Primordial Planet Formation

Size: px
Start display at page:

Download "Primordial Planet Formation"

Transcription

1 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, PrimordialPlanetFormation RudolphE.Schild 1,2 1CenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA 2rschild@cfa.harvard.edu and CarlH.Gibson 3,4 3 UniversityofCaliforniaSanDiego,LaJolla,CA ,USA 4cgibson@ucsd.edu, ABSTRACT Recentspacecraftobservationsexploringsolarsystempropertiesimpactstandard paradigmsoftheformationofstars,planetsandcomets.westresstheunexpected cloudofmicroscopicdustresultingfromthedeepimpactmission,andthe existenceofmoltennodulesinstardustsamples.andthetheoryofstar formationdoesnotexplainthecommonoccurrenceofbinaryandmultiplestar systemsinthestandardgasfragmentationscenario.nocurrenttheoryofplanet formationcanexplaintheironcoreoftheearth,underoceansofwater. Thesedifficultiesareavoidedinascenariowheretheplanetmassobjectsform primordiallyandaretodaythebaryonicdarkmatter.theyhavebeendetectedin quasarmicrolensingandanomalousquasarradiobrighteningbursts.the primordialplanetsoftenconcentratetogethertoformastar,withresidualmatter seeninpre stellaraccretiondiscsaroundtheyoungeststars. Theseprimordialplanetmassbodieswereformedofhydrogen helium,aggregated indenseclumpsofatrillionatthetimeofplasmaneutralization380,000yearsafter thebigbang.mosthavebeenfrozenandinvisible,butarenowmanifesting themselvesinnumerouswaysassensitivemodernspacetelescopesbecome operational.theirkeydetectionsignatureistheirthermalemissionspectrum,

2 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, peggedatthe13.8degreeskelvintriplepointofhydrogen,thebaryonicdarkmatter (Staplefeldtetal.1999). Keywords:DarkMatter;PlanetFormation:Cosmicstructure 1.Introduction Recentdiscoveriesofnumerousplanetsseenorbitingordinarystarsinthelocal universecaughtsome,butnotall,astronomersbysurprise.thecommonview amongprofessionals,sharedwiththegeneralpublic,wasthatallsuchplanetswere formedindustdiscsofthestarasitformedandwerecausedbythestarformation. Planetswereseenorbitinginflatdiscsaroundtheseveralstarswithnear perfect edge wiseorientationtothehumanobserver,manylargeandclosetothestar.an alternativeview(gibson,1996)claimedallthehot,primordial,h 4 Hegasemerging fromtheplasmaepochtransitiontogaswouldfragmentunderviscous gravitational controltoformplanetary massgascloudsindenseclumpsofatrillion.ratherthan planetsformingfromstars,allstarsshouldformfromtheseprimordialgasplanets withintheirprotostarclusterclumps. Ithasbeenlongrecognizedthatmostoftheordinarymatter protons,neutrons, andelectronsaswellastheatomstheyconstitute,areunseenandthereforewere calledbaryonicdarkmatter.butalthoughdarktomostobservations,thematerial hadagravitationalsignaturefromwhichitwasunderstoodtobepresentinlarge amountsinthehaloofourmilkywaygalaxy.soitwasconcludedthatifithasa gravitationalsignatureitshouldbepossibletousethelightbendingpropertiesof masstodetectthedarkmatterasgravitationallenses. Thisideareceivedastrongboostwhenstudiesofthegravityassociatedwithlensing galaxiesseenalongthepathstomultiplyimagedquasarsgaveadirectdetectionof thegrainytextureofthelensinggravity,demonstratingthatthemassofthelensing galaxyisdominatedbyobjectswithapproximatelythemassoftheearth,withstars

3 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, makingonlyaminorcontribution(schild,1996).themasscouldbeestimated becausethedurationofeventswasquiteshort,approximatelyaday.themost extremeeventfoundhadanobserveddurationofonly12hours,which,becauseof thecosmologicalexpansionoftime,correspondedtoatimeofonly5hours referencedtotheclockofanobserverattheluminousquasar(colleyandschild, 2003).Eventscausedbyamicrolensingstarshouldhave30 yearduration (SchildandVakulik,2005)andthefrequentlyobservedmicrolensingsignalin Q mustbecausedbyaplanetaryobjectwithamillionthofasolarmass. Suchrapideventsrepresentedaremarkablefeatofnature.Recallthataquasarhas 100timestheluminosityofanordinarygalaxylikeourownMilkyWay,andthe observed5 hourbrighteningandfadingeventseenasa1%brightnesschangethus representssomebodyeffectivelythrowingaswitchandalltheluminosityequivalent tothebillionsofstarsinadistantgalaxybeingswitchedonandoffin21/2hours. Thisisnotreallywhathappens,ofcourse.Itisatrickofnatureoperatingthrough theeinsteingeneraltheoryofrelativity,wherebythegravitationalfieldofaplanet massbodycomesperfectlyintothelineofsighttothedistantquasar,andthe gravitationalfielddeflectsthequasarbrightnesstoadifferentdirection,producinga brightnessfadingtosomeotherobserversatsomeotherplaces.soalthoughitwas understoodthattheobservationofa5 hourmicrolensingeventevidenceda multitudeoffree roamingplanetsinthelensinggalaxyataredshiftof0.37,called rogueplanets,theywereinacosmologicallyremotegalaxyandnotamenableto closestudybydirectobservation.ratherthaneightplanetsperstarobservedinthe solarsystemthequasarmicrolensingresultrequiresanaverageofmanymillions. Itwasdesirabletofindsuchobjectsclosertohomewheretheycouldbestudied individually,andsearchesclosertohome,inthehaloofourgalaxywheretheyhad alreadybeenseeninaggregatestabilizingtherotationstructure,butunfortunately mostsearchesorganizedassumedastellarmass,andthegravitationalsignature wasthereforenotfound.(alcock,c.etal.1998).evenastherapidbrightness

4 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, fluctuationscorrespondingtolightbendingfromplanetmassobjectswerebeing recognizedinmorelensedquasars,thehalosearchescontinuedtodisappoint.this waslargelybecauseitwasbeingassumedthatthedarkmatterwouldbeuniformly distributedinspace,contrarytothecommonobservationthatstarstendtocluster onallsizescales,fromdoublestarstostarclusterstogalaxiesandtheirclusters. Thedecisiveobservationalcluecamewithatechnologicaldevelopment,when detectorscapableofmeasuringthefeebleradiationofanyobjectevenslightlyabove thatabsolutezerooftemperaturewerefittedtoballoon borneandorbiting telescopes.alreadyin1985theirasspacecrafthaddetectedafeeblesignature understoodtobecomingfromalldirectionsbutunfortunatelycalled"cirrusdust" cloudsbecauseofthewaytheradiationseemedtobeamottleddistributionabove andbelowthegalaxy'sdisc(lowetal,1984).onlywhenmorerecentgenerations ofinfraredandsub millimeterdetectorshadbeendevelopedcouldthetruenature ofthefeeblesignaturebeunderstood. Thishappenedsuddenlywhenmapsoftheskytakenbydifferentspacecraft(COBE, IRAS,Boomerang,WMAP)operatinginthesamedirectiontowardtheHalowere intercompared(venizianaetal.2010)andthesamestructuresseen.becausethe differentspacecraftdetecteddifferentwavelengths,theinter comparisonallowed thetemperatureofthefeeblestructurestobemeasured,thoughatfirststillthought tobetheinfraredradiatingdustclouds.onlywhenitwasrecognizedthatthe temperaturewasbeingconsistentlyfoundtobethesameforalldirectionscouldthe natureofthe"infraredcirrus"becorrectlyinferred(nieuwenhuizenetal.2010). Figure1(Gibson2010Fig.1)showssomeoftheVenizianietal.(2010)evidence, comparedtoourinterpretationthatthe dust ofthe cirrusclouds isactually primordialplanetsintheirprotoglobularstarclusterpgcclumps.thesizeofthe observedclumps4x10 17 meterscloselymatchesthesizeofaglobularstarcluster.

5 Journal of Cosmology, Lorentz Center Workshop Proceedings, Sept. 27 Oct. 1, Fig. 1. Oval at left top is an image of so called cirrus dust clouds of the Milky Way Galaxy (Veniziani et al. 2010, Fig. 2) at DIRBE microwave wavelength 240 µ compared to three other microwave images at the bottom showing the same features. The dust temperatures match the freezing to boiling point thermostat range of ~ K for hydrogen planets, therefore indicated as the dust. Thus cirrus dust clouds are Giant Molecular Clouds (right center), presently interpreted as clumps of planet clump PGCs representing the Galaxy dark matter. The dark matter is obscured for optical wavelengths < 1 µ as shown (right top) for a star or stars obscured by an Oort cloud of microscopic PAH dust produced as planets are accreted and evaporated. It is easy to see from Fig. 1 that the cirrus dust clouds are the Galaxy dark matter simply by estimating the number of PGC clumps of primordial planets from the images, realizing that each protoglobularstarcluster PGC clump represents a dark matter mass of more than a million stars. Comparing the DIRBE 240 µm image with the Herschel Sgr B2 image of a dense molecular cloud, we infer an average PGC density on the sky of about 20 PGCs per square degree. Since there are 38,800 square degrees on the sky, and since each PGC has mass ~ 1036 kg, we estimate the cirrus cloud mass to be ~ 1042 kg, as expected if the dust of the clouds is primordial planets and the clouds are PGC clumps.

