sin constructive n same condition destructive 2 Interference Constructive - Destructive 2-slit single slit diff. grating

Size: px
Start display at page:

Download "sin constructive n same condition destructive 2 Interference Constructive - Destructive 2-slit single slit diff. grating"

Transcription

1

2 Interference Constructive - Destructive 2-slit single slit diff. grating reflection Note: difference = 0 difference destructive 2 d sin reflection constructive d 2 sin tot. inter. = reflection + path length effect effect effect n same condition 8-0 n increase - /2 n decrease- no change

3 Newton-1666 Woolsthrope Eng. White Light glass prism Contains all colors Circular Elongated ROY G BIV To help remember RED ORANGE YELLOW GREEN BLUE INDAGO VIOLET Prism separates light into its component colors [different wavelength] Before Newton it was thought that the glass darkened the white light into colors. Newton s proof of separating idea: White Light Only one color gets through. The Baroque Cycle Neal Stephenson Unusual characters!! Newton Same color: 2nd prism didn t further darken light! 8-1

4

5 v = wave velocity Add up 2 waves point by point Interference partial/total cancellation/increase Constructive Interference + = Destructive Interference anything in-between + = 0 8-3

6 Corpuscular or particle theory of light 2 particle sources add in simple way (Newton believed this) Christian Huygens proposed Wave theory of light (correct) 2 wave sources interference yields large intensity oscillations Thomas Young did the experiment 1801 observed light-wave interference 8-4

7 Add 2 waves that have traveled slightly different distances. x x-x x Sum=E t x t x' 0sin(2π + 2π ) + E 0sin(2π + 2π ) T T Sum=2E 0 x - x' t [x + x'] cos(π ) sin(2π + π ) T Big difference with small x-x!! x - x' = 0,1,2,3,4...m λ cos(m ) = ±1 constructive interference x - x' = 1, 3, 5,... n λ n odd! destructive interference trig. identity time dependence same with zero shift cos(n / 2) = 0 forget time term i.e. time average squared 2 2 x - x' I =[2E 0] cos (π ) 8-5

8 + 0 - / Shifted by (+A) + (+A) =2A Constructive interference 8-5a

9 + 0 - / /2 Shifted by /2 (+A) + (-A) =0 Destructive interference 8-5b

10 8-6 Huygens Principle Generate how wave propagates by summing up point sources Generate all of geometrical optics!!! new wave front old wave front Huygens point source wave fronts (maxima) propagate in spherical shells Snell s law follows from wave nature of light

11 a

12 8-6b

13 same path length Two-Slit Experiment constructive Δ = 0, λ, 2λ,...,mλ Δ = 2λ λ Δ expanded view path length difference Δ = 0 Δ = λ 2 Δ = d sin(θ) destructive Δ = λ +λ 2 Δ = λ, λ +λ,..., λ +nλ

14 2-slit interference 8-7a

15 a-1

16 Linear Distance in an Interference Pattern H y L 2 2 tan Small angle approximation (radians) <~.1 y tan sin H y L y L y<<h or L 8-7b

17 2-slit interference demo Measure 2y ~2 cm y~.1m -9 1nm =(10) m d sin min. 2y min. 12in 2.54cm 1m L 50 ft 15.24m 1 ft 1m 100cm y y Two-Slit Interference L~ 50 ft H y sin = H 73 d~.522mm =.522(10) -3 m He-Ne 632.8nm -7 =6.33 (10) m 1 y H L sin d 2 H -7 L (15.24) 6.33(10) y m -3 2d 2(.522)(10) 92.4(10).924(10) y.924(10) y.924cm m m m expect laser small angle approx.

18 Two-Slit Interference same path length θ(first min) y Δ Δ = d sin(θ) = path length difference θ(first min) λ Δ = d sin(θ) = 2 8-8a

19 Two-Slit Interference min to min = 2y homework L=1.4 m tan()=y/l= /1.4 tan()=y/l= tan()~sin() here y 23 mm = 4(2y) 8y = 23 (10) -3 m y = m y Use to find sin() d sin()=/2 d= /[2 sin()] d = /[2 ( ) ] = /4.1 (10 3 )= m 8-8b

20 Single-Slit Diffraction d 8-9

21 Single Slit Diffraction d sin 2 2 First minimum d sin a

22 a-1

23 Single-Slit Diffraction d /2 sin d width d /2 d sin 2 2 sin d ~2 d Destructive 1 st 8-9b

24 Single Slit Diffraction d sin 4 2 Single-Slit Diffraction 2nd minimum 8-9c

25 8-9d Note: same trick doesn t work exactly for maxima Single-Slit Diffraction Destructive 2 nd d d /4 /4 d sin 4 2 sin 2 d d d /4 /4 Note: Higher order minima -use same argument - Divide into even number of sourced d sin 2n 2 dsin n n 1,2,3,4...

