Properties of waves. Question. Ch 22, : Waves & interference. Question. Phase difference & interference

Size: px
Start display at page:

Download "Properties of waves. Question. Ch 22, : Waves & interference. Question. Phase difference & interference"

Transcription

1 Exam Tue. Sep. 9, 5:30-7 pm, 45 Birge Covers.5-7,, 3.-4, 3.7, 4.-5, 6 + lecture, lab, discussion, HW Chap.5-7, Waves, interference, and diffraction Chap 3 Reflection, refraction, and image formation Chap 4 Optical instruments Chap 6 8 / x handwritten note Electric charges and forces sheet (both sides) allowed Properties of waves Wavelength, frequency, propagation speed related as λf = v Phase relation In-phase: crests line up 80 Out-of-phase: crests line up with trough Time-delay leads to phase difference Path-length difference leads to phase difference Two waves of wavelength λ are traveling through a medium with index of refraction n=. One of the waves passes a medium of thickness d=λ and index n=.5.. What is the phase difference between the waves far to the right? A. λ/4 B. λ/ C. λ D. λ n= λ n=.5 Ch,.5-7: Waves & interference Path length difference and phase different path length -> phase difference. Two slit interference Alternating max and min due to path-length difference Phase change on reflection π phase change when reflecting from medium with higher index of refraction Interference in thin films Different path lengths + reflection phase change 3 4 Light beam Phase difference & interference Path length difference d Phase difference = d(π /λ) radians Constructive for πn phase difference Foil with two narrow slits Shorter path Longer path L Recording plate 5 You are listening to your favorite radio station, WOLX 94.9 FM (94.9x0 6 Hz) while jogging away from a reflecting wall, when the signal fades out. About how far must you jog to have the signal full strength again? (assume no phase change when the signal reflects from the wall) Hint: wavelength = (3x0 8 m/s)/94.9x0 6 Hz A. 3 m B..6 m C. 0.8 m D. 0.5 m λ=3.6 m d-x path length diff = (d+x)-(d-x)= x Destructive x=λ/ x=λ/4 Constructive make x=λ x=λ/ x increases by λ/4 = 3.6m/4=0.79m d x 6

2 Two-slit interference Two-slit interference: path length L y θ 7 Constructive int: Destructive int. Phase diff = πm, m = 0,±,± Path length diff = mλ, m = 0,±,± Phase diff = π(m +/), m = 0,±,± Path length diff = (m +/)λ, m = 0,±,± ( ) Path length difference d sinθ d y /L Phase difference π dsinθ λ πd λ y /L ( ) 8 Reflection phase shift Possible additional phase shift on reflection. Start in medium with n, reflect from medium with n n >n, / wavelength phase shift n <n, no phase shift Difference in phase shift between different paths is important. t Thin film interference λ air air: n = n > λ air /n air: n = Extra path length / wavelength phase shift from top surface reflection Reflecting from n No phase shift from bottom interface Reflecting from n Extra path length needed for constructive interference is ( m +/) ( λ air /n) t = ( m +/) ( λ air /n) 9 0 Thin-film interference example Coated glass in air, coating thickness = 75nm Incident white light nm Glass infinitely thick What color reflected light do you see? Both paths have 80 phase shifts So only path length difference is important t = mλ air /n film m = λ = 660nm Incident light n film =. eye n air = n glass =.5 t=75nm Thin Film Interference II Same coated glass underwater Now only one path has 80 phase shift t = ( m+/ )λ air / n film λ air = tn film /( m +/) = ( 75nm) (.) /( m +/) m=0 gives 30 nm, too long. m= gives 440 nm Color changes underwater! Incident light n glass =.5 eye n air = n film =. n water =.33

3 Diffraction from a slit Overlapping diffraction patterns Each point inside slit acts as a source Net result is series of minima and maxima Similar to two-slit interference. Two independent point sources will produce two diffraction patterns. If diffraction patterns overlap too much, resolution is lost. to right shows two sources clearly resolved. θ Angular separation Angular locations of minima (destructive interference) 3 Circular aperture diffraction limited: θ min =. λ D 4 Diffraction gratings Diffraction grating is pattern of multiple slits. Very narrow, very closely spaced. Same physics as two-slit interference d sinθ bright = mλ, m = 0,, sinθ bright = m λ d Chap. 3-4: Refraction & Ray optics Refraction Ray tracing Can locate image by following specific rays Types of images Real image: project onto screen Virtual image: image with another lens Lens equation Relates image distance, object distance, focal length Magnification Ratio of images size to object size 5 6 Refraction Occurs when light moves into medium with different index of refraction. Light direction bends according to n sinθ = n sinθ θ i, θ r n n θ Angle of refraction Special case: Total internal reflection Total internal reflection Total internal reflection occurs A) at angles of incidence greater than that for which the angle of refraction = 90 B) at angles of incidence less than that for which the angle of refraction = 90 C) at angles of incidence equal to 90 D) when the refractive indices of the two media are matched D) none of the above 7 8 3