6 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, DetectionofµBDplanetaryobjectsfromtemperaturehappenedbecausethe temperaturefoundwasanimportantoneinthephysicalchemistryofhydrogen,the mostcommonelementintheuniverseandthemostprobablecandidateforthe ordinarydarkmatter.hydrogenisagasthatcondensestoliquidandthenforms solidiceatlowtemperatures.ithaslargelatentheatsofevaporationandfusion,so athermostattemperaturerangebetweenthetriplepointtemperatureandcritical temperatureisthesignatureofacloudofgasplanetscooledbyouterspaceand heatedbyadjacentstarsandfriction.arangeofcloudtemperaturesbetweenthe triplepointandcriticalpointmatchesarangeofplanetarymassesindarkmatter planetcloudseithercooledbyouterspaceorheatedbyadjacentstars.thusifwe imagineaprimordialplanetaryatmosphereslowlycoolingbyradiatingintospace,it willremainatitstriplepointtemperatureforalongtimeasthehydrogengas condensestohydrogensnowandtheheatofcondensationslowlyradiatesaway, producingathermalsignaturepeggedatthetriplepointtemperatureasobserved. Fig.2.Vaporpressureofgas liquidh 2betweenitsgas liquid solidtriplepointandgas liquidcritical point.thelargelatentheatofh 2evaporationthermostatsPGCdarkmatterplanetcloudstoa 14 30Ktriplepoint criticalpointtemperaturerange. Thehydrogengastriplepointtemperatureis13.8degreesKelvin.Thetemperature inferredfromtheintercomparisonofspacecraftobservations(venezianietal,

7 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, )wasinferredtobe15 20Kwithsmallvariationbetweentheobserved structures,aboutasexpected.thustheradiatingmassinthehaloofourgalaxycan beinferredtobepredominantlycloudsoffrozenhydrogenplanets,particularly becausenobodyhadeverpredictedthat"infraredcirrus"composedofinterstellar dustgrainswouldhavethisuniversallymeasuredtemperature.fromfig.2,frozen hydrogenonmicroscopicdustgrainsinavacuumwouldrapidlyevaporate. Whenthiswasrealized,itwasimmediatelyobviouswhytemperaturesmeasured forhalosofothergalaxies(goingbacktoprice,duric,&duncan,1994withmany similardeterminationssince)alsowereapproximately15degreeskelvin.thusitis nowapparentthatawayexiststodetecttheordinarydarkmatteranywhereit aggregatesinthecoldvastnessofspace,andthiswillprovideanimportanttoolto studythedarkmatterstructuresformedingalaxycollisionsandingalaxyclumps, fromitsthermalemission.thesetemperaturedeterminationsarenowcommon fromplanckandherschelspacecraftdata. Itisimportanttoaskthisquestion.Ifthesehydrogencloudsareinfacttheouter atmospheresofprimordialplanetsthataretheuniversalordinarydarkmatter,at whattimeafterthebigbang(atwhatredshift)didtheycoolbelowthehydrogen triplepointtemperature?recallthatwhentheprimordialplanetclumpstructures seentodayformedatthetimewhentheuniversehadatemperaturenear4000kso thattheexpandingplasmahadanimportantviscositydecrease380,000yearsafter thebigbang,freeingthegastofragmentintotheplanet massstructuresthatwould havebeencoolingeversince.contractionwouldhavere heatedtheircenters, whencemonotoniccoolingmusthaveoccurred,evenasthebackgroundofremnant bigbangradiationwoulditselfhavebeenmonotonicallycooling,andismeasured todaytobe2.73k.atsomepointthebackgroundtemperaturemusthavepassed throughthe13.8degreehydrogentriplepoint,andtheprimordialplanetaryobjects wouldhavebeguntofreezeouthydrogentobecomehydrogenicewhichwould havethensnoweddownthroughtheatmospherestotheplanetarysurfaces.wewill considerbelowhowthisproduceddramaticweathereffectsontheprimordial

8 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, planets,butwewishheretodiscusswhattheeffectsoftheshrinkingsnowing atmosphereswouldhavehadontheuv opticallighttransmissionoftheuniverse. Giventhepresenttemperatureoftheuniverseandtheratethetemperaturefalls withredshift,weeasilycalculatethattheremnantbigbangradiationandhencethe temperatureoftheuniversefellbelowthe13.8degreehydrogentriplepoint temperatureatredshiftz=6.0.ithasalreadybeennoticedthatdistantquasars evidenceadramaticchangeinthetransparencyoftheuniversetohydrogen sensitivewavelengthsatredshiftsofapproximately6.3(fanetal,2006).presently thisisattributedtoa"re ionization"ofthehydrogengasoftheobservableuniverse atthisredshift,butwithnoexplanationofexactlywhyattheparticularobserved redshiftof6.3.inparticular,therehadbeennopredictionthatthetransmissionof theuniversewouldhavedramaticallyincreasedatz=6.3.thepossibilitythatthe transparencyoftheuniverseshouldbesignificantlyaffectedbytheatmospheresof apopulationofprimordialplanetcloudshasalreadybeenconsideredbyschildand Dekker(2006). Wepredictthatifthehydrogentransparencyincreaseoftheuniverseisdueto shrinkingprimordialplanetatmospheres,otherobservationalmanifestations shouldbediscovered.forexample,theshrunkenplanetswouldhavelowercross sectionsforcollisionswithimplicationsforchangesintheircollisionaldynamics, increasingdiffusionofthepgcplanetcloudsfromthegalaxycentralcoretoform thegalaxydarkmatterhalo.withsuddenlysmalleratmospherestherewouldbe fewerplanetcollisionsandofeketal.(2010)eventsasthestarformationrate decreases.insomewaysitcanbeseenthatthecoolingoftheuniversebelowthe hydrogentriplepointrepresentsaphasechange,whichwillhaveimplicationsfor therateofaggregationintostarsandintheircollisionalinteractionsignatures (Nieuwenhuizenetal.2010).

9 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, DetectionofPrimordialPlanets Asthepopulationofprimordialplanetshasbeenevolvingthroughoutthehistoryof theuniverse,theirdetectionwillbecomplicatedaccordingtotheredshiftbeing probed.inthelocaluniverse,weseetheobjectsinexperimentsrelatedto microlensingofquasars,whereadistantquasarataredshiftofapproximately2is seenalignedwithaforegroundgalaxyatatypicalredshiftbelow1.astheglobal gravitationalfieldofthelensingforegroundgalaxycreatesmultipleimagesofthe distantquasar,theindividualobjectswithinthelensinggalaxyinlinewiththe backgroundquasarcanmodifythequasarlightfurther.thiscreatedsignaturesof anymassbodiesinthelensinggalaxy,andsignaturesofstars(schild&smith, 1991).Planets(Schild1996),andstarclusters(MaoandSchneider,1998)have beenrecognized. Hereweareparticularlyinterestedintheplanetsignatures.Becauseofthesmall briefstructurescausedbyquasar planetaryalignments,theplanetsignaturesare discussedunderthetopicofmicrolensing,orevennanolensing,andthefirst demonstrationofthephenomenonoperatingatplanetaryscalebyschild(1996)in quasarq wasquicklyfollowedbydiscoveriesinothergravitationallens quasarsystems.inq2237(vakuliketal.2007),amicrolensingeventfroma0.001 MSunfree roaming(jupitermass)planetwasfound.systems0b ,(90day microlensing,0.0001msun(burudetal,2000),rxj0911.4,90days,0.0001msun (Hjorthetal,2002),FBQ0951(Jakobsson,etal,2005,SBS1520andFBQ0951(90 day,0.0001to0.0001msun(paraficzetal,2006)producedsimilardetections. Byfarthebestbrightnessmonitoringdatarevealingthemicrolensingsignatureis fromthefirstdiscoveredandlongestmonitoredsystem,q thisis becauseithasthebest determinedtimedelay,accurateto0.1day(colleyetal, 2003).Recallthatthequasarmicrolensingisrevealedbycomparingtwoimagesof amultiplyimagedquasarandcorrectingforthedelaybetweenarrivalofthe multipleimages.theonlyquasarwithdelaymeasuredtosuch0.1dayprecisionis

10 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, Q ,followinganintensemonitoringeffortbyaninternationalconsortium (Colleyetal.2003).ThisallowedColleyandSchild(2003)tosecurelydetectan eventwitha12 hourtotalduration,themostrapideverdetected.awavelet analysisofthelongerbrightnessrecordinthisquasarlenssystemdemonstrated severalhundredmicrolensingevents(schild1999). Butbecausethesewereallplanetmassbodiesseeninremotegalaxies,itwas desirabletodetecttheobjectsinthehaloofourowngalaxy.unfortunatelythe resultsof2researchconsortiathatsoughttheprimordialplanetsignalfailedin spiteofmonitoring7millionstarsinthelargemagellaniccloudforthe microlensingsignature.whilepublishedaccountsmaketheclaimthattheobjects donotexistandignorethemanydetectionsinthequasarlenssystems,itiseasyto understandthatthelocalfailuresresultfromsystematicerrorsofassumptions,like theassumptionthatthehydrogenatmospherewouldbetoosmalltocause refraction,ortheassumptionsaboutthesizesofthestarsmonitored.microlensing consortia(macho,eros,ogleetc.)havemadethefatalassumptionthatthe planetaryobjectstheyclaimtoexcludeareuniformlydistributed:notclumpedand clusteredasobservedinfig.1.thus,theyhaveexcludednothing.new observationsareplannedfocusingonstarswithforegroundplanetclouds. 3.WeatheronHeatingandCoolingPrimordialPlanets Althoughhalosearchescouldnotfindthefree roamingplanetmassbodies,many havesincebeenfoundinstarformationregionsinthevicinityofthesun(lucaset al,2006;marshetal,2010,zapateroosario,2002).theywouldonlybefoundin youngstar formingregionsbecauseaftertheircompressionalheatingtheyquickly coolandbecomenolongervisible.theirpresentpropertiesoftemperature, spectrum,color,andluminosityhavebeenmeasuredandmassesinferredtobe planetaryfrommodelfitting.objectssorecentlyformedhavenormalsolarmetal compositions,unliketheprimordialobjectsingeneral.

11 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, Manyoftheweathereffectsexpectedontheprimordialplanetswouldberelatedto weatherphenomenaknownonearthandonothersolarsystemplanets.onearth, latentheatsoffusionandevaporizationofwaterratherthanhydrogenare importantweatherdrivers,causinglocalheatingofgasmasses(clouds)andstrong verticalmotions.freezingpointtemperaturesofwatericeareclearincloudswhere rainandhailareformed.horizontalwindsareproducedwhenatmosphericgases replacetheverticalconvectiveelements.theconvectingelementsareinternally heatedbylatentheatoffusionandvaporization,andbecomedrivenoutoflocal thermalequilibrium,furtherdrivingweatherphenomena. Imagesofprimordialplanetatmospheresformedbystarheatingareavailablefrom spacetelescopes.figure3showsimagesofprimordialplanetsevaporatedneara whitedwarfstarinournearestplanetarynebulahelix. OortcavitiesareformedwithinPGCclumpsofplanetsbythestarformationprocess ofaccretingplanets.asshowninfig.3,theoortcavitysizeis(mstar/ρpgc) 1/3 ~ 3x10 15 m,wheremstar~1.5x10 30 kgisthemassofthestarformedandρpgcisthe densityofpgcplanetclumps~4x10 17 kg/m 3.BiologicalPAHdustfromthe evaporatedplanetsfillsthecavity,asseenbythespitzerinfraredspacetelescope image(bottomright).smallersolarsystemscalesareshownforcomparison (bottomleft).matsuuraetal.(2009)showhydrogenresonantimagesthatreveal primordialplanetsandtheirwakesaswellasplanetproto cometsontheirwayto accretionthatareinvisibleintheopticalbandhubblespacetelescopeimage.the planetsejectedbytheplasmajetmustrefreezewhentheyreachdistancesof~10 16 mfromthecentralstarandbeginradiationtoouterspace.