26 Single Slit Interference y 2 =.152/2 m = m nm L=1.5 m tan( 2 )=y 2 /L=.076 /1.5 tan()=y/l=.0507 tan()~sin() here 8-9e d sin1 2 2 d sin y 2 1 d sin2 4 2 d sin 2 d 2 2 sin 2(632.8) d nm.0507 d nm d m 2

27 Single slit diffraction demo laser d ~.348(10) 3 m 1 st min diff Single-Slit Diffraction He-Ne laser (10) m L H 15.24m y sin First minimum L 1 st min d sin small angle approx. d y L y 2 L 2 d y 7 (6.33)(10) m(15.24 m).348(10) 3 m 4 277(10) m 2.8 cm =3cm

28 Laser 635 mn 6.35 (10) -7 m 1 st min diff Width of Prof. Croft s Hair d sin 2 2 Hair d H y L y y sin ~ ~ L H 1 st min at y=7mm= 7(10) -3 m With L~H~1m sin d y d L L d y d d hair hair (10) 1.9(10) 7(10) 4 m -3 m m m small angle approx. 3.09(10) m.09 mm or =.1mm st min Blocking screen shape gives same pattern as hole in screen

29 d Diffraction Grating l = m Constructive interference d sin() d sin()= m λ sin(θ)=m d m = 0, 1, 2. m = 0, 1, 2. m=0 implies =0 (straight through) m>0 depends on Can use to diffract visible light from A [ A =10 cm 10 m] 8-12

30 Diffraction Grating Δ = d sin(θ) constructive Δ = 0, λ, 2λ,...,mλ white light many s different different d θ Diffraction Grating separates s Δ = d sin(θ) 8-12a

31 8-13 Diffraction Grating

32 Rules for interface reflection n >n NO PHASE CHANGE n <n PHASE CHANGE= EXTRA PATH OF /2 n n Transmission slows down n <n Reflection PHASE CHANGE= EXTRA PATH OF /2 Transmission speeds up n >n Reflection NO PHASE CHANGE 8-14

33 Simple effect interface reflection only interference Just before the soap film pops, it goes dark /2 phase change no phase change n>1 t If thickness t <<, then 2nt/ << 2 Destructive interference for all wavelengths No reflected light Black regions t << a

34 same from this line Simple effect path length only interference mirror /2 L mirror Metal ref index~1.3 /2 change on reflection 2 L Path length difference 2 L /2 destructive interference (1 st ) 2 L constructive interference (1 st ) /2+ /2= : 2 reflections No reflection effect 2 L m m=1,2,3,4,5... constructive interference 2 L ( m 1/ 2) m=0,1,2,3,4,5... destructive interference 8-14b

35 Note: difference = 0 difference interference between rays reflected Assume incidence t Case n 2 n 3 : /2 change reflected from top & from bottom interface. PATH DIFF. IN FILM THIN FILM INTERFERENCE depends on n 1 > n 2 < n 3 n 1 n 1 < n 2 < n 3 n 1 < n 2 < n 3 : /2 change reflection changes no effect l = 2 t specify Case 1a constructive thinnest l = 2 t = n2 = / n 2 n 1 > n 2 > n 3 n 1 < n 2 > n 3... tot. inter. = reflection + path length effect effect effect figure out choose to fit Case 1b destructive thinnest l = 2 t = n2 /2 = / 2n 2 t = / 2n 2 t = / 4n Just path length gives effect

36 Example anti-reflection coating in green 532 nm n 1 < n 2 n 2 <n 3 Want /2 for destructive interference : /2 : /2 change same change have no interface reflection effect Air MnF2 glass n 1 = 1 n 2 = 1.38 n 3 = 1.50 t Want to interfere destructive (cancel) 2t tot. inter. = reflection + path length Want /2 for destructive interference must come from path length effect effect effect 0 min. thickness n2 2t 2 1 n2 t ( ) n2 2 t 1 2 n2 min 4 n 2 t min nm tmin nm 4 ( 1. 38) Note: difference = 0 difference 8-16

37 Assume incidence t interference between rays reflected n 1 =1 : /2 change n 2 =1.5 n 3 =1.33 Case n 1 < n 2 > n 3 n 1 =1 n 2 =1.5 n 3 =1.33 reflected from top & from bottom interface. no change PATH DIFF. IN FILM l = 2 t THIN FILM INTERFERENCE tot. inter. = reflection + path length effect effect effect specify figure out choose to fit /2 example Constructive enhanced reflection must undo constructive thinnest l = 2 t = n2 /2 = /2 n 2 t = / 4n 2 Reflection change : / Note: difference = 0 difference

38 Example anti-reflection coating in green 532 nm Want /2 for destructive interference n 1 < n 2 n 2 >n 3 min. thickness : /2 change no change /2 for destructive interference from reflection only Want from path length tmin nm 2 ( 1. 5) t 177 nm min Air glass water n 1 = 1 n 2 = 1.5 n 3 = 1.33 t min n 2 t Want to interfere destructive (cancel) 2t tot. inter. = reflection + path length effect effect effect Want /2 t n2 /2 2t n2 need n2 n a Note: difference = 0 difference

