parallax To measure the distance to star X, hotograh it on two dates searated by 6 months. In the figure, A and are the ositions

More information

Introduction to SDSS -instruments, survey strategy, etc

Introduction to SDSS -instruments, survey strategy, etc Introduction to SDSS -instruments, survey strategy, etc (materials from http://www.sdss.org/) Shan Huang 17 February 2010 Survey type Status Imaging and Spectroscopy Basic Facts SDSS-II completed, SDSS-III

More information

Universe Now. 9. Interstellar matter and star clusters

Universe Now. 9. Interstellar matter and star clusters Universe Now 9. Interstellar matter and star clusters About interstellar matter Interstellar space is not completely empty: gas (atoms + molecules) and small dust particles. Over 10% of the mass of the

More information

CHAPTER 5 STATISTICAL INFERENCE. 1.0 Hypothesis Testing. 2.0 Decision Errors. 3.0 How a Hypothesis is Tested. 4.0 Test for Goodness of Fit

CHAPTER 5 STATISTICAL INFERENCE. 1.0 Hypothesis Testing. 2.0 Decision Errors. 3.0 How a Hypothesis is Tested. 4.0 Test for Goodness of Fit Chater 5 Statistical Inference 69 CHAPTER 5 STATISTICAL INFERENCE.0 Hyothesis Testing.0 Decision Errors 3.0 How a Hyothesis is Tested 4.0 Test for Goodness of Fit 5.0 Inferences about Two Means It ain't

More information

A galaxy is a self-gravitating system composed of an interstellar medium, stars, and dark matter.

A galaxy is a self-gravitating system composed of an interstellar medium, stars, and dark matter. Chapter 1 Introduction 1.1 What is a Galaxy? It s surprisingly difficult to answer the question what is a galaxy? Many astronomers seem content to say I know one when I see one. But one possible definition

More information

(Present and) Future Surveys for Metal-Poor Stars

(Present and) Future Surveys for Metal-Poor Stars (Present and) Future Surveys for Metal-Poor Stars Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics SDSS 1 Why the Fascination

More information

Milky Way Satellite Galaxies with DES

Milky Way Satellite Galaxies with DES Milky Way Satellite Galaxies with DES Alex Drlica-Wagner kadrlica@fnal.gov! DES Milky Way Working Group Coordinator! January 11, 2015 Milky Way Satellite Galaxies Segue 1 The Milky Way is surrounded by

More information

arxiv: v1 [astro-ph.sr] 29 Jun 2016

arxiv: v1 [astro-ph.sr] 29 Jun 2016 Draft version August 29, 2018 Preprint typeset using LATEX style AASTeX6 v. 1.0 CARBON STARS FROM LAMOST DR2 DATA arxiv:1606.08932v1 [astro-ph.sr] 29 Jun 2016 Wei Ji 1,2, Wenyuan Cui 1,3, Chao Liu 2, Ali

More information

Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia

Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia Shanghai Astronomical Observatory In collaboration with Juntai Shen, Xiang Xiang Xue, Chao Liu, Chris Flynn, Chengqun Yang Contents 1 Stellar Halo

More information

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential Chem 467 Sulement to Lectures 33 Phase Equilibrium Chemical Potential Revisited We introduced the chemical otential as the conjugate variable to amount. Briefly reviewing, the total Gibbs energy of a system

More information

An Improved Calibration Method for a Chopped Pyrgeometer

An Improved Calibration Method for a Chopped Pyrgeometer 96 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 17 An Imroved Calibration Method for a Choed Pyrgeometer FRIEDRICH FERGG OtoLab, Ingenieurbüro, Munich, Germany PETER WENDLING Deutsches Forschungszentrum

More information

Unsupervised Hyperspectral Image Analysis Using Independent Component Analysis (ICA)

Unsupervised Hyperspectral Image Analysis Using Independent Component Analysis (ICA) Unsuervised Hyersectral Image Analysis Using Indeendent Comonent Analysis (ICA) Shao-Shan Chiang Chein-I Chang Irving W. Ginsberg Remote Sensing Signal and Image Processing Laboratory Deartment of Comuter

More information

Tests for Two Proportions in a Stratified Design (Cochran/Mantel-Haenszel Test)

Tests for Two Proportions in a Stratified Design (Cochran/Mantel-Haenszel Test) Chater 225 Tests for Two Proortions in a Stratified Design (Cochran/Mantel-Haenszel Test) Introduction In a stratified design, the subects are selected from two or more strata which are formed from imortant

More information

25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star.