4 Lenses: focusing by refraction Different object positions F F P.A. (real, inverted) ) Rays parallel to principal axis pass through focal point. ) Rays through center of lens are not refracted. 3) Rays through F emerge parallel to principal axis. Here image is real, inverted, enlarged (real, inverted) 9 (virtual, upright) These rays seem to originate from tip of a virtual arrow. 0 You have a near point of 5cm. You hold a 5 cm focal length converging lens of focal length a negligible distance from your eye to view a penny more closely. If you hold the penny so that it appears sharp when you focus your eye at infinity (relaxed eye) how many times larger does the penny appear than the best you can do without the converging lens? A. B. 3 C. 4 D. 5 E. 0 s s Relation between image distance object distance focal length Magnification = M = Equations s + s = f and object different sizes (real, inverted) image height object height = s image distance = s object distance You want an image on a screen to be ten times larger than your object, and the screen is m away. About what focal length lens do you need? A. f~0.m B. f~0.m C. f~0.5m D. f~.0m s + s = f s = m mag=0 -> s =0s ->s=0.m 0.m + m = 5.5 = f f = 0.8m 3 Diverging lens Focal length defined to be negative Then thin-lens equation can be used: s + s = f Optical Axis 4 Thurs. Sep. 7, 009 Physics 08, Lecture 5 4

5 p q ive Compound Microscope Chapter 6: Electric Charges & Forces ive lateral mag. Virtual =-q/p~l/f objective image Eyepiece: simple magnifier. Angular Mag.=5cm/p ~5cm/f eyepiece Real, inverted, image Eyepiece Triboelectric effect: transfer charge Total charge is conserved Vector forces between charges Add by superposition Drops off with distance as /r Insulators and conductors Polarization of insulators, conductors Mon. Feb. 4, 008 Physics 08, Lecture Electric force: magnitude & direction Electrical force between two stationary charged particles Forces add by superposition Equal but opposite charges are placed near a negative charge as shown. What direction is the net force on the negative charge? The SI unit of charge is the coulomb (C ), µc = 0-6 C C corresponds to 6.4 x 0 8 electrons or protons k e = Coulomb constant 9 x 0 9 N. m /C = /(4πε o ) ε o = permittivity of free space = x 0 - C / N. m Directed along line joining particles. A) Left B) Right C) Up D) Down E) Zero kq q F = r 7 8 Can all be approximated by electric dipole. Two opposite charges magnitude q separated by distance s The electric dipole Dipole moment p Vector Points from - charge to + charge Has magnitude qs Force on an electric dipole What is the direction of the force on the electric dipole from the positive point charge? A. Up p B. Down + C. Left D. Right E. Force is zero How does the magnitude of the force depend on p? 5

A Question. Simple Magnifier. Magnification by a Lens 11/29/2011. The last lecture

A Question. Simple Magnifier. Magnification by a Lens 11/29/2011. The last lecture The last lecture Exam: Final: Consult the website, especially room assignments. Makeup: Register with me today. Tea and Cookies: Tuesdays 5PM, NPB 2175 A Question Unpolarized light of intensity I goes

More information

( ) + ( +kq 2 / L) + 2 ( kq2 / 2L) + ( +kq2 / 3L) =

( ) + ( +kq 2 / L) + 2 ( kq2 / 2L) + ( +kq2 / 3L) = Exam 3 Solutions Prof. Paul Avery Prof. Pradeep Kumar Apr. 6, 014 1. Four charges are placed along a straight line each separated by a distance L from its neighbor. The order of the charges is +Q, Q, Q,

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , 1 O P T I C S 1. Define resolving power of a telescope & microscope and give the expression for its resolving power. 2. Explain briefly the formation of mirage in deserts. 3. The radii of curvature of

More information

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope In this experiment, we are going to learn the basic principles of the telescope and the microscope that make it possible for us

More information

General Physics II Summer Session 2013 Review Ch - 16, 17, 18

General Physics II Summer Session 2013 Review Ch - 16, 17, 18 95.104 General Physics II Summer Session 2013 Review Ch - 16, 17, 18 A metal ball hangs from the ceiling by an insulating thread. The ball is attracted to a positivecharged rod held near the ball. The

More information

Physics 208 Exam 1 Oct. 3, 2007

Physics 208 Exam 1 Oct. 3, 2007 1 Name: Student ID: Section #: Physics 208 Exam 1 Oct. 3, 2007 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer must be placed

More information

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova MIDTERM 3 REVIEW SESSION Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the

More information

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters Disclaimer: Chapter 29 Alternating-Current Circuits (1) This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters 29-33. LC circuit: Energy stored LC