12 Journal of Cosmology, Lorentz Center Workshop Proceedings, Sept. 27 Oct. 1, Fig. 3. Primordial planets heated and cooled in nearby planetary nebula Helix. A central white dwarf star is overfed by accreting primordial planets so that it contracts to high density ~ 1010 kg/m3 and its spin rate increases. A powerful plasma jet (blue arrow top) is produced that evaporates and radially expels some planets bounding the Oort Cavity. Some continue to fall into the cavity as comets (top image for a 2.4 µ infrared H2 resonance). New classes of weather are expected for the heated and cooled primordial planets of Fig. 3. Terrestrial weather is largely driven by direct heating of the Earth atmosphere and surface due to the absorption of sunlight, and the earth core is being heated from tidal forces. The primordial planets, in contrast, monotonically cool over the history of the universe, with external heating when stars are formed nearby. Furthermore the hydrogen atmospheres will initially extend far beyond the solid cores, where the Earth has lost most of its atmospheric gases, particularly

13 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, hydrogen,andthepresentearthatmosphereextendsonlyasmallfractionaboveits solid coreradius. Thiswillcreatethepotentialformuchlargervelocitiesandmoreviolent atmosphericeffects.werecallthattheescapevelocityonearthis11km/sec.thus infallingmeteorsandmeteoriteswillhavethisvelocityplusan"inter solarsystem orbitalvelocity"oforder50km/sec.dissipationofthekineticenergyofthese interloperswillcauselocalheatingeffectsintheatmosphereandproducelocally highwinds. Terrestrialfallingsnowislimitedtoterminalvelocityspeeddominatedby atmosphericfriction.fortheprimordialplanetstherewouldpresumablybea strongradialcenter to edgetemperatureanddensitygradient,andhydrogenice wouldordinarilyformatthetopofthelargeatmosphere.fallinghydrogenice shouldaccumulateandcreatesnowballsofunknownsizeanddensitycontrastover theirlongjourneytothesurface,perhapsevenbecomingcrystallineand comparabletohailstones,withpotentialforlargervelocitieslimitedtotheescape velocity,butperhapslimitedtothelocalsoundspeed. Recallthatobservationsofsolarsystemcometsseemtoshowsurfacesof compressedicysolidsandpowderydust(kearsleyetal.2008).meandensitiesof cometsareapproximatelyaquarterofterrestrialcrystallinerockdensities, suggestingapowderyconsistencythroughout.thissuggeststhatthesurfacesof OortCloudcometswereformedatthetimeofformationofthesun,inhydrogenice snowstorms. ModernobservationsofKuiperbeltandOortcloudobjectsallowsizestobe measured,andmeandensitiestobeinferredincasesofbinaryobjects.withthe understandingthattheseoutersolarsystemobjectshadaprimordialorigin,where acontractinghydrogenclouddevelopedaheatedcenterthatwashotterforlarger objects,itispossibletomakeapredictionaboutmeasureddensitiesasafunctionof

14 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, totalmass.inthispicturethemostmassiveobjectshadthehottestcoreandthe largesthydrogenenvelope,sotheyremainedlongestwithelevatedtemperatures andattractedthemostdustwhichwouldmeltatthecentralcore.subsequentslow evaporationofhydrogenwouldhaveleftrelativelymoretimetoaddtothecentral coreofmoltenstratifieddust.andsincethepresentdaycoolobjecthasarelatively largerfractionofmetalsinsolidifiedcrystallinematerial,theheavyremnantswill haveahighermeandensitythanthelighterremnants,whichaccumulatedmore dustonthesurfacewhereitremainedamoreporousdustlayer. Thesespeculationsareonlyintendedtoremindthatstrongweatherforceswouldbe expectedwheretheprimordialplanetshavepotentiallylargeratmospheresanda potentiallylargeoveralltemperaturegradient.withstrongforcespotentiallyin play,stratifiedturbulenceisalsolikely,aswillbediscussedinacompanionreport focusedupontheanalysisofatmosphericforcesanduniversalsimilarities.avariety ofstratifiedturbulenceandturbulentmixingsignatureswithintheplanetcluster containingthesunhavebeenidentifiedfromradiotelescopesignals(gibson2010). 4.Whenandhowdidplanetsform? ThetraditionalviewoftheformationoftheEarthandallplanetsseenorbitingstars isthatformationbeganinpre stellardiscsaroundnewlyformingstars.theonly ingredientspresumedavailablearemicroscopicinterstellardustparticles,plus primordialgasesdominatedbyhydrogen.thisissupposedtooccurwithin"cores" oflargegascloudshavingsufficientmasstomakehundredsorthousandsofstars. Howeverthereispresentlynotheoryofwherethegascloudscamefrominthefirst place,andtheprocessbywhichcoresformisnotunderstood,sinceitisbelieved thatthepredominantlyhydrogengascannotcoolrapidlyenoughtoprevent compressionalheatinggeneratingpressurethatwouldre expandthecloudcore. Recentdevelopmentsinunderstandingofhydrodynamicalforcesontheexpanding BigBanggaswithdissipativeviscousforcesproduceaverydifferentpicture

15 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, (Gibson,C.&Schild,R.2003).Withinlow10 5 densityenhancementsstructure formedbythecondensation voidseparationprocessonmassscalesofgalaxiesto galaxyclustersbeforerecombination.atplasmaneutralization,380,000yearsafter thebigbang,theentirebaryonicmattercontentoftheuniverseunderwentavery largedecreaseinviscosity,freeingupthegastofurthercondenseonmassscalesof planets(primordial fog particles,pfps,inthediscoveryreferencegibson1996)and ofclustermassaggregateswith10 6 MSun.Noticethatthisproducesahierarchical clumpingofmassonscalesofplanetswithinclusterswithingalaxieswithinclusters ofgalaxies.butinparticular,nostarsformedprimordiallywithinthisframework. Inthispicture,thenewlyformedstructuresinquiescentuniversalexpansionwould developsmallrandommotions,andastheprocessofseparationandcondensation wasunderwaylocally,someoftheclusterscaleperturbationswouldhave interacted,jostlingthecontainedprimordialplanetsandcausingsometocollideand sticktogether,initiatingpairingofpairsofpairsetc.forabottoms upaggregation thatresultedfinallyinastructuremassiveenoughthatcentraltemperatures climbedabovethefusiontemperatureanddensity,andastarbegantoshine. Statisticsdescribingtheubiquityofpresentlyobservedorbitingdouble/multiple starsandbinarykuiperbeltobjectsresultfromthispairwiseaggregatingprocess. Theubiquityofdynamicallydoubleandmultiplegravitatingsystems(Kern&Elliot, 2006)defythesimplisticgasfragmentationhypothesisofstarandplanetformation. Atthetimeofformation,380,000yearsafterthebigbang,theprimordialplanets wouldhavebeenpredominantlyhydrogengasspheres,witharadiuscomparableto theseparationdistanceof10 14 m.sincethentheywouldhavegraduallycooledand shrunk.wheretheseobjectsareseennearwhitedwarfsinplanetarynebulaeofthe localuniverselikethecentralstarofhelix(fig.3)theyarecalled"cometaryknots". Theplanetatmospheresareofsize10 13 m(meaburnetal,1992),whichis100a.u. Recallthatamillionofthesehadtoaggregatetoformthesun,whichiscompatible withtheknowndiameterandvolumeoftheoortcloud.suchlargeobjectswould havesweptuptheinterstellarmediumofthegalaxydiscandhalo(schild2007)so

16 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, theinitialhydrogencompositionwouldevolvetohighermetalrichnessinparallel withthestellarpopulationofthegalaxy. Thecollectionofinterstellardustbythismechanismcansolveseveralproblemsin theplanetformationscenario.recallthatthestandardpicturerequiresdustgrains tocollideandsticktogether,whencethelargergrainsalsocollideandeventually aggregateasplanetmassbodies.theproblemisthatthisprocessofcollidingand stickingmustbehighlyefficientforallmassscales,dusttopebblestobouldersto mountainstoplanets,sinceifitfailsforanymassscale,theentireprocessbreaks down.butcollidingrockstogetheralwaysproducessimplerecoilorfracturing.in thehistoryofourcivilization,nobodyhasreportedtworockscollidingtogetherand sticking.thispointwillbefurtherdiscussedinthefollowingsection. 5.IroncoresofPlanets Thetheoryoftheformationoftheplanetsisconfoundedbytwoobservationalfacts. Thewidelyacceptedtheoryconsidersthatplanetswereformedinpre stellardiscs thatcanbeseenastheequatorialplaneofseveralnearbystarswithfavorable orientation.suchdiscscanbefoundfrominfraredsignaturesinyoungstarforming regions,andareknowntodissipateanddisappearontimescalesof5millionyears (Currieetal.2010). Howeverthemechanismbywhichtheplanetsformwithinthediscisproblematic.It ispostulatedthatdustgrainsofoxidesofironandsiliconetcfoundininterstellar spacecollideandsticktogether,producinglargergrainsthatcollideandstick,inan accretionalcascadethateventuallyproducesplanets. Thereisaseriousproblemwiththisscenario.Theexperimenthasbeendone billionsoftimesinourcivilization,androckscollidingwithrockshaveneverbeen observedtosticktogether;theyalwaysrecoilorbreakup.buttheprocessmust workefficientlyforallsizesofcollidingrocksfrominterstellardustgrainstostones

17 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, torocksandmountains,ortheprocessbreaksdown.suchanaccretionalcascade seemsimpossible. Attemptstocreatetheprocessinalaboratoryhavefailed,asexpected.These experimentshavebeensummarizedbyblumandwurm(2008).ittakesacareful readingtounderstandthatthe"porosityindex"quoted,consistentlyshowsthatthe marginallystickingfragmentsarenotheldtogetherbycrystallineforces,butrather bymuchweakervanderwaalsforces,andinareferencecitedas"schraeplerand Wurm,unpublisheddata"itisnotedthatasingleballisticinboundparticlebreaks uptheweaklyboundchainsandclumps,andtheprocessbreaksdown. Thisproblemissidesteppediftheplanetsareformedinatwo stepprocess,withthe firststepoccurringafterplasmaneutralizationandthesecondinthepre stellar accretiondiscsaroundyoungformingstars.inthefirststep,whichoccurredinthe longhistoryfollowingplasmaneutralizationatz=1000untilapproximatelyz=1 whenthesunformed,theprimordialrogueplanetsroamedthehaloofthegalaxy andtheirlargehydrogenatmospheressweptupalltheinterstellardustdistributed bysupernovaeandbycarbonstars(schild,2007).thedustgrainsmeteoredinto thehydrogenatmospheresandcollectedatthecentersbecauseoftheirmetallic densities.later,intheprestellardiscphase,stronginteractionscausedthemtoshed theirhydrogenatmospherestocreatethesun,andfurthercollisionsamongthem modifiedthepopulationfurther,includingremovaloftheresidualhydrogenby evaporation. AsecondimportantproblemofplanetformationistheironcoreoftheEarth. Anyoneseeingrustinghulksofjunkedautomobilesknowsthatironhasastrong propensitytooxidize,andeverysteel makerknowshowdifficultitistoreduceiron oxidetobasemetal;itisdoneinhightemperatureblastfurnacesinthepresenceof hotreducingcarbonmonoxide.