25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star. 25.2 Stellar Evolution By studying stars of different ages, astronomers have been able to piece together the evolution of a star. Star Birth The birthplaces of stars are dark, cool interstellar clouds,

More information

Research of PMU Optimal Placement in Power Systems

Research of PMU Optimal Placement in Power Systems Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, Setember 15-17, 2005 (38-43) Research of PMU Otimal Placement in Power Systems TIAN-TIAN CAI, QIAN AI

More information

Lecture 24: Testing Stellar Evolution Readings: 20-6, 21-3, 21-4

Lecture 24: Testing Stellar Evolution Readings: 20-6, 21-3, 21-4 Lecture 24: Testing Stellar Evolution Readings: 20-6, 21-3, 21-4 Key Ideas HR Diagrams of Star Clusters Ages from the Main Sequence Turn-off Open Clusters Young clusters of ~1000 stars Blue Main-Sequence

More information

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars Properties of Nearby Stars Most in orbit with the Sun around Galactic Center Stellar Kinematics Reveal Groups of Stars with Common Space Motion (Moving

More information

Observational Constraints on the r-process from Halo r-ii Stars

Observational Constraints on the r-process from Halo r-ii Stars The Joint Institute for Nuclear Astrophysics Center for the Evolution of the Elements Observational Constraints on the r-process from Halo r-ii Stars Timothy C. Beers University of Notre Dame ND Group:

More information

Kyle Lackey PHYS

Kyle Lackey PHYS Kyle Lackey PHYS 730 9-23-15 Galaxies Large systems of gas, dust, stars, and dark matter orbiting around a common center of mass. We estimate that roughly 185 billion galaxies exist within the observable

More information

Hertzsprung-Russell Diagram, Flux, Luminosity, Magnitude 10 Oct

Hertzsprung-Russell Diagram, Flux, Luminosity, Magnitude 10 Oct Russell Diagram, Flux, Luminosity, Magnitude 10 Oct Outline Review of 7 Oct Thermal radiation Wien s Law Stefan Boltzmann Law How to measure temperature of stars. AJ Cannon s method of classifying spectra.

More information

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two Stellar Evolution: The Deaths of Stars Chapter Twenty-Two Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

The Deaths of Stars 1

The Deaths of Stars 1 The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

%(*)= E A i* eiujt > (!) 3=~N/2

%(*)= E A i* eiujt > (!) 3=~N/2 CHAPTER 58 Estimating Incident and Reflected Wave Fields Using an Arbitrary Number of Wave Gauges J.A. Zelt* A.M. ASCE and James E. Skjelbreia t A.M. ASCE 1 Abstract A method based on linear wave theory

More information

Extragalactic Astronomy

Extragalactic Astronomy Extragalactic Astronomy Topics: Milky Way Galaxies: types, properties, black holes Active galactic nuclei Clusters and groups of galaxies Cosmology and the expanding universe Formation of structure Galaxies

More information

Sara Lucatello Osservatorio Astronomico di Padova, Vicolo dell Osservatorio 5, 35122, Padova, Italy

Sara Lucatello Osservatorio Astronomico di Padova, Vicolo dell Osservatorio 5, 35122, Padova, Italy The Frequency of Carbon-Enhanced Stars in HERES and SDSS Dept. of Physics & Astronomy and JINA: Joint Institute for Nuclear Astrophysics, Michigan State University, E. Lansing, MI 48824 USA E-mail: beers@pa.msu.edu

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

ASTROPHYSICS. K D Abhyankar. Universities Press S T A R S A ND G A L A X I E S

ASTROPHYSICS. K D Abhyankar. Universities Press S T A R S A ND G A L A X I E S ASTROPHYSICS S T A R S A ND G A L A X I E S K D Abhyankar Universities Press Contents Foreword vii Preface ix 1 Introduction 1 1.1 ' Astronomy and astrophysics 1 1.2 Importance of astronomy 2 1.3 Methods