39 8-18

40 EM wave in vacuum f c v < c EM wave in material light slower in medium. Index of refraction: n= c / v > 1 f =c/f n AIR ICE WATER GLASS DIAMOND = v/f = /n atoms/molecules + must distort - slows propagation IM MATERIAL FREQUENCY UNCHANGED. WAVELENGTH IS SHORTER

41 8-20

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 26 Chapter 33 sec. 1-4 Fall 2017 Semester Professor Koltick Interference of Light Interference phenomena are a consequence of the wave-like nature of light Electric

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Double-Slit Eperiment reading: Chapter 22 2. Single-Slit Diffraction reading: Chapter 22 3. Diffraction Grating reading: Chapter

More information

Some properties of waves: Huygens principle Superposition Coherence Interference Young s double-slit experiment Thin-film interference

Some properties of waves: Huygens principle Superposition Coherence Interference Young s double-slit experiment Thin-film interference Some properties of waves: Huygens principle Superposition Coherence Interference Young s double-slit experiment Thin-film interference Phys 2435: Chap. 35, Pg 1 Geometrical Optics Assumption: the dimensions

More information

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters Disclaimer: Chapter 29 Alternating-Current Circuits (1) This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters 29-33. LC circuit: Energy stored LC

More information

PH 222-3A Spring 2010

PH 222-3A Spring 2010 PH -3A Spring 010 Interference Lecture 6-7 Chapter 35 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 35 Interference The concept of optical interference is critical to understanding

More information

Chapter 35. Interference

Chapter 35. Interference Chapter 35 Interference The concept of optical interference is critical to understanding many natural phenomena, ranging from color shifting in butterfly wings to intensity patterns formed by small apertures.

More information

Downloaded from

Downloaded from Question 10.1: Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of (a) reflected, and (b) refracted light? Refractive index

More information

Lecture 15 Interference Chp. 35

Lecture 15 Interference Chp. 35 Lecture 15 Interference Chp. 35 Opening Demo Topics Interference is due to the wave nature of light Huygen s principle, Coherence Change in wavelength and phase change in a medium Interference from thin

More information

Physics 102: Lecture 20 Interference. Physics 102: Lecture 20, Slide 1

Physics 102: Lecture 20 Interference. Physics 102: Lecture 20, Slide 1 Physics 102: Lecture 20 Interference Physics 102: Lecture 20, Slide 1 Phys 102 recent lectures Light as a wave Lecture 14 EM waves Lecture 15 Polarization Lecture 20 & 21 Interference & diffraction Light

More information

Waves Part III Electromagnetic waves

Waves Part III Electromagnetic waves Waves Part III Electromagnetic waves Electromagnetic (light) waves Transverse waves Transport energy (and momentum) Can travel through vacuum (!) and certain solids, liquids and gases Do not transport

More information

Light as a Transverse Wave.

Light as a Transverse Wave. Waves and Superposition (Keating Chapter 21) The ray model for light (i.e. light travels in straight lines) can be used to explain a lot of phenomena (like basic object and image formation and even aberrations)

More information

PS210 - Optical Techniques. Section VI

PS210 - Optical Techniques. Section VI PS210 - Optical Techniques Section VI Section I Light as Waves, Rays and Photons Section II Geometrical Optics & Optical Instrumentation Section III Periodic and Non-Periodic (Aperiodic) Waves Section

More information

Final Exam is coming!

Final Exam is coming! Final Exam is coming! Thurs., May 4, 4:30 to 6:30 pm, in this room. 25 multiple-choice questions Personalized exams I will enter the grade on your Mastering Physics account ( Final ). Old Part is comprehensive.

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Light as Waves Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 41! In the previous chapter we discussed light as rays! These rays traveled in a straight line except when they were reflected

More information

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

C. Incorrect! The velocity of electromagnetic waves in a vacuum is the same, 3.14 x 10 8 m/s.

C. Incorrect! The velocity of electromagnetic waves in a vacuum is the same, 3.14 x 10 8 m/s. AP Physics - Problem Drill 21: Physical Optics 1. Which of these statements is incorrect? Question 01 (A) Visible light is a small part of the electromagnetic spectrum. (B) An electromagnetic wave is a

More information

Electromagnetic Waves A.K.A. Light

Electromagnetic Waves A.K.A. Light Electromagnetic Waves A.K.A. Light When Thomas Edison worked late into the night on the electric light, he had to do it by gas lamp or candle. I'm sure it made the work seem that much more urgent. George

More information

The EYE. Physics 1502: Lecture 32 Today s Agenda. Lecture 4. Announcements: Optics. Midterm 2: graded after Thanks Giving

The EYE. Physics 1502: Lecture 32 Today s Agenda. Lecture 4. Announcements: Optics. Midterm 2: graded after Thanks Giving Physics 1502: Lecture 32 Today s Agenda Announcements: Midterm 2: graded after Thanks Giving Homework 09: Friday December 4 Optics Eye interference The EYE ~f o objective I 2 L I 1 ~f e eyepiece 1 2 Compound