More information

Optical Instruments. Chapter 25. Simple Magnifier. Clicker 1. The Size of a Magnified Image. Angular Magnification 4/12/2011

Optical Instruments. Chapter 25. Simple Magnifier. Clicker 1. The Size of a Magnified Image. Angular Magnification 4/12/2011 Optical Instruments Chapter 25 Optical Instruments Analysis generally involves the laws of reflection and refraction Analysis uses the procedures of geometric optics To explain certain phenomena, the wave

More information

Exam 4 Solutions. a. 1,2,and 3 b. 1 and 2, not 3 c. 1 and 3, not 2 d. 2 and 3, not 1 e. only 2

Exam 4 Solutions. a. 1,2,and 3 b. 1 and 2, not 3 c. 1 and 3, not 2 d. 2 and 3, not 1 e. only 2 Prof. Darin Acosta Prof. Greg Stewart April 8, 007 1. Which of the following statements is true? 1. In equilibrium all of any excess charge stored on a conductor is on the outer surface.. In equilibrium

More information

Physics 104 Exam 3 April 24, Name ID # Section # TA Name

Physics 104 Exam 3 April 24, Name ID # Section # TA Name Physics 104 Exam 3 April 24, 2003 Name ID # Section # TA Name Fill in your name, student ID # (not your social security #), and section # (under ABC of special codes) on the Scantron sheet. Fill in the

More information

UNIT-5 EM WAVES UNIT-6 RAY OPTICS

UNIT-5 EM WAVES UNIT-6 RAY OPTICS UNIT-5 EM WAVES 2 Marks Question 1. To which regions of electromagnetic spectrum do the following wavelengths belong: (a) 250 nm (b) 1500 nm 2. State any one property which is common to all electromagnetic

More information

Seat Number. Print and sign your name, and write your Student ID Number and seat number legibly in the spaces above.

Seat Number. Print and sign your name, and write your Student ID Number and seat number legibly in the spaces above. Physics 123A Final Spring 2001 Wednesday, June 6 Name last first initial Seat Number Signature Student Number Print and sign your name, and write your Student ID Number and seat number legibly in the spaces

More information

Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth 3 points.

Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth 3 points. Physics 5B FINAL EXAM Winter 2009 PART I (15 points): True/False Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth

More information

Profs. Y. Takano, P. Avery, S. Hershfield. Final Exam Solution

Profs. Y. Takano, P. Avery, S. Hershfield. Final Exam Solution PHY2049 Fall 2008 Profs. Y. Takano, P. Avery, S. Hershfield Final Exam Solution Note that each problem has three versions, each with different numbers and answers (separated by ). The numbers for each

More information

Describe the forces and torques exerted on an electric dipole in a field.

Describe the forces and torques exerted on an electric dipole in a field. Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

More information

Test 4 Preparation Questions

Test 4 Preparation Questions Test 4 Preparation Questions A1. One joule of work is required to move a one-coulomb point charge from point A to point B in a uniform electric field. This indicates that (A) the resistance between points

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 26 Chapter 33 sec. 1-4 Fall 2017 Semester Professor Koltick Interference of Light Interference phenomena are a consequence of the wave-like nature of light Electric

More information

The individual electric and magnetic waves are in phase. The fields peak at the same position at the same time.

The individual electric and magnetic waves are in phase. The fields peak at the same position at the same time. 1 Part 3: Otics 3.1: Electromagnetic Waves An electromagnetic wave (light wave) consists of oscillating electric and magnetic fields. The directions of the electric and magnetic fields are erendicular.

More information

Chapter Ray Optics and Optical Instrument

Chapter Ray Optics and Optical Instrument Chapter Ray Optics and Optical Instrument Q1. Focal length of a convex lens of refractive index 1.5 is 2 cm. Focal length of the lens when immersed in a liquid of refractive index of 1.25 will be [1988]

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 1. Which of the following statements about the speed of waves on a string are true? I. The speed depends on the tension in

More information

PHY 2049 SPRING 2001 FINAL EXAM

PHY 2049 SPRING 2001 FINAL EXAM PHY 049 SPRING 0 FINA EXAM 1 Three charges of the same sign and value q are placed in the corners of an equilateral triangle and free to move One more charge Q is placed in the center of the triangle so

More information

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Harmonic oscillation: Experiment Experiment to find a mathematical description of harmonic oscillation Kapitel 14 Harmonisk oscillator 1 2 Harmonic oscillation: Experiment Harmonic

More information

Profs. P. Avery, A. Rinzler, S. Hershfield. Final Exam Solution

Profs. P. Avery, A. Rinzler, S. Hershfield. Final Exam Solution PHY2049 Spring 2010 Profs. P. Avery, A. Rinzler, S. Hershfield Final Exam Solution 1. A proton traveling along the x axis (toward increasing x) has a speed of 1.0 10 5 m/s. At time t = 0 it enters a region