More information

1/25/2018 LINEAR INDEPENDENCE LINEAR INDEPENDENCE LINEAR INDEPENDENCE LINEAR INDEPENDENCE

1/25/2018 LINEAR INDEPENDENCE LINEAR INDEPENDENCE LINEAR INDEPENDENCE LINEAR INDEPENDENCE /25/28 Definition: An indexed set of vectors {v,, v } in R n is said to be linearly indeendent if the vector equation x v x v... x v 2 2 has only the trivial solution. The set {v,, v } is said to be linearly

More information

JINA Observations, Now and in the Near Future

JINA Observations, Now and in the Near Future JINA Observations, Now and in the Near Future Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics Examples SDSS-I, II, and III

More information

Stellar Evolution: Outline

Stellar Evolution: Outline Stellar Evolution: Outline Interstellar Medium (dust) Hydrogen and Helium Small amounts of Carbon Dioxide (makes it easier to detect) Massive amounts of material between 100,000 and 10,000,000 solar masses

More information

WHITE DWARFS FROM LAMOST AND A CANDIDATE DEBRIS DISK AROUND WD FROM SDSS

WHITE DWARFS FROM LAMOST AND A CANDIDATE DEBRIS DISK AROUND WD FROM SDSS WHITE DWARFS FROM LAMOST AND A CANDIDATE DEBRIS DISK AROUND WD FROM SDSS GUO JINCHENG( 郭金承 ) PEKING UNIVERSITY COLLABORATOR:LIUJIFENG(NAOC), ZHANG HUAWEI(PKU), ZHAO JINGKUN(NAOC), WANG ZHONGXIANG(SHAO),LI

More information

A Stellar Spectra 3. Stars shine at night (during the day too!). A star is a self-luminous sphere of gas. Stars are held together by gravity.

A Stellar Spectra 3. Stars shine at night (during the day too!). A star is a self-luminous sphere of gas. Stars are held together by gravity. Stellar Spectra Relativity and Astrophysics Lecture 12 Terry Herter Outline What is a star? Stellar Spectra Kirchhoff s Laws Spectral Classification Spectral Types: O B A F G K M L T Stellar Photometry

More information

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance How to Understand Stars Chapter 7 How do stars differ? Is the Sun typical? Image of Orion illustrates: The huge number of stars Colors Interstellar gas Location in space Two dimensions are easy measure

More information

The Second Law of Thermodynamics. (Second Law of Thermodynamics)

The Second Law of Thermodynamics. (Second Law of Thermodynamics) he Second aw of hermodynamics For the free exansion, we have >. It is an irreversible rocess in a closed system. For the reversible isothermal rocess, for the gas > for exansion and < for comression. owever,

More information

Local Group cosmology with ngcfht

Local Group cosmology with ngcfht Local Group cosmology with ngcfht Nicolas Martin (Strasbourg Observatory & MPIA, Heidelberg) Cosmology on galaxy scales the new frontier observed halo kpc Large scale cosmology is now largely understood

More information

arxiv: v1 [astro-ph.sr] 13 Apr 2018

arxiv: v1 [astro-ph.sr] 13 Apr 2018 AKARI color useful for classifying chemical types of Miras Noriyuki Matsunaga 1 1 Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan arxiv:1804.04940v1 [astro-ph.sr]

More information

AI*IA 2003 Fusion of Multiple Pattern Classifiers PART III

AI*IA 2003 Fusion of Multiple Pattern Classifiers PART III AI*IA 23 Fusion of Multile Pattern Classifiers PART III AI*IA 23 Tutorial on Fusion of Multile Pattern Classifiers by F. Roli 49 Methods for fusing multile classifiers Methods for fusing multile classifiers

More information

Chemical Kinetics and Equilibrium - An Overview - Key

Chemical Kinetics and Equilibrium - An Overview - Key Chemical Kinetics and Equilibrium - An Overview - Key The following questions are designed to give you an overview of the toics of chemical kinetics and chemical equilibrium. Although not comrehensive,

More information

The Universe of Galaxies: from large to small. Physics of Galaxies 2012 part 1 introduction

The Universe of Galaxies: from large to small. Physics of Galaxies 2012 part 1 introduction The Universe of Galaxies: from large to small Physics of Galaxies 2012 part 1 introduction 1 Galaxies lie at the crossroads of astronomy The study of galaxies brings together nearly all astronomical disciplines:

More information

Measuring the Properties of Stars (ch. 17) [Material in smaller font on this page will not be present on the exam]