More information

Chapter 10. Interference of Light

Chapter 10. Interference of Light Chapter 10. Interference of Light Last Lecture Wave equations Maxwell equations and EM waves Superposition of waves This Lecture Two-Beam Interference Young s Double Slit Experiment Virtual Sources Newton

More information

Chapter 35 Diffraction and Polarization

Chapter 35 Diffraction and Polarization Chapter 35 Diffraction and Polarization If light is a wave, it will diffract around a single slit or obstacle. The resulting pattern of light and dark stripes is called a diffraction pattern. This pattern

More information

DIFFRACTION AND INTERFERENCE

DIFFRACTION AND INTERFERENCE DIFFRACTION AND INTERFERENCE We now turn to a consideration of what happens when two light waves interact with one another. We assume that the intensities are low enough that the disturbances add vectorially.

More information

Physics 4C. Chapter 35: Conceptual Questions: 2, 8, 12 Problems: 9, 21, 25, 26, 39, 40, 55, 72, 82, 83, 93

Physics 4C. Chapter 35: Conceptual Questions: 2, 8, 12 Problems: 9, 21, 25, 26, 39, 40, 55, 72, 82, 83, 93 Physics 4C Solutions to Chapter 35 HW Chapter 35: Conceptual Questions:, 8, 1 Problems: 9, 1, 5, 6, 39, 40, 55, 7, 8, 83, 93 Question 35- (a) increase (b) 1λ Question 35-8 (a) 300 nm (b) exactly out of

More information

Chapter 35 Diffraction and Polarization. Copyright 2009 Pearson Education, Inc.

Chapter 35 Diffraction and Polarization. Copyright 2009 Pearson Education, Inc. Chapter 35 Diffraction and Polarization 35-1 Diffraction by a Single Slit or Disk If light is a wave, it will diffract around a single slit or obstacle. 35-1 Diffraction by a Single Slit or Disk The resulting

More information

WAVE OPTICS GENERAL. Fig.1a The electromagnetic spectrum

WAVE OPTICS GENERAL. Fig.1a The electromagnetic spectrum WAVE OPTICS GENERAL - The ray optics cannot explain the results of the two following experimental situations: a) When passing by small openings or illuminating small obstacles, the light bends around borders

More information

Single Slit Diffraction and Resolving Power. Quantum Mechanics: Blackbody Radiation & Photoelectric Effect. Physics 102: Lecture 22

Single Slit Diffraction and Resolving Power. Quantum Mechanics: Blackbody Radiation & Photoelectric Effect. Physics 102: Lecture 22 Physics 102: Lecture 22 Single Slit Diffraction and Resolving Power Quantum Mechanics: Blackbody Radiation & Photoelectric Effect Physics 102: Lecture 22, Slide 1 Diffraction/Huygens principle Huygens:

More information

Optics. n n. sin c. sin

Optics. n n. sin c. sin Optics Geometrical optics (model) Light-ray: extremely thin parallel light beam Using this model, the explanation of several optical phenomena can be given as the solution of simple geometric problems.

More information

UNIT-5 EM WAVES UNIT-6 RAY OPTICS

UNIT-5 EM WAVES UNIT-6 RAY OPTICS UNIT-5 EM WAVES 2 Marks Question 1. To which regions of electromagnetic spectrum do the following wavelengths belong: (a) 250 nm (b) 1500 nm 2. State any one property which is common to all electromagnetic

More information

Double Slit is VERY IMPORTANT because it is evidence of waves. Only waves interfere like this.

Double Slit is VERY IMPORTANT because it is evidence of waves. Only waves interfere like this. Double Slit is VERY IMPORTANT because it is evidence of waves. Only waves interfere like this. Superposition of Sinusoidal Waves Assume two waves are traveling in the same direction, with the same frequency,

More information

Physics 214 Course Overview

Physics 214 Course Overview Physics 214 Course Overview Lecturer: Mike Kagan Course topics Electromagnetic waves Optics Thin lenses Interference Diffraction Relativity Photons Matter waves Black Holes EM waves Intensity Polarization

More information

The Diffraction Grating

The Diffraction Grating The Diffraction Grating If one extends the double slit to large number of slits very closely spaced, one gets what is called a diffraction grating. d sin θ. Maxima are still at d sin θ m = mλ, m = 0, 1,

More information

1/d o +1/d i =1/f. Chapter 24 Wave Optics. The Lens Equation. Diffraction Interference Polarization. The Nature of Light

1/d o +1/d i =1/f. Chapter 24 Wave Optics. The Lens Equation. Diffraction Interference Polarization. The Nature of Light Chapter 24 Wave Optics Diffraction Interference Polarization 2F h o The Lens Equation 1/d o +1/d i =1/f F F O d o f d i h i Geometrical and Physical Optics Geometrical Optics: The study of optical phenomena

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 1. Which of the following statements about the speed of waves on a string are true? I. The speed depends on the tension in