18 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, Themetallicionsininterstellardustarealwaysfoundasoxides,sowhenandwhere intheuniversewasthisprocessedtobecomeironcoresofplanetssurmountedby oceansofwater?thiswouldnaturallyhavehappenedwhenthembdpopulationof planetmassobjectswithverylargehydrogenatmospheresroamedtheuniverseand sweptcleantheinterstellarmedium.interstellardustgrainswouldhavemeteored intotheextendedcoolinghydrogenatmospheresandvaporized.thehydrogenis knowntoreduceanymetaltoformwaterwhichprecipitatesout,andthedense metallicvaporssettledtothembdcentertostratifywithallothermetallicions accordingtodensity,beneathanoceanofwater. Theseeventswouldhavebeenmostcommonintheearlyuniverse,beforez=6 whencoolingoftheuniversebelowthehydrogentriplepointcausedthe atmospherestofreezeouthydrogenassnowandreducethesizesofthe atmospheres.athigherredshifts,6<z<1000,theplanetswouldhavehadfrequent collisionsandmergersintheiraccretionalcascadesthatsometimesproducedstars. Releaseofgravitationalbindingenergywouldhavere heatedtheprimordial planets,particularlytheirmetalliccores,andtheinitiallystratifiedreducedmetals wouldhavebeensmearedsomewhattobecometheoredepositsminedtoday. Overthedurationoftheuniverse,thenatureofplanetswouldhaveevolved.At initialformation,suchprimordialplanetswouldhavehadlargestickyatmospheres butnegligiblerelativemotioninaquiescentexpandinguniverse.thiswouldhave resultedinsomecollisionalaccretionevenbeforetheuniversehadcreatedmetals, andlocallyviolentinteractionswouldhaveproducedfurtheraccumulations, generatingamassspectrumwithalongtailtowardhighersub stellarmassesbut ultimatelyalsostellarmasses. Inthisway,thefirstgenerationPopIIIstarsformedgentlyandearlyfromhotlarge atmospheregasplanetsofalmostpurehydrogen.theirfirstgenerationof supernovae,plusthecollapsinggalaxy centralobjectssoontobecomeblackholes afterpassingthroughatemperaturerealmsufficientlyhightofusehydrogen,would

19 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, havebeenthefirstluminosityintheuniverse,whichatz=1000hadcooledbelow 4000K.WithfurtherexpansionandcoolingoftheUniverse,butalsowith accumulatinglargerrelativemotions,interactionsoftheprimordialplanetsand theirstarsgraduallyincreased. InthehydrogravitationaldynamicsHGDpictureofglobalstructureformation,the abovelocalscenarioofstarformationwouldhaveincreasinglybeenaffectedbythe eventsthatshapedtheformationandstructuresofgalaxies.overtime,suchevents wouldhaveimpressedlargerrelativevelocitiesontoprimordialplanetsandstars, increasinginteractionsandfurtheracceleratingaccretionalcascadefromplanetsto stars.inaddition,matterwasalsoclumpingfromaredshift1000onwardsonscales ofjeansclusters,andjustastheinitialinteractionsofthequiescentexpansionwere few,therewouldhavebeensomeatfirst.theresultwouldhavebeenthatafew suchclustermassobjectswouldhaveinteractedandtheviolentvelocitiesgenerated wouldhavetriggeredextensivestarformationinglobularclusters.withmatter initiallyclumpedasmbdsinjeansclusters,theinitialinteractionoftwoclusters wouldhavestronglyincreasedtheprocessofcollisionalcascade,andthefirst luminosityoftheuniversewouldhavebeendominatedbythesecollisionally interactingproto globular star clusters.thiswouldexplainwhytheprimordial globularclustershaveprofoundlydifferentstarformationhistoriesanddynamics thanthemorerecentlyformingopenclusters.withouttheprimordialformation pictureofjeansmassstructures,theoriginofglobularclustershasneverbeen understood. Subsequentstarformationintheuniversewouldhavebeenpredominantlyinthe JeansclustermasscloudsfragmentedintomBDsandtheirprimordialsub stellar cascadeproducts,whichareprincipallyobjectsoflessthanjupitermass.thisis inferredfromthefactthattherecentlydiscoveredplanetsfoundorbitingstarsin thesolarvicinityhaveasharpuppermasslimitof~10 28 kg~18mjupiter(watsonet al,2010).butwithouttheinitialstronginteractionsofthehgdstructureformation

20 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, picture,thedifferencebetweenthepresentlyformingopenclustersandtheancient globularshasneverbeenexplained. Inthepresentdaystarformationinopenclusters,starsareseencommonlyforming asdoubleandmultiplestars,wherethegasfragmentationpicturedoesnotgenerate suchmultiplesystems.inthehgdscenariowithprimordialmbdformation,the multiplestarseedsformedlongbeforearecentjolttriggeredstarformation. 6.TheHGDuniversalspectrumofmassfragmentation AsurprisingresultofthehydrogravitationaldynamicsHGDscenarioofstructure formationisthewaytheuniversedevelopsafragmentinghierarchyofstructure, withitskeyelementsarrangedinatopdownsequenceofstructuresofdecreasing massbetweenvoidsexpandingattheplasmasonicvelocitynearlightspeeds.it reflectsthecommonobservationthatgalaxiesareusuallyfoundinclustersof galaxies,globularstarclustersareingalaxies,andstarsarefoundinclusters.itis clearthatthisshouldbetrueforthehgdfragmentationalschenariosincethe instabilityofdensityminimaisenhancedbytheexpansionofspacebut condensationsonmaximaisinhibited.theoppositeisexpectedforthestandard (butfalse)λcdmscenariowheregravitationalstructuresbuildupfromsmall massestolargecontrolledby(impossible)colddarkmattercdmcondensationsand superclustersarethelastratherthanfirststructurestoform. WeshowinFigure4thepredictedviscousfragmentationmassscalesoftheplasma andgasepochs(gibson1996).thelengthscaleoffragmentationisdeterminedbya balancebetweenviscousandgravitationalforcesattheschwarzviscousscalelsv= (νγ/ρg) 1/2,whereνisthekinematicviscosity,γistherate of strainofthefluid, ρis thedensityandgisnewton sgravitationalconstant.forthefirstplasma gravitationalstructurestoform,lsvmustbecomesmallerthanthescaleofcausal connectionlh=ct,wherecisthespeedoflightandtisthetimesincethe cosmologicalbigbang.thisoccursattimet~10 12 seconds(about30,000years).

21 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, Momentumistransportedintheplasmabyphotonsthatcollidewithfreeelectrons, thatinturndragalongtheirassociatedions(protonsandalph particles).the kinematicviscosityνisestimated(gibson2000)tobe~10 26 m 2 s 1,γis~10 12 s 1 andρ~4x10 17 kgm 3.soLSV~2x10 20 m~lh=3x10 20 m.themassscaleis~10 45 kg;thatis,themassofasuperclusterof~10 3 galaxies.thedensityρremains constantinthefragmentswithtimebutthemassesofthesubsequentfragments decreasebecausebothνandγdecreaseastheuniversecoolsandexpands.the smallestplasmafragmentsaregalaxiesasshowninfig.4ontheright. Notice,however,thattheHGDstructureformationscenarioalsohasimportant consequencesforthemicrolensingdetectionofitscomponentobjects.aconcentric hierarchicalstructureboostsandincreaseonseveralscalesatthesametime. InsofarasthestudiesappearsmallerthantheirprojectedEinsteinrings,each consecutivestructureincreasesmagnification.thecompoundingofimagesbehind anetworkofrogueplanetsbehindamicrolensingstarhasalreadybeensimulated byschildandvakulik(2003),butinprinciplethefurtherlensingbyastarcluster andgalaxyneedtobeconsidered. Fig.4.Fragmentationofthebaryonicmassunderviscous gravitationalcontrol.thefirst structurestofragmentwereatsuper galaxy clustermass,whenthehorizonscaleof causalconnectionctexceededtheviscous gravitationalscalel SVintheplasmaepoch (right).atlatertimesintheplasmaepoch,lowermassconcentrationsdowntogalaxy

22 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, masswouldform(gibson1996).adramaticdecreaseinkinematicviscosityatplasma neutralizationaccountsforthedecreaseinfragmentationmassfromthatofgalaxiesto thatofplanetsinclusters. Intheplasmaepoch,galaxysuper clustersformedfirst,andsubsequentstructure formationdecreasedatplasmaneutralizationtoaminimummassscaleofgalaxies (10 42 kg)withinclusters,andwithcharacteristicδt/tamplitudeof10 5.Withthe severeviscositydroptoν~10 13 m 2 s 1 atthetimeofplasmaneutralization10 13 seconds,internalstructureformedonscalesofjeansclustersandplanets,butnot stars.thelatterwouldbeformedinanaccretionalcascadeofplanetmasshydrogen spheres,asmathematicallysimulatedbytruelove(1997)who,however,treated themas numericalinstabilities inhiscalculation.withaturbulenthydrodynamical formationscenario,itwouldbeunsurprisingifthescalesofstructureformationin theuniverse,fromgalaxysuper clusters,galaxies,starclusters,toplanets,followa self similarmathematics(oldershaw,2010). Theremainderofthissectiondescribeshowtoreasonablyunderstandthebroad rangeofsolarsystemobjectsfoundinthelocaluniverse:planets,kbo's,asteroids, comets,andmeteorites. Atthetimeofplasmaneutralization,thetemperatureoftheuniversewas~4000K andnometalsexisted.astheuniversecooled,afirstgenerationofmassivestars resultedinsupernovaenhancementoftheinterstellarmedium,andthehydrogen graduallybecamecontaminatedwithmetals.thiswouldhavehappenedonatime scaleof10millionyears(gibson,1996;gibsonandschild,2010). FromtheknownobjectsstudiedwithinourSolarSystem,weinferthatthelowest massobjectshadcooledsufficientlyattheircentersthatanyinbounddustcollected atthecenterwithoutmelting.sometransitionalobjectswouldhaveasmallmolten corewhichcooledsufficientlyquicklythatitsouterlayersnevermeltedinahot core.thestillmoremassiveobjectswouldhaveretainedamoltencorelongerand developeddensitystratifiedlayersofmineralsfromlatergenerationsof