Measuring the Properties of Stars (ch. 17) [Material in smaller font on this page will not be present on the exam] Measuring the Properties of Stars (ch. 17) [Material in smaller font on this page will not be present on the exam] Although we can be certain that other stars are as complex as the Sun, we will try to

More information

Star Formation Indicators

Star Formation Indicators Star Formation Indicators Calzetti 2007 astro-ph/0707.0467 Brinchmann et al. 2004 MNRAS 351, 1151 SFR indicators in general! SFR indicators are defined from the X ray to the radio! All probe the MASSIVE

More information

Performance of lag length selection criteria in three different situations

Performance of lag length selection criteria in three different situations MPRA Munich Personal RePEc Archive Performance of lag length selection criteria in three different situations Zahid Asghar and Irum Abid Quaid-i-Azam University, Islamabad Aril 2007 Online at htts://mra.ub.uni-muenchen.de/40042/

More information

Round-off Errors and Computer Arithmetic - (1.2)

Round-off Errors and Computer Arithmetic - (1.2) Round-off Errors and Comuter Arithmetic - (.). Round-off Errors: Round-off errors is roduced when a calculator or comuter is used to erform real number calculations. That is because the arithmetic erformed

More information

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure.

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure. Lecture 4 Stars The physics of stars A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure. X-ray ultraviolet infrared radio To understand

More information

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles Shanghai Astronomical Observatory In collaboration with Juntai Shen, Xiang Xiang Xue, Chao Liu, Chris Flynn, Ling Zhu, Jie Wang Contents 1

More information

Computer arithmetic. Intensive Computation. Annalisa Massini 2017/2018

Computer arithmetic. Intensive Computation. Annalisa Massini 2017/2018 Comuter arithmetic Intensive Comutation Annalisa Massini 7/8 Intensive Comutation - 7/8 References Comuter Architecture - A Quantitative Aroach Hennessy Patterson Aendix J Intensive Comutation - 7/8 3

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

Outline. c.f. Zhao et al. 2006, ChJA&A, 6, 265. Stellar Abundance and Galactic Chemical Evolution through LAMOST Spectroscopic Survey

Outline. c.f. Zhao et al. 2006, ChJA&A, 6, 265. Stellar Abundance and Galactic Chemical Evolution through LAMOST Spectroscopic Survey KIAA-CambridgeJoint Workshop on Near-Field Cosmology and Galactic Archeology ZHAO Gang National Astronomical Observatories, Chinese Academy of Sciences Dec 1-5, 2008 Beijing Outline LAMOST stellar spectroscopic

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Spectroscopy of giants and supergiants! Maria Bergemann MPIA Heidelberg"

Spectroscopy of giants and supergiants! Maria Bergemann MPIA Heidelberg Spectroscopy of giants and supergiants! Maria Bergemann MPIA Heidelberg" Spectroscopy of (cool) giants and supergiants! Maria Bergemann MPIA Heidelberg" Outline! Motivation why do spectroscopy of giant

More information

Nearby Galaxy Clusters with UVIT/Astrosat

Nearby Galaxy Clusters with UVIT/Astrosat earby Galaxy Clusters with UVIT/Astrosat Patrick Côté (HIA, RC, Canada) Arrigoni-Battaia et al (212) Astrosat Meeting on Baseline Science Feb. 6-7, 214 Indian Institute of Astrophysics, Bengaluru Scientific

More information

Autoregressive (AR) Modelling

Autoregressive (AR) Modelling Autoregressive (AR) Modelling A. Uses of AR Modelling () Alications (a) Seech recognition and coding (storage) (b) System identification (c) Modelling and recognition of sonar, radar, geohysical signals

More information

Pre-observations and models

Pre-observations and models Pre-observations and models Carine Babusiaux Observatoire de Paris - GEPI GREAT-ITN, IAC, September 2012 The questions 1) Can the observing program tackle the scientific problem? 2) What is the best configuration

More information

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK Towards understanding the Lorenz curve using the Uniform distribution Chris J. Stehens Newcastle City Council, Newcastle uon Tyne, UK (For the Gini-Lorenz Conference, University of Siena, Italy, May 2005)

More information

Optimal Recognition Algorithm for Cameras of Lasers Evanescent

Optimal Recognition Algorithm for Cameras of Lasers Evanescent Otimal Recognition Algorithm for Cameras of Lasers Evanescent T. Gaudo * Abstract An algorithm based on the Bayesian aroach to detect and recognise off-axis ulse laser beams roagating in the atmoshere