More information

Intensity of Interference Patterns

Intensity of Interference Patterns Intensity of Interference Patterns Wish to find I on a screen far away Let consider the E fields coming from the double slits: S 2 S 1 r r 2 1 E field from S 2 has a phase lag due to the extra path difference,

More information

Lecture 4: Diffraction & Spectroscopy

Lecture 4: Diffraction & Spectroscopy Lecture 4: Diffraction & Spectroscopy d θ y L Spectra of atoms reveal the quantum nature of matter Take a plastic grating from the bin as you enter class. Lecture 4, p 1 Today s Topics Single-Slit Diffraction*

More information

Physics 280 Week 04 In-Class Problems Summer 2016

Physics 280 Week 04 In-Class Problems Summer 2016 Physics 80 Week 04 In-Class Problems Summer 016 1. Consider the interface of water with class (say at the bottom of a beaker filled with water). Given: The index of refraction for water is n w = 1.33 and

More information

Physics 234 Homework Chapter 35 Q3, P3, P24, P32, P55, P81, P91. air

Physics 234 Homework Chapter 35 Q3, P3, P24, P32, P55, P81, P91. air Physics 34 Homework Chapter 35 Q3, P3, P4, P3, P55, P8, P9 Q a) r = r a r b = 5d 3d = d. b) r = /. c) / = d = r. Also, r = 3(/), 5(/), etc., works. d) / = d so d = /4. P3) (a) We take the phases of both

More information

Solutions to Conceptual Practice Problems PHYS 1112 In-Class Exam #2A+2B

Solutions to Conceptual Practice Problems PHYS 1112 In-Class Exam #2A+2B Solutions to Conceptual ractice roblems HYS 1112 In-Class xam #2A+2B Thu. Mar. 19, 2009, 11:00am-12:15pm and 2:00pm-3:15pm C 2.01: In a two-source interference experiment two sources are oscillating in

More information

Waves Part 3B: Interference

Waves Part 3B: Interference Waves Part 3B: Interference Last modified: 31/01/2018 Contents Links Interference Path Difference & Interference Light Young s Double Slit Experiment What Sort of Wave is Light? Michelson-Morley Experiment

More information

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011 PowerPoint Lectures to accompany Physical Science, 8e Chapter 7 Light Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Core Concept Light is electromagnetic radiation

More information

The individual electric and magnetic waves are in phase. The fields peak at the same position at the same time.

The individual electric and magnetic waves are in phase. The fields peak at the same position at the same time. 1 Part 3: Otics 3.1: Electromagnetic Waves An electromagnetic wave (light wave) consists of oscillating electric and magnetic fields. The directions of the electric and magnetic fields are erendicular.

More information

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

Week 7: Interference

Week 7: Interference Week 7: Interference Superposition: Till now we have mostly discusssed single waves. While discussing group velocity we did talk briefly about superposing more than one wave. We will now focus on superposition

More information

Properties of waves. Question. Ch 22, : Waves & interference. Question. Phase difference & interference

Properties of waves. Question. Ch 22, : Waves & interference. Question. Phase difference & interference Exam Tue. Sep. 9, 5:30-7 pm, 45 Birge Covers.5-7,, 3.-4, 3.7, 4.-5, 6 + lecture, lab, discussion, HW Chap.5-7, Waves, interference, and diffraction Chap 3 Reflection, refraction, and image formation Chap

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter 1 Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

Chapter 35 Physical Optics: Light as a wave

Chapter 35 Physical Optics: Light as a wave Chapter 35 Physical Optics: Light as a wave Interference happens when two or more waves combine Examples of no-pigmented color presentation (iridescence): Beautiful oil spills Colors on soap bubble Color

More information

Concave mirrors. Which of the following ray tracings is correct? A: only 1 B: only 2 C: only 3 D: all E: 2& 3

Concave mirrors. Which of the following ray tracings is correct? A: only 1 B: only 2 C: only 3 D: all E: 2& 3 Concave mirrors Which of the following ray tracings is correct? A: only 1 B: only 2 C: only 3 D: all E: 2& 3 1 2 3 c F Point C: geometrical center of the mirror, F: focal point 2 Concave mirrors Which

More information

Some Topics in Optics

Some Topics in Optics Some Topics in Optics The HeNe LASER The index of refraction and dispersion Interference The Michelson Interferometer Diffraction Wavemeter Fabry-Pérot Etalon and Interferometer The Helium Neon LASER A

More information

P5 Revision Questions

P5 Revision Questions P5 Revision Questions Part 2 Question 1 How can microwaves be used to communicate? Answer 1 Sent from transmitter, received and amplified by satellite in space, re-transmitted back to earth and picked

More information

Introduction to Optics

Introduction to Optics Introduction to Optics The Pasco Optics System. Figure 1 (Courtesy of PSCO) Setting up the Equipment The Optics Bench The optics bench is shown in Fig. 2 along with the light source, component holder and

More information

Measurements in Optics for Civil Engineers

Measurements in Optics for Civil Engineers Measurements in Optics for Civil Engineers I. FOCAL LENGTH OF LENSES The behavior of simplest optical devices can be described by the method of geometrical optics. For convex or converging and concave

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , 1 O P T I C S 1. Define resolving power of a telescope & microscope and give the expression for its resolving power. 2. Explain briefly the formation of mirage in deserts. 3. The radii of curvature of

More information

LECTURE 32: Young's Double-Slit Experiment

LECTURE 32: Young's Double-Slit Experiment Select LEARNING OBJECTIVES: LECTURE 32: Young's Double-Slit Experiment Understand the two models of light; wave model and particle model. Be able to understand the difference between diffraction and interference.