More information

PH 222-3A Spring 2010

PH 222-3A Spring 2010 PH -3A Spring 010 Interference Lecture 6-7 Chapter 35 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 35 Interference The concept of optical interference is critical to understanding

More information

Exam 4 (Final) Solutions

Exam 4 (Final) Solutions PHY049 Spring 006 Prof. Darin Acosta Prof. Greg Stewart May 1, 006 Exam 4 (Final) Solutions 1. Four charges are arranged into a square with side length a=1 cm as shown in the figure. The charges (clockwise

More information

Phys102 Lecture Diffraction of Light

Phys102 Lecture Diffraction of Light Phys102 Lecture 31-33 Diffraction of Light Key Points Diffraction by a Single Slit Diffraction in the Double-Slit Experiment Limits of Resolution Diffraction Grating and Spectroscopy Polarization References

More information

Physics 1302, Exam 3 Review

Physics 1302, Exam 3 Review c V Andersen, 2006 1 Physics 1302, Exam 3 Review The following is a list of things you should definitely know for the exam, however, the list is not exhaustive. You are responsible for all the material

More information

PHY132 Review for Mid-Term Test

PHY132 Review for Mid-Term Test PHY132 Review for Mid-Term Test Examinations are formidable even to the best prepared, for the greatest fool may ask more than the wisest man can answer. Charles Caleb Colton, English writer (1780-1832)

More information

Downloaded from

Downloaded from Question 10.1: Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of (a) reflected, and (b) refracted light? Refractive index

More information

Physics 202 Final Exam May 14, 2012

Physics 202 Final Exam May 14, 2012 ID CODE: D Physics 202 Final Exam May 14, 2012 Name:... Student ID:... Section:... TA (please circle): Deepak Agarwal Nicholas Brewer Raghvendra Chaubey Todd Garon Yutao Gong Andrew Loveridge Abhishek

More information

Light as a Transverse Wave.

Light as a Transverse Wave. Waves and Superposition (Keating Chapter 21) The ray model for light (i.e. light travels in straight lines) can be used to explain a lot of phenomena (like basic object and image formation and even aberrations)

More information

The EYE. Physics 1502: Lecture 32 Today s Agenda. Lecture 4. Announcements: Optics. Midterm 2: graded after Thanks Giving

The EYE. Physics 1502: Lecture 32 Today s Agenda. Lecture 4. Announcements: Optics. Midterm 2: graded after Thanks Giving Physics 1502: Lecture 32 Today s Agenda Announcements: Midterm 2: graded after Thanks Giving Homework 09: Friday December 4 Optics Eye interference The EYE ~f o objective I 2 L I 1 ~f e eyepiece 1 2 Compound

More information

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2 55) The diagram shows the path of a light ray in three different materials. The index of refraction for each material is shown in the upper right portion of the material. What is the correct order for

More information

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova MIDTERM 3 REVIEW SESSION Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the

More information

Name Final Exam May 1, 2017

Name Final Exam May 1, 2017 Name Final Exam May 1, 217 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Some possibly useful formulas appear below. Constants, etc.

More information

Physics Final. Last Name First Name Student Number Signature

Physics Final. Last Name First Name Student Number Signature A - Phys121 - April 9, 2009 1 Physics 121 - Final Last Name First Name Student Number Signature Answer ALL questions. Show all your work and explain your reasoning for full credit. Neatness and clarity

More information

1 cm b. 4.4 mm c. 2.2 cm d. 4.4 cm v

1 cm b. 4.4 mm c. 2.2 cm d. 4.4 cm v PHY 112: General Physics M. F. Thorpe T, Th 7:40-8:55am Fall 2006 Department of Physics Arizona State University Tempe AZ Final, Friday 8 December from 7:40am -> 9.30am All questions carry equal weight.

More information

PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

More information

Final Exam is coming!

Final Exam is coming! Final Exam is coming! Thurs., May 4, 4:30 to 6:30 pm, in this room. 25 multiple-choice questions Personalized exams I will enter the grade on your Mastering Physics account ( Final ). Old Part is comprehensive.

More information

Physics 1252 Sec.A Exam #1A

Physics 1252 Sec.A Exam #1A Physics 1252 Sec.A Exam #1A Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator, and a ruler. Do not write

More information

PHYS 1112 In-Class Exam #1, Version D

PHYS 1112 In-Class Exam #1, Version D PHYS 1112 In-Class Exam #1, Version D Tue. Feb. 4, 2014, 11:00am-12:15am This is a closed-book, closed-notes exam, but you are permitted to bring and use a clean copy of the official Formula Sheet for

More information

Sample Paper 2014 Class XII Subject Physics. Questions ON OPTICS

Sample Paper 2014 Class XII Subject Physics. Questions ON OPTICS http:/// Sample Paper 2014 Class XII Subject Physics Questions ON OPTICS 1. What is the focal length of a plane mirror? (Year: 2001) 2. Prove that, for a concave mirror, the radius of curvature is twice

More information

2. The figure shows the path of a portion of a ray of light as it passes through three different materials. Note: The figure is drawn to scale.