More information

arxiv: v1 [astro-ph.ga] 19 Jan 2017

arxiv: v1 [astro-ph.ga] 19 Jan 2017 Mon. Not. R. Astron. Soc. 000, 1 22 (2015) Printed 12 March 2018 (MN LATEX style file v2.2) LAMOST Spectroscopic Survey of the Galactic Anticentre (LSS-GAC): the second release of value-added catalogues

More information

ON THE USE OF PHASE INFORMATION FOR SPEECH RECOGNITION. Baris Bozkurt and Laurent Couvreur

ON THE USE OF PHASE INFORMATION FOR SPEECH RECOGNITION. Baris Bozkurt and Laurent Couvreur ON THE USE OF PHASE NFOMATON FO SPEECH ECOGNTON Baris Bozkurt and Laurent Couvreur TCTS Lab, Faculté Polytechnique De Mons, nitialis Scientific Park, B-7000 Mons, Belgium, hone: +32 65 374733, fax: +32

More information

Extremely Metal-Poor Stars

Extremely Metal-Poor Stars ngcfht workshop 2013.3.27-29. Extremely Metal-Poor Stars Wako Aoki National Astronomical Observatory of Japan Extremely Metal-Poor (EMP) Stars Chemical composition of EMP stars Nucleosynthesis of first

More information

Multi-Operation Multi-Machine Scheduling

Multi-Operation Multi-Machine Scheduling Multi-Oeration Multi-Machine Scheduling Weizhen Mao he College of William and Mary, Williamsburg VA 3185, USA Abstract. In the multi-oeration scheduling that arises in industrial engineering, each job

More information

ASTR 101 Introduction to Astronomy: Stars & Galaxies

ASTR 101 Introduction to Astronomy: Stars & Galaxies We observe star-gas-star cycle operating in Milky Way s disk using many different wavelengths of light! ASTR 101 Introduction to Astronomy: Stars & Galaxies Infrared light reveals stars whose visible light

More information

Membership determination of open cluster NGC 188 based on the DBSCAN clustering algorithm

Membership determination of open cluster NGC 188 based on the DBSCAN clustering algorithm RAA 2014 Vol. 14 No. 2, 159 164 doi: 10.1088/1674 4527/14/2/004 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics Membership determination of open cluster

More information

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14 The Night Sky The Universe Chapter 14 Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Celestial observation dates to ancient civilizations

More information

Studies of diffuse UV radiation

Studies of diffuse UV radiation Bull. Astr. Soc. India (2007) 35, 295 300 Studies of diffuse UV radiation N. V. Sujatha and Jayant Murthy Indian Institute of Astrophysics, Bangalore 560 034, India Abstract. The upcoming TAUVEX mission

More information

Analysis of execution time for parallel algorithm to dertmine if it is worth the effort to code and debug in parallel

Analysis of execution time for parallel algorithm to dertmine if it is worth the effort to code and debug in parallel Performance Analysis Introduction Analysis of execution time for arallel algorithm to dertmine if it is worth the effort to code and debug in arallel Understanding barriers to high erformance and redict

More information

Distribution of populations in excited states of electrodeless discharge lamp of Rb atoms

Distribution of populations in excited states of electrodeless discharge lamp of Rb atoms Article Atomic & Molecular Physics June 2013 Vol.58 No.16: 18761881 doi: 10.1007/s11434-013-5789-z Distribution of oulations in excited states of electrodeless discharge lam of Rb atoms TAO ZhiMing 1,2,

More information

Late Stages of Stellar Evolution. Late Stages of Stellar Evolution

Late Stages of Stellar Evolution. Late Stages of Stellar Evolution Late Stages of Stellar Evolution The star enters the Asymptotic Giant Branch with an active helium shell burning and an almost dormant hydrogen shell Again the stars size and luminosity increase, leading

More information

Astronomy C SSSS 2018

Astronomy C SSSS 2018 Astronomy C SSSS 2018 Galaxies and Stellar Evolution Written by Anna1234 School Team # Names 1 Instructions: 1. There are pictures of a number of galaxies in this test. However, as the DSO list for 2019

More information

Interpreting Galaxies across Cosmic Time with Binary Population Synthesis Models

Interpreting Galaxies across Cosmic Time with Binary Population Synthesis Models Interpreting Galaxies across Cosmic Time with Binary Population Synthesis Models Elizabeth Stanway Warwick (UK) with J J Eldridge (Auckland, NZ) and others Putting Warwick on the Map WARWICK! London @WarwickAstro

More information

ASTR 101 Introduction to Astronomy: Stars & Galaxies

ASTR 101 Introduction to Astronomy: Stars & Galaxies ASTR 101 Introduction to Astronomy: Stars & Galaxies We observe star-gas-star cycle operating in Milky Way s disk using many different wavelengths of light Infrared light reveals stars whose visible light

More information

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky.