23 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, supernovae.collisionsofthembdwouldhavere heatedthecoresand redistributedthestratifiedlayerstoformoresoftheelementsandprimary compounds.theobjectsprobablyretainedtheirextensivehydrogenenvelopes, untilinteractionsinthepre solaraccretiondiscstrippedawaythehydrogen.since themostmassivembdobjectsinthispre solarprocessingwouldhavebeenhotterif moremassive,thehgdformationpicturemakesthequalitativepredictionthatthe presentlyobservablemeandensityshouldbehighestforthemostmassivembds. AtthetimeoftheSun'sformation,amillionoftheseobjectswouldhaveaggregated asthesolarmass,leavingonlynineplanetsinapre solarnebulawithanaccretion disc.violentcollisionaleventswouldhavedumpedmostoftheobjectsintothe formingsun,ultimatelystrippingmostbodiesoftheirhydrogenandleavingthe coresintheorbitalplane. Inthepre solarnebula,alsocalledtheaccretiondiscplane,asecondperiodof structuralmodificationtookplace.collisionsbetweenpre planetarybodiescreated meteoriticmaterial,andre heatedandsmearedtheplanetaryinteriors,mixingthe metallicores,andejectingsomeofthebodiesentirely.inthisphasehigherlocal densitiesandvelocitieswouldhavestrippedallbodiesoftheirresidualhydrogen outeratmospheres,andleftnineplanets,smallmeteoriticrocks,largerasteroid fragments,andunprocessedmaterialinthedistantkuiperbeltandoortcloud. 7.SurprisesfromtheNASA'sspacemissionsSTARDUSTandDEEPIMPACT Animportantconfirmationofthe2 epochplanetformationscenarioisseeninthe quiteunexpectedresultsofthe2004stardustspacemission,inwhichdustgrains releasedbycomettempleiwerecollectedinajellthatflewbytheastronomical body(brownlee,2009).twosurprisingaspectsofthereturnedsamplespointto thesameunexpectedphysics.thechemicalcompositionofthesamples,richin CalciumAluminumInclusions,indicatedthatthechemistryoftheirformation occurredinaveryhightemperatureenvironment,sotheycouldnothaveformed wherethecomethasbeenstoredformilleniaintheoutersolarsystem.asecond

24 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, surprisewasthatthecapturedcometarymaterialwasrichinmoltenchondrules thatagainindicatedformationinahotenvironment,nottheoutersolarsystem wherecometshibernate.todayplanetaryscientistsponderhowthesolarsystem turneditselfinside out,butintheprimordialformationscenario,moreprobably thesematerialsformedwhentheprimordialplanetswerestillhotbeforelosing hydrogen,andbeforethesolarsystemformationhadbegun. AnotherNASAspacemissionwithsurprisingresultswastheDeepImpactmission tocomettemple1topropela700lbmassintothesurfaceandexaminethe resultingdustcloud(a'hearn,2009).insteadoffindingtherocksexpectedinthe debriscloud,onlyafinepowderwasfoundinthesubsurfaceejecta.this demonstratedthattheancientcomethadcollecteddustthroughoutthehistoryof theuniverse,butthedustgrainshadnotcollidedandstucktogetheraspredictedin thestandarddustcollisionmodels.thepowderydustwassofinethatitscloud saturatedthedetectorsinthespacecraft. 8.Conclusions. RecentSolarSystemspacecraftmissionshaveproducedresultsthathavetakenthe communitybysurprise.chemicalcompositionandmoltenchondruleshaveforced theconclusionthatthesystemhasbeenturnedinsideout,withnoprevious evidenceofthis.andtheexistenceoffinedustwithnorocksinoutersolarsystem bodiesdefiesthetheorythatdustgrainseasilycollideandsticktogethertoform crystallinerocks.andthelong standingproblemofhowdoestheearthcometo haveanironcoresurmountedbyanoceanofwaterhasheretoforebeen unexplained. Whilethesesweepingstatementsdescribereasonablythestateofknowledgeof solarsystemstructure,theyleavemanyunfinisheddetails.thekeypointhereis thatplanetformationwasa2 stepprocess,withprimordialrogueplanetscreating solidandsemi solidcores,andpre solardiscevolutioncreatingthepresently observedstructuresnearthesun(fig.3lowerleft).whathasnotbeentakeninto

25 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, accountistheexistenceofnotjusttheinnernineplanetsofthesun,butthemany millionsofprimordialplanetsperstar. Inthisway,planetaryformationdoesnotneedtobeginwithrockyparticles collidingandstickingtogetheronallmassscalesfromdusttomoons.thekey ingredientistheexistenceofprimordialgasrogueplanetswithextensivehydrogen atmospheresthatcollectinterstellarmaterialandstratifyitbydensityatmolten centers,sothatwhenhydrogen strippedinthepre solardisc,theirmodified remnantssupplyalltheingredientsoftheobservedsolarsystem. 9.References A'Hearn, M Deep Impact and the Origin and Evolution of Cometary Nuclei, Springer,ISBN Alcock, C. et al, EROS and MACHO Combined Limits on Planetary Mass Dark MatterintheGalacticHalo,ApJ,499,L9. Blum,J.&Wurm,Gerhard,2008.TheGrowthMechanismsofMacroscopicBodiesin ProtoplanetaryDisks,ARA&A,46,21. Brownlee,D.2009.CometSamplesReturnedbyStardust,InsightintotheOriginof Comets and Crystalline Silicates in Disks, in Cosmic Dust Near and Far: ASP Conference Series, Vol. 414, proceedings of a conference held 8 12 September 2008 in Heidelberg, Germany. Edited by Thomas Henning, Eberhard Grün, and JürgenSteinacker.SanFrancisco:AstromomicalSocietyofthePacific,p.157. Burud,L.etal,2000.AnOpticalTimeDelayEstimatefortheDoubleGravitational LensSystemB ,ApJ,544,117. Burud,L.etal,2002.A&A,TimedelayandlensredshiftforthedoublyimagedBAL quasarsbs ,391,481 Colley, W. et al, Around the Clock Observations of the Q A,B GravitationallyLensedQuasar.II.ResultsfortheSecondObservingSeason,ApJ, 587,71. Colley, W. & Schild, R. 2003, A Rapid Microlensing Event in the Q A, B GravitationalLensSystem,ApJ,594,97

26 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, Currie, T. et al, The Morphologies and Lifetimes of Transitional ProtoplanetaryDisks,arXiv: Fan,X.etal,2006.ObservationalConstraintsonCosmicReionization,AnnRevAy& Ap,44,415. Gibson,C.H.1996.Turbulenceintheocean,atmosphere,galaxyanduniverse,Appl. Mech.Rev.,49,no.5, Gibson, C. H Turbulence and turbulent mixing in natural fluids, Physica Scripta,TurbulentMixingandbeyond2009Proceedings,T142,arXiv: Gibson, C. Wickramasingh, N. & Schild, R First life in primordial planet oceans:thebiologicalbigbang,arxiv: Gibson,C.H.,Schild,R.E,andWickramasinghe,N.C.2010.TheOriginofLifefrom Primordial Planets, Int. J. of Astrobiology, doi: /s , arxiv: Gibson,C.&Schild,R.2003.EvidenceforHydro GravitationalStructureFormation TheoryversusCold Dark Matter,Hierarchical Clustering,andJeans1902,astroph/ Hjorth, J. 2002, The Time Delay of the Quadruple Quasar RX J , ApJ, 572,L11. Jakobsson,P.2005.Anopticaltimedelayforthedoublegravitationallenssystem FBQ ,A&A,431,103. Kearsley,A.etal,2008.DustfromcometWild2:Interpretingparticlesize,shape, structure,andcompositionfromimpactfeaturesonthestardustaluminumfoils, MeteoriticsandPlanetarySciences,43,41. Kern,S.&Elliot,J.2006.TheFrequencyofBinaryKuiperBeltObjects,ApJ,643,L57. Low,F.J.1984.Infraredcirrus Newcomponentsoftheextendedinfraredemission, ApJ,278,L19. Lucas, P. Weights, D. Roche, P. Riddick, F Spectroscopy of planetary mass browndwarfsinorion,mnrasletters,373,l60. Marsh,K.Kirkpatrick,D.andPlavchan,P.2010.AYoungPlanetary MassObjectin theρophcloudcore,apj,709,l158.