2. The figure shows the path of a portion of a ray of light as it passes through three different materials. Note: The figure is drawn to scale. 1. The bending of light as it moves from one medium to another with differing indices of refraction is due to a change in what property of the light? A) amplitude B) period C) frequency D) speed E) color

More information

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants.

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants. PHYSICS 253 SAMPLE FINAL EXAM Name Student Number CHECK ONE: Instructor 1 10:00 Instructor 2 1:00 Note that problems 1-19 are worth 2 points each, while problem 20 is worth 15 points and problems 21 and

More information

CBSE PHYSICS QUESTION PAPER (2005)

CBSE PHYSICS QUESTION PAPER (2005) CBSE PHYSICS QUESTION PAPER (2005) (i) (ii) All questions are compulsory. There are 30 questions in total. Questions 1 to 8 carry one mark each, Questions 9 to 18 carry two marks each, Question 19 to 27

More information

Physics 25 Exam #4 December 2, 2008 Dr. Alward Page 1

Physics 25 Exam #4 December 2, 2008 Dr. Alward Page 1 1. Light with a wavelength of 589 nm in a vacuum strikes the surface of an unknown liquid at an angle of 31.2 with respect to the normal to the surface. If the light travels at a speed of 1.97 10 8 m/s

More information

P5 Revision Questions

P5 Revision Questions P5 Revision Questions Part 2 Question 1 How can microwaves be used to communicate? Answer 1 Sent from transmitter, received and amplified by satellite in space, re-transmitted back to earth and picked

More information

Physics 101 Final Exam Problem Guide

Physics 101 Final Exam Problem Guide Physics 101 Final Exam Problem Guide Liam Brown, Physics 101 Tutor C.Liam.Brown@gmail.com General Advice Focus on one step at a time don t try to imagine the whole solution at once. Draw a lot of diagrams:

More information

Physics 102: Lecture 20 Interference. Physics 102: Lecture 20, Slide 1

Physics 102: Lecture 20 Interference. Physics 102: Lecture 20, Slide 1 Physics 102: Lecture 20 Interference Physics 102: Lecture 20, Slide 1 Phys 102 recent lectures Light as a wave Lecture 14 EM waves Lecture 15 Polarization Lecture 20 & 21 Interference & diffraction Light

More information

Magnifying Glass. Angular magnification (m): 25 cm/f < m < 25cm/f + 1. image at 25 cm (= normal near point) relaxed eye, image at (normal) far point

Magnifying Glass. Angular magnification (m): 25 cm/f < m < 25cm/f + 1. image at 25 cm (= normal near point) relaxed eye, image at (normal) far point Magnifying Glass Angular magnification (m): 25 cm/f < m < 25cm/f + 1 relaxed eye, image at (normal) far point image at 25 cm (= normal near point) For more magnification, first use a lens to form an enlarged

More information

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

THE DIFFRACTION GRATING SPECTROMETER

THE DIFFRACTION GRATING SPECTROMETER Purpose Theory THE DIFFRACTION GRATING SPECTROMETER a. To study diffraction of light using a diffraction grating spectrometer b. To measure the wavelengths of certain lines in the spectrum of the mercury

More information

Gen. Phys. II Exam 3 - Chs. 24,25,26 - EM Waves, Ray Optics, Optical Instruments Mar. 26, 2018

Gen. Phys. II Exam 3 - Chs. 24,25,26 - EM Waves, Ray Optics, Optical Instruments Mar. 26, 2018 Gen. Phys. II Exam 3 - Chs. 24,25,26 - EM Waves, Ray Optics, Optical Instruments Mar. 26, 2018 Rec. Time Name For full credit, make your work clear. Show formulas used, essential steps, and results with

More information

A refl = R A inc, A trans = T A inc.

A refl = R A inc, A trans = T A inc. Reading: Wave Optics 1, 2 Key concepts: Superposition; phase difference; amplitude and intensity; thin film interference; Fraunhofer diffraction; gratings; resolving power. 1.! Questions about interference

More information

Phys 132: Supplementary Exercises

Phys 132: Supplementary Exercises Phys 132 Fall 2017 Phys 132: Supplementary Exercises 1 Charged spheres Various identical metal spheres are separated and charged. The excess charges on each sphere, whose charges have the same magnitude,

More information

For more sample papers visit :

For more sample papers visit : PHYSICS (THEORY) (Three hours) For more sample papers visit : www.4ono.com Answer all questions in Part I and six questions from Part II, choosing two questions from each of the Sections A, B and C. All