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Our Galaxy Our Galaxy We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Early attempts to locate our solar system produced erroneous results.

More information

The Milky Way Galaxy

The Milky Way Galaxy 1/5/011 The Milky Way Galaxy Distribution of Globular Clusters around a Point in Sagittarius About 00 globular clusters are distributed in random directions around the center of our galaxy. 1 1/5/011 Structure

More information

Paul Broberg Ast 4001 Dec. 10, 2007

Paul Broberg Ast 4001 Dec. 10, 2007 Paul Broberg Ast 4001 Dec. 10, 2007 What are W-R stars? How do we characterize them? What is the life of these stars like? Early stages Evolution Death What can we learn from them? Spectra Dust 1867: Charles

More information

Name Date Period. 10. convection zone 11. radiation zone 12. core

Name Date Period. 10. convection zone 11. radiation zone 12. core 240 points CHAPTER 29 STARS SECTION 29.1 The Sun (40 points this page) In your textbook, read about the properties of the Sun and the Sun s atmosphere. Use each of the terms below just once to complete

More information

Stellar Energy and Nucleosynthesis

Stellar Energy and Nucleosynthesis Stellar Energy and Nucleosynthesis Lecture 13 1 Orion Mosaic Orion in the Infrared Cornell imaging of Orion from SOFIA 19.7 mm (green) & 37 mm (red) 2 Orion Full OMC Prolyds 1 3 OMC Prolyds 2 HH 32 HH

More information

Hubble sequence galaxy classification scheme, originally based on appearance, but correlates with other properties as well.

Hubble sequence galaxy classification scheme, originally based on appearance, but correlates with other properties as well. Normal Galaxies (Ch. 24) Here we will cover topics in Ch. 24 up to 24.4, but then skip 24.4, 24.5. The sections we are skipping are all about processes that occur in the centers of galaxies, so I d like

More information

STAR FORMATION ALONG A CLUSTER-FEEDING FILAMENT

STAR FORMATION ALONG A CLUSTER-FEEDING FILAMENT STAR FORMATION ALONG A CLUSTER-FEEDING FILAMENT DARIO FADDA IPAC / Caltech Outline * Discovery of the filament * The obscured star formation in different environments * Radio observation and the density

More information

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics with: Tim Heckman (JHU) GALEX Science Team (PI: Chris Martin), Lee Armus,

More information

The Milky Way s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution

The Milky Way s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution I S I The Milky Way s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution Yang Huang (LAMOST Fellow, yanghuang@pku.edu.cn) N G U N I V E R P E K T Y 1 8 9 8 Peking University

More information

Cloudy Workshop Participants

Cloudy Workshop Participants Cloudy Workshop Participants 2016 June Shandong University, Weihai DENNIS ALP KTH Royal Institute of Technology the ultra-soft X-ray excess in RLNLS1s Madhurjya P Bora Gauhati University, India magnetospheric

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum Three Kinds of Spectra Sun: The Nearest Star Radius 696,000 km 109 Re Mass 2 x 10^30 kg 300,000 Me Density 1400 kg/m^3 Luminosity 3.8x10^26 Watts (board calc.) Comp. 70% H,

More information

Participation Factors. However, it does not give the influence of each state on the mode.