27 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, Mao, S.& Schneider, P Evidence for substructure in lens galaxies? MNRAS, 295,587. Meaburn,J.etal,1992.DustintheneutralglobulesoftheHelixnebula,NGC7293, MNRAS,255,177. Meaburn,J.1998.ThenatureofthecometaryknotsintheHelixplanetarynebula (NGC7293),MNRAS,294,201. Meyers,P.C.2008.ProtostellarMassesduetoInfallandDispersal,ApJ,687,340. Meyers,P.C.2009.OntheDistributionofProto StarMasses,ApJ,706,1341. Meyers,P.C.2010.StarFormingGasinYoungClusters,ApJ,714,1280. Nieuwenhuizen, T. M., Schild, R. E., Gibson, C. H., Do micro brown dwarf detectionsexplainthegalacticdarkmatter?,arxiv: O'Dell,C.andHandron,K.1996.CometaryKnotsintheHelixNebula,ApJ,111,1630. Ofek, E Long duration Radio Transients Lacking Optical Counterparts are PossiblyGalacticNeutronStars,ApJ,711,517. Oldershaw,R.2010.AnInfiniteFractalCosmos,JCos,4,674. Paraficz, D. et al Microlensing variability in time delay quasars, Astron & Astrophys,455L1 L4. Price,R.Duric,N.&Duncan,W.1994.CoolDustinSpiralGalaxyNGC3079,inA.S.P. ConferenceSeries,58,211. Schild, R Microlensing Variability of the Gravitationally Lensed Quasar Q A,B,ApJ,464,125. Schild, R A Wavelet Exploration of the Q A,B Brightness Record, ApJ,514,598. Schild, R The Evolution of the Chemical elements of the Universe, astroph/ Schild, R. & Dekker, M The transparency of the Universe limited by Lyα clouds,an,327,729. Schild, R. and Smith, R.C Microlensing in the Q gravitational mirage,aj,101,813. Schild, R. & Vakulik, V Microlensing of a Ring Model for Quasar Structure, Astron.J.,126,689,arXiv:astro ph/

28 JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1, Stapelfeldt,K.etal,1999,ApJ,516,L95. Truelove,J.etal,1997.TheJeansCondition:ANewConstraintonSpatialResolution insimulationsofisothermalself gravitationalhydrodynamics,apj,489,l179. Vakulik, V. et al Q source structure and dimensions from lightcurvesimulation,mnras,382,819. Venezianietal.2010.PropertiesofGalacticcirruscloudsobservedbyBoomerang, ApJ,713, Watson, C. et al Estimating the masses of extra solar planets, arxiv: ZapateroOsario,M.2002.Science,290,103.

Why the dark matter of galaxies is clumps of microbrown dwarfs and not Cold Dark Matter

Why the dark matter of galaxies is clumps of microbrown dwarfs and not Cold Dark Matter JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1,2010 1 Whythedarkmatterofgalaxiesisclumpsofmicrobrown dwarfsandnotcolddarkmatter CarlH.Gibson 1,2 1 UniversityofCaliforniaSanDiego,LaJolla,CA92093

More information

Extraterrestrial life contradicts dark energy Carl H. Gibson* a

Extraterrestrial life contradicts dark energy Carl H. Gibson* a Journal of Cosmology (2013), Vol. 21, No. 42, pp 9676-9681. 1 SPIE Conference 8521 20: Instruments, Methods, and Missions for Astrobiology XV, San Diego, CA, Sept. 2012 Extraterrestrial life contradicts

More information

Chapter 23 The Milky Way Galaxy Pearson Education, Inc.

Chapter 23 The Milky Way Galaxy Pearson Education, Inc. Chapter 23 The Milky Way Galaxy The Milky Way is our own galaxy viewed from the inside. It is a vast collection of more than 200 billion stars, planets, nebulae, clusters, dust and gas. Our own sun and

More information

Chapter 19 Lecture. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 19 Lecture. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc. Chapter 19 Lecture The Cosmic Perspective Seventh Edition Our Galaxy Our Galaxy 19.1 The Milky Way Revealed Our goals for learning: Where are we located within our galaxy? What does our galaxy look like?

More information

The Interstellar Medium. Papillon Nebula. Neutral Hydrogen Clouds. Interstellar Gas. The remaining 1% exists as interstellar grains or

The Interstellar Medium. Papillon Nebula. Neutral Hydrogen Clouds. Interstellar Gas. The remaining 1% exists as interstellar grains or The Interstellar Medium About 99% of the material between the stars is in the form of a gas The remaining 1% exists as interstellar grains or interstellar dust If all the interstellar gas were spread evenly,

More information

Our goals for learning: 2014 Pearson Education, Inc. We see our galaxy edge-on. Primary features: disk, bulge, halo, globular clusters All-Sky View

Our goals for learning: 2014 Pearson Education, Inc. We see our galaxy edge-on. Primary features: disk, bulge, halo, globular clusters All-Sky View Our Galaxy Chapter 19 Lecture The Cosmic Perspective 19.1 The Milky Way Revealed What does our galaxy look like? What does our galaxy look like? How do stars orbit in our galaxy? Seventh Edition Our Galaxy

More information

Star systems like our Milky Way. Galaxies

Star systems like our Milky Way. Galaxies Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in

More information

Chapter 19 Lecture. The Cosmic Perspective. Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 19 Lecture. The Cosmic Perspective. Seventh Edition. Our Galaxy Pearson Education, Inc. Chapter 19 Lecture The Cosmic Perspective Seventh Edition Our Galaxy 19.1 The Milky Way Revealed Our goals for learning: Where are we located within our galaxy? What does our galaxy look like? How do stars

More information

Chapter 19: Our Galaxy

Chapter 19: Our Galaxy Chapter 19 Lecture Chapter 19: Our Galaxy Our Galaxy 19.1 The Milky Way Revealed Our goals for learning: What does our galaxy look like? How do stars orbit in our galaxy? What does our galaxy look like?

More information

Formation of Planets by Hydrogravitational Dynamics

Formation of Planets by Hydrogravitational Dynamics JournalofCosmology,LorentzCenterWorkshopProceedings,Sept.27 Oct.1,2010 1 Formation of Planets by Hydrogravitational Dynamics CarlH.Gibson 1,2 1UniversityofCaliforniaSanDiego,LaJolla,CA92093 0411,USA 2cgibson@ucsd.edu,http://sdcc3.ucsd.edu/~ir118

More information

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition Our Galaxy 19.1 The Milky Way Revealed What does our galaxy look like? How do stars orbit in our galaxy? Where are globular clusters located

More information

Chapter 21 Galaxy Evolution. How do we observe the life histories of galaxies?

Chapter 21 Galaxy Evolution. How do we observe the life histories of galaxies? Chapter 21 Galaxy Evolution How do we observe the life histories of galaxies? Deep observations show us very distant galaxies as they were much earlier in time (old light from young galaxies). 1 Observing

More information

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A 29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A There are 40 questions. Read each question and all of the choices before choosing. Budget your time. No whining. Walk with Ursus!

More information

Directed Reading A. Section: The Life Cycle of Stars TYPES OF STARS THE LIFE CYCLE OF SUNLIKE STARS A TOOL FOR STUDYING STARS.

Directed Reading A. Section: The Life Cycle of Stars TYPES OF STARS THE LIFE CYCLE OF SUNLIKE STARS A TOOL FOR STUDYING STARS. Skills Worksheet Directed Reading A Section: The Life Cycle of Stars TYPES OF STARS (pp. 444 449) 1. Besides by mass, size, brightness, color, temperature, and composition, how are stars classified? a.

More information

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Astro 242 The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Syllabus Text: An Introduction to Modern Astrophysics 2nd Ed., Carroll and Ostlie First class Wed Jan 3. Reading period Mar 8-9

More information

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye Our Galaxy Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust Held together by gravity! The Milky Way with the Naked Eye We get a special view of our own galaxy because we are part of it!

More information

Chapter 14 The Milky Way Galaxy

Chapter 14 The Milky Way Galaxy Chapter 14 The Milky Way Galaxy Spiral Galaxy M81 - similar to our Milky Way Galaxy Our Parent Galaxy A galaxy is a giant collection of stellar and interstellar matter held together by gravity Billions

More information

The Milky Way Galaxy and Interstellar Medium

The Milky Way Galaxy and Interstellar Medium The Milky Way Galaxy and Interstellar Medium Shape of the Milky Way Uniform distribution of stars in a band across the sky lead Thomas Wright, Immanuel Kant, and William Herschel in the 18th century to

More information

Study Guide Chapter 2

Study Guide Chapter 2 Section: Stars Pages 32-38 Study Guide Chapter 2 Circle the letter of the best answer for each question. 1. What do scientists study to learn about stars? a. gravity c. space b. starlight d. colors COLOR

More information

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)?

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)? How Long do Stars Live (as Main Sequence Stars)? A star on Main Sequence has fusion of H to He in its core. How fast depends on mass of H available and rate of fusion. Mass of H in core depends on mass

More information

Lecture Outlines. Chapter 23. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 23. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 23 Astronomy Today 8th Edition Chaisson/McMillan Chapter 23 The Milky Way Galaxy Units of Chapter 23 23.1 Our Parent Galaxy 23.2 Measuring the Milky Way Discovery 23-1 Early Computers

More information

ASTR Midterm 2 Phil Armitage, Bruce Ferguson

ASTR Midterm 2 Phil Armitage, Bruce Ferguson ASTR 1120-001 Midterm 2 Phil Armitage, Bruce Ferguson SECOND MID-TERM EXAM MARCH 21 st 2006: Closed books and notes, 1 hour. Please PRINT your name and student ID on the places provided on the scan sheet.

More information

Charles Keeton. Principles of Astrophysics. Using Gravity and Stellar Physics. to Explore the Cosmos. ^ Springer

Charles Keeton. Principles of Astrophysics. Using Gravity and Stellar Physics. to Explore the Cosmos. ^ Springer Charles Keeton Principles of Astrophysics Using Gravity and Stellar Physics to Explore the Cosmos ^ Springer Contents 1 Introduction: Tools of the Trade 1 1.1 What Is Gravity? 1 1.2 Dimensions and Units

More information

3 reasons it was hard to figure out that we are in a Galaxy

3 reasons it was hard to figure out that we are in a Galaxy Prof. Jeff Kenney Class 10 October 3, 2016 3 reasons it was hard to figure out that we are in a Galaxy 1. it's big -- one needs sensitive telescopes to see (individual stars) across the Galaxy 2. we're

More information

Astronomy 104: Second Exam

Astronomy 104: Second Exam Astronomy 104: Second Exam Stephen Lepp October 29, 2014 Each question is worth 2 points. Write your name on this exam and on the scantron. Short Answer A The Sun is powered by converting hydrogen to what?

More information

Part two of a year-long introduction to astrophysics:

Part two of a year-long introduction to astrophysics: ASTR 3830 Astrophysics 2 - Galactic and Extragalactic Phil Armitage office: JILA tower A909 email: pja@jilau1.colorado.edu Spitzer Space telescope image of M81 Part two of a year-long introduction to astrophysics:

More information

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar.

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar. Chapter 11: Neutron Stars and Black Holes A supernova explosion of an M > 8 M sun star blows away its outer layers. Neutron Stars The central core will collapse into a compact object of ~ a few M sun.