More information

Physics 4C. Chapter 35: Conceptual Questions: 2, 8, 12 Problems: 9, 21, 25, 26, 39, 40, 55, 72, 82, 83, 93

Physics 4C. Chapter 35: Conceptual Questions: 2, 8, 12 Problems: 9, 21, 25, 26, 39, 40, 55, 72, 82, 83, 93 Physics 4C Solutions to Chapter 35 HW Chapter 35: Conceptual Questions:, 8, 1 Problems: 9, 1, 5, 6, 39, 40, 55, 7, 8, 83, 93 Question 35- (a) increase (b) 1λ Question 35-8 (a) 300 nm (b) exactly out of

More information

Light - electromagnetic radiation

Light - electromagnetic radiation Astronomy & Light Astronomy is a science In science we know by doing experiments When multiple experiments give the same results we develop theories and laws In astronomy many of the experiments are done

More information

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

XXXXXXXXXXXXXXX. First Pre-Board Examination, Physics

XXXXXXXXXXXXXXX. First Pre-Board Examination, Physics Series SSO Code No. 55/1/B Roll No. Candidates must write the code on the title page of the answer book General Instructions: Please check that this question paper contains 6 printed pages. Code number

More information

The interference of waves

The interference of waves The interference of waves In physics, interference is the addition (superposition) of two or more waves that results in a new wave pattern. The displacements of the waves add algebraically. Consider two

More information

Version 087 EX4 ditmire (58335) 1

Version 087 EX4 ditmire (58335) 1 Version 087 EX4 ditmire (58335) This print-out should have 3 questions. Multiple-choice questions ma continue on the next column or page find all choices before answering. 00 (part of ) 0.0 points A material

More information

Conceptual Practice Problems for PHYS 1112 In-Class Exam #2A+2B

Conceptual Practice Problems for PHYS 1112 In-Class Exam #2A+2B Conceptual ractice roblems for HYS 1112 In-Class xam #2A+2B Thu. Mar. 19, 2009, 11:00am-12:15pm and 2:00pm-3:15pm C 2.01: In a two-source interference experiment two sources are oscillating in phase with

More information

Engineering Physics 1 Prof. G.D. Vermaa Department of Physics Indian Institute of Technology-Roorkee

Engineering Physics 1 Prof. G.D. Vermaa Department of Physics Indian Institute of Technology-Roorkee Engineering Physics 1 Prof. G.D. Vermaa Department of Physics Indian Institute of Technology-Roorkee Module-04 Lecture-02 Diffraction Part - 02 In the previous lecture I discussed single slit and double

More information

Physics 202 Final (Monday, December 12) Fall 2016 (Saslow) White Version

Physics 202 Final (Monday, December 12) Fall 2016 (Saslow) White Version Physics 202 Final (Monday, December 12) Fall 2016 (Saslow) White Version Name (printed) Lab Section(+2 pts) Name (signed as on ID) Show all work. Partial credit may be given. Answers should include the

More information

GEOMETRICAL OPTICS Practical 1. Part II. OPTICAL SYSTEMS

GEOMETRICAL OPTICS Practical 1. Part II. OPTICAL SYSTEMS GEOMETRICAL OPTICS Practical 1. Part II. OPTICAL SYSTEMS 1 Introduction Optical systems can consist of a one element (a one lens or a mirror, a magnifying glass), two or three lenses (an eyepiece, theatrical

More information

Practice Paper-3. Q. 2. An electron beam projected along + X-axis, in a magnetic field along the + Z-axis. What is

Practice Paper-3. Q. 2. An electron beam projected along + X-axis, in a magnetic field along the + Z-axis. What is Practice Paper-3 Q. 1. An electric dipole of dipole moment 20 10 6 cm is enclosed by a closed surface. What is the net flux coming out of the surface? Q. 2. An electron beam projected along + X-axis, in

More information

TOPIC: LIGHT, ELECTROMAGNETIC WAVES, 2D AND 3D WAVEFRONTS

TOPIC: LIGHT, ELECTROMAGNETIC WAVES, 2D AND 3D WAVEFRONTS TOPIC: LIGHT, ELECTROMAGNETIC WAVES, 2D AND 3D WAVEFRONTS Learner Note: You need to know your definitions very well. You need to know the difference between refraction, reflection and diffraction. These

More information

Physics 208 Review Questions

Physics 208 Review Questions Physics 208 Review Questions These problems are shorter than exam problems, closer to a sub-part of a problem or slightly more, so that you can move through several of them quickly. 1) Two charges of 1.0

More information

PHYS 102 Exams. PHYS 102 Exam 3 PRINT (A)

PHYS 102 Exams. PHYS 102 Exam 3 PRINT (A) PHYS 102 Exams PHYS 102 Exam 3 PRINT (A) The next two questions pertain to the situation described below. A metal ring, in the page, is in a region of uniform magnetic field pointing out of the page as

More information

10. A Kelvin thermometer and a Fahrenheit thermometer both give the same reading for a certain sample. The corresponding Celsius temperature is: A)

10. A Kelvin thermometer and a Fahrenheit thermometer both give the same reading for a certain sample. The corresponding Celsius temperature is: A) Physics 223 practice final exam, Form X!! Fall 2017 Name Write your answers (one per question) on a Scantron form (882E) using a pencil. Write your name above. Return this exam with your scantron upon

More information

DIFFRACTION GRATING. OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths.