Participation Factors. However, it does not give the influence of each state on the mode. Particiation Factors he mode shae, as indicated by the right eigenvector, gives the relative hase of each state in a articular mode. However, it does not give the influence of each state on the mode. We

More information

Halo Tidal Star Streams with DECAM. Brian Yanny Fermilab. DECam Community Workshop NOAO Tucson Aug

Halo Tidal Star Streams with DECAM. Brian Yanny Fermilab. DECam Community Workshop NOAO Tucson Aug Halo Tidal Star Streams with DECAM Brian Yanny Fermilab DECam Community Workshop NOAO Tucson Aug 19 2011 M31 (Andromeda) Our Local Group neighbors: Spiral galaxies similar to The Milky Way 150 kpc M33

More information

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy 18. Stellar Birth Star observations & theories aid understanding Interstellar gas & dust in our galaxy Protostars form in cold, dark nebulae Protostars evolve into main-sequence stars Protostars both gain

More information

The Milky Way. Mass of the Galaxy, Part 2. Mass of the Galaxy, Part 1. Phys1403 Stars and Galaxies Instructor: Dr. Goderya

The Milky Way. Mass of the Galaxy, Part 2. Mass of the Galaxy, Part 1. Phys1403 Stars and Galaxies Instructor: Dr. Goderya Foundations Chapter of Astronomy 15 13e Our Milky Way Seeds Phys1403 Stars and Galaxies Instructor: Dr. Goderya Selected Topics in Chapter 15 A view our Milky Way? The Size of our Milky Way The Mass of

More information

Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008

Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008 Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008 Wed, July 16 MW galaxy, then review. Start with ECP3Ch14 2 through 8 Then Ch23 # 8 & Ch 19 # 27 & 28 Allowed Harlow Shapely to locate

More information

Remember from Stefan-Boltzmann that 4 2 4

Remember from Stefan-Boltzmann that 4 2 4 Lecture 17 Review Most stars lie on the Main sequence of an H&R diagram including the Sun, Sirius, Procyon, Spica, and Proxima Centauri. This figure is a plot of logl versus logt. The main sequence is

More information

EVOLUTION OF STARS HERTZSPRUNG-RUSSELL DIAGRAM

EVOLUTION OF STARS HERTZSPRUNG-RUSSELL DIAGRAM VISUAL PHYSICS ONLINE EVOLUTION OF STARS HERTZSPRUNG-RUSSELL DIAGRAM The total power radiated by a star is called its intrinsic luminosity L (luminosity). The apparent brightness (apparent luminosity)

More information

Physics Homework Set 2 Sp 2015

Physics Homework Set 2 Sp 2015 1) A large gas cloud in the interstellar medium that contains several type O and B stars would appear to us as 1) A) a reflection nebula. B) a dark patch against a bright background. C) a dark nebula.

More information

An Investigation on the Numerical Ill-conditioning of Hybrid State Estimators

An Investigation on the Numerical Ill-conditioning of Hybrid State Estimators An Investigation on the Numerical Ill-conditioning of Hybrid State Estimators S. K. Mallik, Student Member, IEEE, S. Chakrabarti, Senior Member, IEEE, S. N. Singh, Senior Member, IEEE Deartment of Electrical

More information

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012 Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012 Choose the answer that best completes the question. Read each problem carefully and read through all the answers.

More information

GIVEN an input sequence x 0,..., x n 1 and the

GIVEN an input sequence x 0,..., x n 1 and the 1 Running Max/Min Filters using 1 + o(1) Comarisons er Samle Hao Yuan, Member, IEEE, and Mikhail J. Atallah, Fellow, IEEE Abstract A running max (or min) filter asks for the maximum or (minimum) elements

More information

CHEMICAL ABUNDANCE ANALYSIS OF RC CANDIDATE STAR HD (46 LMi) : PRELIMINARY RESULTS

CHEMICAL ABUNDANCE ANALYSIS OF RC CANDIDATE STAR HD (46 LMi) : PRELIMINARY RESULTS Dig Sites of Stellar Archeology: Giant Stars in the Milky Way Ege Uni. J. of Faculty of Sci., Special Issue, 2014, 145-150 CHEMICAL ABUNDANCE ANALYSIS OF RC CANDIDATE STAR HD 94264 (46 LMi) : PRELIMINARY

More information

Chapter 28 Stars and Their Characteristics

Chapter 28 Stars and Their Characteristics Chapter 28 Stars and Their Characteristics Origin of the Universe Big Bang Theory about 10-20 bya all matter in the universe existed in a hot dense state about the size of an atom (tiny). That matter sort

More information

Lecture Outline: Spectroscopy (Ch. 4)

Lecture Outline: Spectroscopy (Ch. 4) Lecture Outline: Spectroscopy (Ch. 4) NOTE: These are just an outline of the lectures and a guide to the textbook. The material will be covered in more detail in class. We will cover nearly all of the

More information