More information

Class 15 Formation of the Solar System

Class 15 Formation of the Solar System Class 16 Extra-solar planets The radial-velocity technique for finding extrasolar planets Other techniques for finding extrasolar planets Class 15 Formation of the Solar System What does a successful model

More information

LESSON 1. Solar System

LESSON 1. Solar System Astronomy Notes LESSON 1 Solar System 11.1 Structure of the Solar System axis of rotation period of rotation period of revolution ellipse astronomical unit What is the solar system? 11.1 Structure of the

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 14 The Milky Way Galaxy Lecture Presentation 14.0 the Milky Way galaxy How do we know the Milky Way exists? We can see it even though

More information

Ay162, Spring 2006 Week 8 p. 1 of 15

Ay162, Spring 2006 Week 8 p. 1 of 15 Astronomy 162, Week 8 Milky Way Galaxy, continued Patrick S. Osmer Spring, 2006 Rotation of Galaxy How do we know the galaxy is rotating, and how do we measure its rotation? Measure radial velocities of

More information

What is the solar system?

What is the solar system? Notes Astronomy What is the solar system? 11.1 Structure of the Solar System Our solar system includes planets and dwarf planets, their moons, a star called the Sun, asteroids and comets. Planets, dwarf

More information

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14 The Night Sky The Universe Chapter 14 Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Celestial observation dates to ancient civilizations

More information

A100 Exploring the Universe: The Milky Way as a Galaxy. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: The Milky Way as a Galaxy. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: The Milky Way as a Galaxy Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu November 12, 2014 Read: Chap 19 11/12/14 slide 1 Exam #2 Returned and posted tomorrow

More information

The Life and Death of Stars

The Life and Death of Stars The Life and Death of Stars A Star Is Born Not everyone agrees, but it is generally thought that stars originate from nebulae (clouds of dust and gas). Almost inevitably, a nebula will "collapse" into

More information

Our View of the Milky Way. 23. The Milky Way Galaxy

Our View of the Milky Way. 23. The Milky Way Galaxy 23. The Milky Way Galaxy The Sun s location in the Milky Way galaxy Nonvisible Milky Way galaxy observations The Milky Way has spiral arms Dark matter in the Milky Way galaxy Density waves produce spiral

More information

Star Formation. Stellar Birth

Star Formation. Stellar Birth Star Formation Lecture 12 Stellar Birth Since stars don t live forever, then they must be born somewhere and at some time in the past. How does this happen? And when stars are born, so are planets! 1 Molecular

More information

Astr 2310 Thurs. March 23, 2017 Today s Topics

Astr 2310 Thurs. March 23, 2017 Today s Topics Astr 2310 Thurs. March 23, 2017 Today s Topics Chapter 16: The Interstellar Medium and Star Formation Interstellar Dust and Dark Nebulae Interstellar Dust Dark Nebulae Interstellar Reddening Interstellar

More information

Physics Homework Set 2 Sp 2015

Physics Homework Set 2 Sp 2015 1) A large gas cloud in the interstellar medium that contains several type O and B stars would appear to us as 1) A) a reflection nebula. B) a dark patch against a bright background. C) a dark nebula.

More information

The origin of life from primordial planets

The origin of life from primordial planets International Journal of Astrobiology, Page 1 of 16 doi:10.1017/s1473550410000352 f Cambridge University Press 2010 1 The origin of life from primordial planets Carl H. Gibson 1, Rudolph E. Schild 2 and

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Bernard F. Burke Massachusetts Institute of Technology and Francis Graham-Smith Jodrell Bank, University of Manchester CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements

More information

The Infrared Universe as Seen by Spitzer and Beyond. February 20, 2007

The Infrared Universe as Seen by Spitzer and Beyond. February 20, 2007 The Infrared Universe as Seen by Spitzer and Beyond The Holly Berry Cluster [NOT the Halle Berry cluster] in Serpens February 20, 2007 Presented to the Herschel Open Time Key Project Workshop Michael Werner,

More information

The Universe o. Galaxies. The Universe of. Galaxies. Ajit Kembhavi IUCAA

The Universe o. Galaxies. The Universe of. Galaxies. Ajit Kembhavi IUCAA Hello! The Universe of Galaxies The Universe o Galaxies Ajit Kembhavi IUCAA Galaxies: Stars: ~10 11 Mass: ~10 11 M Sun Contain stars, gas and dust, possibly a supermassive black hole at the centre. Much

More information

Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs

Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs Energy mosquito lands on your arm = 1 erg Firecracker = 5 x 10 9 ergs 1 stick of dynamite = 2 x 10 13 ergs 1 ton of TNT = 4 x 10 16 ergs 1 atomic bomb = 1 x 10 21 ergs Magnitude 8 earthquake = 1 x 10 26

More information

ANSWER KEY. Stars, Galaxies, and the Universe. Telescopes Guided Reading and Study. Characteristics of Stars Guided Reading and Study

ANSWER KEY. Stars, Galaxies, and the Universe. Telescopes Guided Reading and Study. Characteristics of Stars Guided Reading and Study Stars, Galaxies, a the Universe Stars, Galaxies, and the Universe Telescopes Use Target Reading Skills Check student definitions for accuracy. 1. Electromagneticradiationisenergythatcan travel through

More information

Introduction to (Strong) Gravitational Lensing: Basics and History. Joachim Wambsganss Zentrum für Astronomie der Universität Heidelberg (ZAH/ARI)

Introduction to (Strong) Gravitational Lensing: Basics and History. Joachim Wambsganss Zentrum für Astronomie der Universität Heidelberg (ZAH/ARI) Introduction to (Strong) Gravitational Lensing: Basics and History Joachim Wambsganss Zentrum für Astronomie der Universität Heidelberg (ZAH/ARI) Introduction to (Strong) Gravitational Lensing: Basics

More information

3/1/18 LETTER. Instructors: Jim Cordes & Shami Chatterjee. Reading: as indicated in Syllabus on web

3/1/18 LETTER. Instructors: Jim Cordes & Shami Chatterjee. Reading: as indicated in Syllabus on web Astro 2299 The Search for Life in the Universe Lecture 9 Last time: Star formation Formation of protostars and planetary systems This time A few things about the epoch of reionization and free fall times

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc.

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc. Chapter 16 Lecture The Cosmic Perspective Seventh Edition Star Birth 2014 Pearson Education, Inc. Star Birth The dust and gas between the star in our galaxy is referred to as the Interstellar medium (ISM).

More information

The Galaxy. (The Milky Way Galaxy)

The Galaxy. (The Milky Way Galaxy) The Galaxy (The Milky Way Galaxy) Which is a picture of the Milky Way? A A is what we see from Earth inside the Milky Way while B is what the Milky Way might look like if we were far away looking back

More information

Astronomy Ch. 22 Neutron Stars and Black Holes. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 22 Neutron Stars and Black Holes. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 22 Neutron Stars and Black Holes MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In a neutron star, the core

More information

Physics HW Set 3 Spring 2015

Physics HW Set 3 Spring 2015 1) If the Sun were replaced by a one solar mass black hole 1) A) life here would be unchanged. B) we would still orbit it in a period of one year. C) all terrestrial planets would fall in immediately.

More information

Universe Now. 9. Interstellar matter and star clusters

Universe Now. 9. Interstellar matter and star clusters Universe Now 9. Interstellar matter and star clusters About interstellar matter Interstellar space is not completely empty: gas (atoms + molecules) and small dust particles. Over 10% of the mass of the

More information

Uranus & Neptune: The Ice Giants. Discovery of Uranus. Bode s Law. Discovery of Neptune

Uranus & Neptune: The Ice Giants. Discovery of Uranus. Bode s Law. Discovery of Neptune Uranus & Neptune: The Ice Giants Discovery of Uranus Discovery of Uranus & Neptune Properties Density & Composition Internal Heat Source Magnetic fields Rings Uranus Rotational Axis by William Herschel

More information

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 2 TEST VERSION 1 ANSWERS

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 2 TEST VERSION 1 ANSWERS AST 101 INTRODUCTION TO ASTRONOMY SPRING 2008 - MIDTERM EXAM 2 TEST VERSION 1 ANSWERS Multiple Choice. In the blanks provided before each question write the letter for the phrase that best answers the

More information

Stars and Galaxies 1

Stars and Galaxies 1 Stars and Galaxies 1 Characteristics of Stars 2 Star - body of gases that gives off great amounts of radiant energy as light and heat 3 Most stars look white but are actually different colors Antares -

More information

INTRODUCTION TO SPACE

INTRODUCTION TO SPACE INTRODUCTION TO SPACE 25.3.2019 The Galaxy II: Stars: Classification and evolution Various types of stars Interstellar matter: dust, gas Dark matter ELEC-E4530 Radio astronomy: the Sun, pulsars, microquasars,

More information

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Distances & the Milky Way. The Curtis View. Our Galaxy. The Shapley View 3/27/18

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Distances & the Milky Way. The Curtis View. Our Galaxy. The Shapley View 3/27/18 Astronomy 113 Dr. Joseph E. Pesce, Ph.D. Distances & the Milky Way 14-2 Historical Overview: the Curtis-Shapley Debate ³What is the size of our galaxy? ³What is the nature of spiral nebula? The Curtis

More information

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D. Astronomy 113 Dr. Joseph E. Pesce, Ph.D. Distances & the Milky Way Historical Overview: the Curtis-Shapley Debate ³What is the size of our galaxy? ³What is the nature of spiral nebula? 14-2 ³Occurred in

More information

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy Chapter 13, Part 1: Lower Main Sequence Stars Define red dwarf, and describe the internal dynamics and later evolution of these low-mass stars. Appreciate the time scale of late-stage stellar evolution

More information

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo Chapter 19 Galaxies Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past halo disk bulge Barred Spiral Galaxy: Has a bar of stars across the bulge Spiral Galaxy 1

More information

Active Galactic Nuclei

Active Galactic Nuclei Active Galactic Nuclei How were they discovered? How common are they? How do we know they are giant black holes? What are their distinctive properties? Active Galactic Nuclei for most galaxies the luminosity

More information

Joy of Science Experience the evolution of the Universe, Earth and Life

Joy of Science Experience the evolution of the Universe, Earth and Life Joy of Science Experience the evolution of the Universe, Earth and Life Review Introduction Main contents Quiz Unless otherwise noted, all pictures are taken from wikipedia.org Review 1 The presence of

More information

Structure of the Milky Way. Structure of the Milky Way. The Milky Way

Structure of the Milky Way. Structure of the Milky Way. The Milky Way Key Concepts: Lecture 29: Our first steps into the Galaxy Exploration of the Galaxy: first attempts to measure its structure (Herschel, Shapley). Structure of the Milky Way Initially, star counting was

More information

Interstellar Medium and Star Birth

Interstellar Medium and Star Birth Interstellar Medium and Star Birth Interstellar dust Lagoon nebula: dust + gas Interstellar Dust Extinction and scattering responsible for localized patches of darkness (dark clouds), as well as widespread

More information

Is Dark Energy Falsifiable?