More information

Physics I : Oscillations and Waves Prof. S. Bharadwaj Department of Physics and Meteorology Indian Institute of Technology, Kharagpur

Physics I : Oscillations and Waves Prof. S. Bharadwaj Department of Physics and Meteorology Indian Institute of Technology, Kharagpur Physics I : Oscillations and Waves Prof. S. Bharadwaj Department of Physics and Meteorology Indian Institute of Technology, Kharagpur Lecture - 21 Diffraction-II Good morning. In the last class, we had

More information

The interference of waves

The interference of waves The interference of waves In physics, interference is the addition (superposition) of two or more waves that results in a new wave pattern. The displacements of the waves add algebraically. Consider two

More information

Interference by Wavefront Division

Interference by Wavefront Division nterference by Wavefront Division One of the seminal experiments in physics was conducted in 1801 by Thomas Young, an English physicist who cut a small hole in an opaque screen, set a second screen in

More information

Physics 116. Nov 3, Lecture 21 Wave optics. R. J. Wilkes 11/3/11 1

Physics 116. Nov 3, Lecture 21 Wave optics. R. J. Wilkes   11/3/11 1 Physics 116 Lecture 21 Wave optics Nov 3, 2011 R. J. Wilkes Email: ph116@u.washington.edu 11/3/11 1 Announcements 3 clickers have quiz data logged, but no registration: 622961 649314 614235 If one of these

More information

Material covered. Review session Sunday, April 14, 3pm, 141 Loomis. Next week s lectures

Material covered. Review session Sunday, April 14, 3pm, 141 Loomis. Next week s lectures Exam 3 Monday April 15! Material covered RLC circuits (Lect. 12) Thin film interference (Lect. 21) Discussion 7 10 & HW 7 11 (first half) Review session Sunday, April 14, 3pm, 141 Loomis Sara Rose will

More information

EA Notes (Scen 101), Tillery Chapter 7. Light

EA Notes (Scen 101), Tillery Chapter 7. Light EA Notes (Scen 101), Tillery Chapter 7 Light Introduction Light is hard to study because you can't see it, you only see it's effects. Newton tried to explain the energy in a light beam as the KE of a particle

More information

Waves Part 3: Superposition

Waves Part 3: Superposition Waves Part 3: Superposition Last modified: 06/06/2017 Superposition Standing Waves Definition Standing Waves Summary Standing Waves on a String Standing Waves in a Pipe Standing Waves in a Pipe with One

More information

Experiment 6: Interferometers

Experiment 6: Interferometers Experiment 6: Interferometers Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 NOTE: No labs and no lecture next week! Outline

More information

CHAPTERS: 9.1, 10.1 AND 10.2 LIGHT WAVES PROPERTIES

CHAPTERS: 9.1, 10.1 AND 10.2 LIGHT WAVES PROPERTIES Name Period CHAPTERS: 9.1, 10.1 AND 10.2 LIGHT WAVES PROPERTIES ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1. NT WAVES FOLDABLE (blue, green & yellow completely filled in.) /30 /30 2. WS READING GUIDE FOR

More information

Physics 30: Chapter 5 Exam Wave Nature of Light

Physics 30: Chapter 5 Exam Wave Nature of Light Physics 30: Chapter 5 Exam Wave Nature of Light Name: Date: Mark: /33 Numeric Response. Place your answers to the numeric response questions, with units, in the blanks at the side of the page. (1 mark

More information

3.3 The Wave Nature of Light

3.3 The Wave Nature of Light 3.3 The Wave Nature of Light Much of the history of physics is concerned with the evolution of our ideas about the nature of light. The speed of light was first measured with some accuracy in 1675, by

More information

The Nature of Light. Early Greece to 20 th Century

The Nature of Light. Early Greece to 20 th Century The Nature of Light For centuries there has been debate about whether the properties of light could best be explained using a particle model of light or a wave model. This lesson will focus primarily on

More information

Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009

Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009 Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009 Name Section Return this spreadsheet to your TA that will use it to score your lab. To receive full credit you must use complete sentences and

More information

Physics General Physics II. Electricity, Magnetism and Optics Lecture 20 Chapter Wave Optics. Fall 2015 Semester Prof.