DIFFRACTION GRATING. OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths. DIFFRACTION GRATING OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths. THEORY: The operation of the grating is depicted in Fig. 1 on page Lens

More information

3/9/2011. Outline Chapter 7 Waves Water Waves Water Waves. Water waves are really circular. They are an example of Mechanical waves.

3/9/2011. Outline Chapter 7 Waves Water Waves Water Waves. Water waves are really circular. They are an example of Mechanical waves. Outline Chapter 7 Waves 7-1. Water Waves 7-2. Transverse and Longitudinal Waves 7-3. Describing Waves 7-4. Standing Waves 7-5. Sound 7-6. Doppler Effect 7-7. Musical Sounds 7-8. Electromagnetic Waves 7-9.

More information

Physics 202 Final Exam Dec 20nd, 2011

Physics 202 Final Exam Dec 20nd, 2011 Physics 202 Final Exam Dec 20nd, 2011 Name: Student ID: Section: TA (please circle): Daniel Crow Scott Douglas Yutao Gong Taylor Klaus Aaron Levine Andrew Loveridge Jason Milhone Hojin Yoo Instructions:

More information

Larbert High School. Quanta and Waves. Homework Exercises ADVANCED HIGHER PHYSICS

Larbert High School. Quanta and Waves. Homework Exercises ADVANCED HIGHER PHYSICS Larbert High School ADVANCED HIGHER PHYSICS Quanta and Waves Homework Exercises 3.1 3.6 3.1 Intro to Quantum Theory HW 1. (a) Explain what is meant by term black body. (1) (b) State two observations that

More information

Geometric Optics. Scott Freese. Physics 262

Geometric Optics. Scott Freese. Physics 262 Geometric Optics Scott Freese Physics 262 10 April 2008 Abstract The primary goal for this experiment was to learn the basic physics of the concept of geometric optics. The specific concepts to be focused

More information

U n 3 n Ba Kr (D) Br (C) Kr (B) Rb (E) 94 37

U n 3 n Ba Kr (D) Br (C) Kr (B) Rb (E) 94 37 1984 36. The critical angle for a transparent material in air is 30. The index of refraction of the material is most nearly (A) 0.33 (B) 0.50 (C) 1.0 (D) 1.5 (E) 2.0 37. An object is placed as shown in

More information

Lecture 4: Diffraction & Spectroscopy

Lecture 4: Diffraction & Spectroscopy Lecture 4: Diffraction & Spectroscopy d θ y L Spectra of atoms reveal the quantum nature of matter Take a plastic grating from the bin as you enter class. Lecture 4, p 1 Today s Topics Single-Slit Diffraction*

More information

Select the response that best answers the given statement. Be sure to write all final multiple choice answers on your Scantron answer sheet.

Select the response that best answers the given statement. Be sure to write all final multiple choice answers on your Scantron answer sheet. Chapters 15-30 PHYS 1402 - Brooks This practice test is similar to the actual final. The final exam will focus on questions involving solving problems, and not so much on conceptual questions. The final

More information

Physics 319 Laboratory: Basics of telescopes and Microscopes (Magnification Experiment) and transverse magnification, M t

Physics 319 Laboratory: Basics of telescopes and Microscopes (Magnification Experiment) and transverse magnification, M t Objective: In general you will explore the basic principles of how simple telescopes and microscope work. Specifically, you will examine the fundamental principles of magnification of a single thin lens

More information

A 0.2 m s -1. B 10 m s -1. C 20 m s -1. D 40 m s -1

A 0.2 m s -1. B 10 m s -1. C 20 m s -1. D 40 m s -1 Q1. Two points on a progressive wave are one-eighth of a wavelength apart. The distance between them is 0.5 m, and the frequency of the oscillation is 10 Hz. What is the minimum speed of the wave? 0.2

More information

2) A linear charge distribution extends along the x axis from 0 to A (where A > 0). In that region, the charge density λ is given by λ = cx where c

2) A linear charge distribution extends along the x axis from 0 to A (where A > 0). In that region, the charge density λ is given by λ = cx where c 2) A linear charge distribution extends along the x axis from 0 to A (where A > 0). In that region, the charge density λ is given by λ = cx where c is a constant. a) Find the electric potential valid for

More information

PS210 - Optical Techniques. Section VI

PS210 - Optical Techniques. Section VI PS210 - Optical Techniques Section VI Section I Light as Waves, Rays and Photons Section II Geometrical Optics & Optical Instrumentation Section III Periodic and Non-Periodic (Aperiodic) Waves Section

More information

Double-slit Interference. Class 26: (ThT Q) Are both coherence and monochromaticity essential?