Is Dark Energy Falsifiable? Is Dark Energy Falsifiable? Carl H. Gibson Departments of MAE and SIO Center for Astrophysics and Space Sciences University of Cal. San Diego La Jolla, CA 92093-0411 cgibson@ucsd.edu Rudolph E. Schild

More information

Exam 4 Review EXAM COVERS LECTURES 22-29

Exam 4 Review EXAM COVERS LECTURES 22-29 Exam 4 Review EXAM COVERS LECTURES 22-29 Theoretically is there a center of the universe? Is there an edge? Do we know where Earth is on this? There is no center to the Universe, What kind of light we

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Second edition Bernard F. Burke and Francis Graham-Smith CAMBRIDGE UNIVERSITY PRESS Contents Preface to the second edition page x 1 Introduction 1 1.1 The role of radio

More information

Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n)

Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n) When a planets orbit around the Sun looks like an oval, it s called a(n) - ellipse - circle - axis - rotation Which of the following planets are all made up of gas? - Venus, Mars, Saturn and Pluto - Jupiter,

More information

AST Section 2: Test 2

AST Section 2: Test 2 AST1002 - Section 2: Test 2 Date: 11/05/2009 Name: Equations: E = m c 2 Question 1: The Sun is a stable star because 1. gravity balances forces from pressure. (!) Miniquiz 7, Q3 2. the rate of fusion equals

More information

Gravitational microlensing and its capabilities for research of the dark matter. Lyudmila Berdina Institute of Radio Astronomy NAS of Ukraine

Gravitational microlensing and its capabilities for research of the dark matter. Lyudmila Berdina Institute of Radio Astronomy NAS of Ukraine Gravitational microlensing and its capabilities for research of the dark matter Lyudmila Berdina Institute of Radio Astronomy NAS of Ukraine Gravitational lensing Spherically symmetric mass distribution

More information

Introduction to the Universe. What makes up the Universe?

Introduction to the Universe. What makes up the Universe? Introduction to the Universe What makes up the Universe? Objects in the Universe Astrophysics is the science that tries to make sense of the universe by - describing the Universe (Astronomy) - understanding

More information

CHAPTER 29: STARS BELL RINGER:

CHAPTER 29: STARS BELL RINGER: CHAPTER 29: STARS BELL RINGER: Where does the energy of the Sun come from? Compare the size of the Sun to the size of Earth. 1 CHAPTER 29.1: THE SUN What are the properties of the Sun? What are the layers

More information

Who was here? How can you tell? This is called indirect evidence!

Who was here? How can you tell? This is called indirect evidence! 1 Who was here? How can you tell? This is called indirect evidence! 2 How does a planetary system form? The one we can study in the most detail is our solar system. If we want to know whether the solar

More information

5) What spectral type of star that is still around formed longest ago? 5) A) F B) A C) M D) K E) O

5) What spectral type of star that is still around formed longest ago? 5) A) F B) A C) M D) K E) O HW2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The polarization of light passing though the dust grains shows that: 1) A) the dust grains

More information

life ISSN

life ISSN Journal of Cosmology (2014), Vol. 23, No. 12, pp 11908-11918. 1 Life 2013, 3, 1-x manuscripts; doi:10.3390/life30x000x OPEN ACCESS life ISSN 2075-1729 www.mdpi.com/journal/life Article Life begins on primordial

More information

The Interstellar Medium (ch. 18)

The Interstellar Medium (ch. 18) The Interstellar Medium (ch. 18) The interstellar medium (ISM) is all the gas (and about 1% dust) that fills our Galaxy and others. It is the raw material from which stars form, and into which stars eject

More information

Stellar evolution Part I of III Star formation

Stellar evolution Part I of III Star formation Stellar evolution Part I of III Star formation The interstellar medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

Coriolis Effect - the apparent curved paths of projectiles, winds, and ocean currents

Coriolis Effect - the apparent curved paths of projectiles, winds, and ocean currents Regents Earth Science Unit 5: Astronomy Models of the Universe Earliest models of the universe were based on the idea that the Sun, Moon, and planets all orbit the Earth models needed to explain how the

More information

Microlensing (planet detection): theory and applications

Microlensing (planet detection): theory and applications Microlensing (planet detection): theory and applications Shude Mao Jodrell Bank Centre for Astrophysics University of Manchester (& NAOC) 19/12/2009 @ KIAA Outline What is (Galactic) microlensing? Basic

More information

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Reminder: When I write these questions, I believe that there is one one correct answer. The questions consist of all parts a e. Read the entire

More information

ASTR 101 Introduction to Astronomy: Stars & Galaxies

ASTR 101 Introduction to Astronomy: Stars & Galaxies We observe star-gas-star cycle operating in Milky Way s disk using many different wavelengths of light! ASTR 101 Introduction to Astronomy: Stars & Galaxies Infrared light reveals stars whose visible light

More information

Ch. 10: Star Formation of Planetary Systems. A summary of the process by which our solar system formed, according to the nebular theory.

Ch. 10: Star Formation of Planetary Systems. A summary of the process by which our solar system formed, according to the nebular theory. 1 Ch. 10: Star Formation of Planetary Systems A summary of the process by which our solar system formed, according to the nebular theory. Materials in the solar nebula. 2 3 Temperature differences in the

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum Three Kinds of Spectra Sun: The Nearest Star Radius 696,000 km 109 Re Mass 2 x 10^30 kg 300,000 Me Density 1400 kg/m^3 Luminosity 3.8x10^26 Watts (board calc.) Comp. 70% H,

More information

Exam 3 Astronomy 114

Exam 3 Astronomy 114 Exam 3 Astronomy 114 Select the answer that is the most appropriate among the choices given. 1. What is the Hubble law? (A) a relation between a galaxy s mass and radius. (B) a rule that describes the

More information

Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008

Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008 Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008 Wed, July 16 MW galaxy, then review. Start with ECP3Ch14 2 through 8 Then Ch23 # 8 & Ch 19 # 27 & 28 Allowed Harlow Shapely to locate

More information

A100H Exploring the Universe: Discovering Galaxies. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: Discovering Galaxies. Martin D. Weinberg UMass Astronomy A100H Exploring the Universe: Discovering Galaxies Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu April 05, 2016 Read: Chap 19 04/05/16 slide 1 Exam #2 Returned by next class meeting

More information

Solution for Homework# 3. Chapter 5 : Review & Discussion

Solution for Homework# 3. Chapter 5 : Review & Discussion Solution for Homework# 3 Chapter 5 : Review & Discussion. The largest telescopes are reflecting telescopes, primarily because of 3 distinct disadvantages of the refracting telescope. When light passes

More information

ASTR 101 Introduction to Astronomy: Stars & Galaxies

ASTR 101 Introduction to Astronomy: Stars & Galaxies ASTR 101 Introduction to Astronomy: Stars & Galaxies We observe star-gas-star cycle operating in Milky Way s disk using many different wavelengths of light Infrared light reveals stars whose visible light

More information

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident Big Bang Moment of beginning of space-time about 13.7 billion years ago The time at which all the material and energy in the expanding Universe was coincident Only moment in the history of the Universe

More information

Energy Source for Active Galactic Nuclei

Energy Source for Active Galactic Nuclei Quasars Quasars are small, extremely luminous, extremely distant galactic nuclei Bright radio sources Name comes from Quasi-Stellar Radio Source, as they appeared to be stars! Can have clouds of gas near

More information

Non Baryonic Nature of Dark Matter

Non Baryonic Nature of Dark Matter Non Baryonic Nature of Dark Matter 4 arguments MACHOs Where are the dark baryons? Phys 250-13 Non Baryonic 1 Map of the territory dark matter and energy clumped H 2? gas baryonic dust VMO? MACHOs Primordial

More information

Directions: For numbers 1-30 please choose the letter that best fits the description.

Directions: For numbers 1-30 please choose the letter that best fits the description. Directions: For numbers 1-30 please choose the letter that best fits the description. 1. The main force responsible for the formation of the universe is: a. Gravity b. Frictional force c. Magnetic force

More information

Universe Now. 12. Revision and highlights

Universe Now. 12. Revision and highlights Universe Now 12. Revision and highlights Practical issues about the exam The exam is on Monday 6.5. (12.00-16.00), lecture hall B121 (Exactum). Paper will be provided. You have 4 hours to finish the exam,

More information

Review Questions for the new topics that will be on the Final Exam

Review Questions for the new topics that will be on the Final Exam Review Questions for the new topics that will be on the Final Exam Be sure to review the lecture-tutorials and the material we covered on the first three exams. How does speed differ from velocity? Give

More information

Galaxy clusters. Dept. of Physics of Complex Systems April 6, 2018

Galaxy clusters. Dept. of Physics of Complex Systems April 6, 2018 Galaxy clusters László Dobos Dept. of Physics of Complex Systems dobos@complex.elte.hu É 5.60 April 6, 2018 Satellite galaxies Large galaxies are surrounded by orbiting dwarfs approx. 14-16 satellites

More information

Major Option C1 Astrophysics. C1 Astrophysics

Major Option C1 Astrophysics. C1 Astrophysics C1 Astrophysics Course co-ordinator: Julien Devriendt jeg@astro.ox.ac.uk C1 offers a total of ~40 lectures on five themes covering a broad range of topics in contemporary astrophysics. Each theme takes

More information

Chapter 10 Worlds of Gas and Liquid- The Giant Planets. 21st CENTURY ASTRONOMY Fifth EDITION Kay Palen Blumenthal

Chapter 10 Worlds of Gas and Liquid- The Giant Planets. 21st CENTURY ASTRONOMY Fifth EDITION Kay Palen Blumenthal Chapter 10 Worlds of Gas and Liquid- The Giant Planets 21st CENTURY ASTRONOMY Fifth EDITION Kay Palen Blumenthal What is a storm on Saturn like? The Giant Planets, Part 1 Jupiter, Saturn, Uranus, and Neptune

More information

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night LECTURE 1: Introduction to Galaxies The Milky Way on a clear night VISIBLE COMPONENTS OF THE MILKY WAY Our Sun is located 28,000 light years (8.58 kiloparsecs from the center of our Galaxy) in the Orion

More information

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds.

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. Image taken from the European Southern Observatory in Chile

More information