Physics General Physics II. Electricity, Magnetism and Optics Lecture 20 Chapter Wave Optics. Fall 2015 Semester Prof. Physics 21900 General Physics II Electricity, Magnetism and Optics Lecture 20 Chapter 23.1-2 Wave Optics Fall 2015 Semester Prof. Matthew Jones Announcement Exam #2 will be on Thursday, November 5 th (tomorrow)

More information

Interference- Michelson Interferometer. Interference lecture by Dr. T.Vishwam

Interference- Michelson Interferometer. Interference lecture by Dr. T.Vishwam Interference- Michelson Interferometer Interference lecture by Dr. T.Vishwam * Measurement of the coherence length of a spectral line * Measurement of thickness of thin transparent flakes * Measurement

More information

Nature of Light Part 2

Nature of Light Part 2 Nature of Light Part 2 Fresnel Coefficients From Helmholts equation see imaging conditions for Single lens 4F system Diffraction ranges Rayleigh Range Diffraction limited resolution Interference Newton

More information

Conceptual Practice Problems for PHYS 1112 In-Class Exam #2A+2B

Conceptual Practice Problems for PHYS 1112 In-Class Exam #2A+2B Conceptual ractice roblems for HYS 1112 In-Class xam #2A+2B Thu. Mar. 19, 2009, 11:00am-12:15pm and 2:00pm-3:15pm C 2.01: In a two-source interference experiment two sources are oscillating in phase with

More information

Complete all the identification fields below or 10% of the lab value will be deduced from your final mark for this lab.

Complete all the identification fields below or 10% of the lab value will be deduced from your final mark for this lab. Physical optics Identification page Instructions: Print this page and the following ones before your lab session to prepare your lab report. Staple them together with your graphs at the end. If you forgot

More information

General Physics II Summer Session 2013 Review Ch - 16, 17, 18

General Physics II Summer Session 2013 Review Ch - 16, 17, 18 95.104 General Physics II Summer Session 2013 Review Ch - 16, 17, 18 A metal ball hangs from the ceiling by an insulating thread. The ball is attracted to a positivecharged rod held near the ball. The

More information

Interferometers. PART 1: Michelson Interferometer The Michelson interferometer is one of the most useful of all optical instru

Interferometers. PART 1: Michelson Interferometer The Michelson interferometer is one of the most useful of all optical instru Interferometers EP421 Lab Interferometers Introduction: Interferometers are the key to accurate distance measurement using optics. Historically, when mechanical measurements dominated, interferometers

More information

Chapter 7. Interference of Light

Chapter 7. Interference of Light Chapter 7. Interference of Light Last Lecture Superposition of waves Laser This Lecture Two-Beam Interference Young s Double Slit Experiment Virtual Sources Newton s Rings Film Thickness Measurement by

More information

Electromagnetic spectra

Electromagnetic spectra Properties of Light Waves, particles and EM spectrum Interaction with matter Absorption Reflection, refraction and scattering Polarization and diffraction Reading foci: pp 175-185, 191-199 not responsible

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

Lecture 19 Optical MEMS (1)

Lecture 19 Optical MEMS (1) EEL6935 Advanced MEMS (Spring 5) Instructor: Dr. Huikai Xie Lecture 19 Optical MEMS (1) Agenda: Optics Review EEL6935 Advanced MEMS 5 H. Xie 3/8/5 1 Optics Review Nature of Light Reflection and Refraction

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #9: Diffraction Spectroscopy

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #9: Diffraction Spectroscopy NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #9: Diffraction Spectroscopy Lab Writeup Due: Mon/Wed/Thu/Fri, April 30/ May 2/3/4, 2018 Background All

More information

Speed of Light in Glass

Speed of Light in Glass Experiment (1) Speed of Light in Glass Objective:- This experiment is used to determine the speed of propagation of light waves in glass. Apparatus:- Prism, spectrometer, Halogen lamp source. Theory:-

More information

Q-1:- Derive the conditions for constructive and destructive interference due to thin films in reflected system. Ans :

Q-1:- Derive the conditions for constructive and destructive interference due to thin films in reflected system. Ans : Q-1:- Derive the conditions for constructive and destructive interference due to thin films in reflected system. Ans : In this discussion, following facts are presumed. Whenever a ray suffers reflection

More information

Chapter 33 Nature and Propagation of Light. From vision to digital camera to rainbows to pictures of the early universe light is all around us

Chapter 33 Nature and Propagation of Light. From vision to digital camera to rainbows to pictures of the early universe light is all around us Chapter 33 Nature and Propagation of Light From vision to digital camera to rainbows to pictures of the early universe light is all around us Introduction A coating of oil on water or a delicate glass

More information

Phys 2310 Mon. Dec. 11, 2014 Today s Topics. Begin Chapter 9: Interference Reading for Next Time

Phys 2310 Mon. Dec. 11, 2014 Today s Topics. Begin Chapter 9: Interference Reading for Next Time Phys 30 Mon. Dec., 04 Todays Topics Begin Chapter 9: nterference Reading for Next Time Reading this Week By Wed.: Begin Ch. 9 (9. 9.3) General Considerations, Conditions for nterference, Wavefront-splitting

More information

A refl = R A inc, A trans = T A inc.