Double-slit Interference. Class 26: (ThT Q) Are both coherence and monochromaticity essential? Double-slit Interference Class 26: (ThT Q) Are both coherence and monochromaticity essential? Exam 2 Discussion #9. Consider an arbitrary engine whose work output is connected to a Carnot engine running

More information

Physics 208 Final Exam

Physics 208 Final Exam Physics 208 Final Exam Name You are graded on your work, with partial credit. See the last pages of the exam for formula sheets. Please be clear and well-organized, so that we can easily follow each step

More information

Solutions to Conceptual Practice Problems PHYS 1112 In-Class Exam #2A+2B

Solutions to Conceptual Practice Problems PHYS 1112 In-Class Exam #2A+2B Solutions to Conceptual ractice roblems HYS 1112 In-Class xam #2A+2B Thu. Mar. 19, 2009, 11:00am-12:15pm and 2:00pm-3:15pm C 2.01: In a two-source interference experiment two sources are oscillating in

More information

Last Name: First Name Network-ID

Last Name: First Name Network-ID Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Turn off your cell phone and put it out of sight. Keep your calculator on your own desk. Calculators cannot be shared. This is a

More information

The Final Exam (Exam 4) will be on FRIDAY MAY 11 From 3 5 PM in LR1 VAN

The Final Exam (Exam 4) will be on FRIDAY MAY 11 From 3 5 PM in LR1 VAN 1 --------------------------------------------------------------------------------------------------------------------- 29:006 SPRING 2012 PRACTICE EXAM 4 ---------------------------------------------------------------------------------------------------------------------

More information

PHYSICS 2005 (Delhi) Q3. The power factor of an A.C. circuit is 0.5. What will be the phase difference between voltage and current in this circuit?

PHYSICS 2005 (Delhi) Q3. The power factor of an A.C. circuit is 0.5. What will be the phase difference between voltage and current in this circuit? General Instructions: 1. All questions are compulsory. 2. There is no overall choice. However, an internal choke has been pro vided in one question of two marks, one question of three marks and all three

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor: Profs. Selman Hershfield, Aneta Petkova PHYSICS DEPARTMENT PHY 049 Final Exam December, 00 Name (print, last first: Signature: On my honor, I have neither given nor received unauthorized aid

More information

For more sample papers visit :

For more sample papers visit : For more sample papers visit : www.4ono.com PHYSCS Paper 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time)

More information

PHYS 4 CONCEPT PACKET Complete

PHYS 4 CONCEPT PACKET Complete PHYS 4 CONCEPT PACKET Complete Written by Jeremy Robinson, Head Instructor Find Out More +Private Instruction +Review Sessions WWW.GRADEPEAK.COM Need Help? Online Private Instruction Anytime, Anywhere

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor: Profs. Andrew Rinzler, Paul Avery, Selman Hershfield PHYSICS DEPARTMENT PHY 2049 Final Exam April 24, 200 Name (print, last first): Signature: On my honor, I have neither given nor received

More information

Exam 3--PHYS 202--S10

Exam 3--PHYS 202--S10 ame: Exam 3--PHYS 202--S0 Multiple Choice Identify the choice that best completes the statement or answers the question A person uses a convex lens that has a focal length of 25 cm to inspect a gem The

More information

Fluids density Pascal s principle (pressure vs. depth) Equation of continuity Buoyant force Bernoulli s (pressure, velocity, depth)

Fluids density Pascal s principle (pressure vs. depth) Equation of continuity Buoyant force Bernoulli s (pressure, velocity, depth) Final Exam All Finals week in the testing center. 50 multiple choice questions. Equations on the back of the test. Calculators are allowed on the test. There is a practice test in the packet. Exam 1 Review

More information

Physics 1212 Exam #4A (Final)

Physics 1212 Exam #4A (Final) Physics 1212 Exam #4A (Final) Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator, and a ruler. Do not write

More information

DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr

DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr SET: 1 General Instructions:- DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr All questions are compulsory. There are 30 questions in total. Questions 1 to 8 carry

More information

Physics I : Oscillations and Waves Prof. S. Bharadwaj Department of Physics and Meteorology Indian Institute of Technology, Kharagpur

Physics I : Oscillations and Waves Prof. S. Bharadwaj Department of Physics and Meteorology Indian Institute of Technology, Kharagpur Physics I : Oscillations and Waves Prof. S. Bharadwaj Department of Physics and Meteorology Indian Institute of Technology, Kharagpur Lecture - 21 Diffraction-II Good morning. In the last class, we had

More information