A refl = R A inc, A trans = T A inc. Reading: Wave Optics 1, 2 Key concepts: Superposition; phase difference; amplitude and intensity; thin film interference; Fraunhofer diffraction; gratings; resolving power. 1.! Questions about interference

More information

Phys102 Lecture Diffraction of Light

Phys102 Lecture Diffraction of Light Phys102 Lecture 31-33 Diffraction of Light Key Points Diffraction by a Single Slit Diffraction in the Double-Slit Experiment Limits of Resolution Diffraction Grating and Spectroscopy Polarization References

More information

Version 087 EX4 ditmire (58335) 1

Version 087 EX4 ditmire (58335) 1 Version 087 EX4 ditmire (58335) This print-out should have 3 questions. Multiple-choice questions ma continue on the next column or page find all choices before answering. 00 (part of ) 0.0 points A material

More information

Dispersion. f (increasing frequency)

Dispersion. f (increasing frequency) Dispersion The index of refraction n is usually a property of the medium but equally important, it also varies with the frequency f of light dispersion. n typically increases with increasing f. f (increasing

More information

Two-Source Constructive and Destructive Interference Conditions

Two-Source Constructive and Destructive Interference Conditions Two-Source Constructive and Destructive Interference Conditions Crests Crests Crests Crests ath length difference: l = - Travel time difference: t = t 2 - t 1 t = ( - )/v Crests Crests h 1 g 1 f 1 e 1

More information

9.4 Light: Wave or Particle?

9.4 Light: Wave or Particle? Huygens principle every point on a wave front can be considered as a point source of tiny secondary wavelets that spread out in front of the wave at the same speed as the wave itself rectilinear propagation

More information

Ground- and Space-Based Telescopes. Dr. Vithal Tilvi

Ground- and Space-Based Telescopes. Dr. Vithal Tilvi Ground- and Space-Based Telescopes Dr. Vithal Tilvi Telescopes and Instruments Astronomers use telescopes to gather light from distant objects and instruments to record the data Telescopes gather light

More information

Pre-lab Quiz/PHYS 224. Your name Lab section

Pre-lab Quiz/PHYS 224. Your name Lab section Pre-lab Quiz/PHYS 224 THE DIFFRACTION GRATING AND THE OPTICAL SPECTRUM Your name Lab section 1. What are the goals of this experiment? 2. If the period of a diffraction grating is d = 1,000 nm, where the

More information

Optics. The refractive index of a material of a plain concave lens is 5/3, the radius of curvature is 0.3m. The focal length of the lens in air is ) 0.45 m ) 0.6 m 3) 0.75 m 4).0 m. The refractive index

More information

Chapter 4. Dispersion of Glass. 4.1 Introduction. 4.2 Apparatus

Chapter 4. Dispersion of Glass. 4.1 Introduction. 4.2 Apparatus Chapter 4 Dispersion of Glass 4.1 Introduction This experiment will develop skills in choosing a suitable fit for data and plotting the resulting curve. Curve fitting will count for a big chunk of the

More information

Light and Matter(LC)

Light and Matter(LC) Light and Matter(LC) Every astronomy book that I ve seen has at least one chapter dedicated to the physics of light. Why are astronomers so interested in light? Everything* that we know about Astronomical

More information

TA/TI survey. Phy Phy

TA/TI survey.   Phy Phy TA/TI survey https://webapps.pas.rochester.edu/secure/phpq/ Phy121 7 60 73 Phy123 1 6 11 Chapter 34 The Wave Nature of Light; Interference Units of Chapter 34 34-5 Interference in Thin Films 34-6 Michelson

More information

Chapter 1: Electrostatics

Chapter 1: Electrostatics 1.1 Coulomb s law a) State Coulomb s law, Chapter 1: Electrostatics b) Sketch the electric force diagram and apply Coulomb s law for a system of point charges. 1.2 Electric field a) Define and use electric

More information

Lab report 30 EXPERIMENT 4. REFRACTION OF LIGHT

Lab report 30 EXPERIMENT 4. REFRACTION OF LIGHT 30 EXPERIMENT 4. REFRACTION OF LIGHT Lab report Go to your course homepage on Sakai (Resources, Lab templates) to access the online lab report worksheet for this experiment. The worksheet has to be completed

More information

Chapter 33: ELECTROMAGNETIC WAVES 559

Chapter 33: ELECTROMAGNETIC WAVES 559 Chapter 33: ELECTROMAGNETIC WAVES 1 Select the correct statement: A ultraviolet light has a longer wavelength than infrared B blue light has a higher frequency than x rays C radio waves have higher frequency

More information

DIFFRACTION GRATING. OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths.

DIFFRACTION GRATING. OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths. DIFFRACTION GRATING OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths. THEORY: The operation of the grating is depicted in Fig. 1 on page Lens

More information