Electrokinetic effects in the breakup of electrified jets: a Volume-Of-Fluid numerical study

Size: px
Start display at page:

Download "Electrokinetic effects in the breakup of electrified jets: a Volume-Of-Fluid numerical study"

Transcription

1 Electrokinetic effects in the breakup of electrified jets: a Volume-Of-Fluid numerical study J. M. Lopez-Herrera 1, A. M. Gañan-Calvo 1, S. Popinet 2, M. A. Herrada 1 1.-University of Sevilla, Spain. 2.-Université Pierre et Marie Curie, Paris, France. 1

2 INDEX 1. Introduction 2. The electrokinetic model 3. A VOF approach 4. An study: The breakup of charged capillary jets 5. Conclusions 2

3 INDEX 1. Introduction a. The EHD problem b. The EHD equations c. Limits 2. The electrokinetic model 3. A VOF approach 4. An study: The breakup of charged capillary jets 5. Conclusions 3

4 Introduction. Electrohydrodynamics (EHD) deals with fluid motion induced by electric fields. Electric fields The fluid motion modifies in turn the existing electric field by changing either the geometry and the distribution of charges Electric forces affects motion They can appears in the bulk and/or in the interfaces Fluid motion Fields: Microfluidic devices Electrospray Electrified liquid bridges 4

5 Introduction. General EHD equations Bulk equations Maxwell Equations r ("E) = q r E + r J = 0 E = rá r ("rá) = q being J = qv + ke Navier-Stokes Equations r v = 0 ½ Dv Dt = rp + r ¹(rv + rv T ) + r T e being T e = "EE "E2 2 I 5

6 The EHD model assumes two main simplifications: Condense in all the charged species. Is a more detailed description necessary? Conductivity is homogeneous and constant. True? Depends on the problem. For example in cone-jet electrospraying 6

7 LIMITS. cone-jet electrospraying EHD model has been used with success to develop scaling laws Gañan-Calvo PRL 79 (2) (1997) 7

8 LIMITS. cone-jet electrospraying Classic EHD can not explain the different behavior observed when the polarity is changed H.H. Kim et al. JAS 76 (2014) 8

9 LIMITS. Conclusions Therefore, to descend to a more detailed physical description of the charged species that form the electric charge is desirable. The study of the evolution, distribution, etc, of this charged species is the object of the electrokinetic theory. 9

10 INDEX 1. Introduction 2. The electrokinetic model a. Electrokinetic equations 3. A VOF approach 4. An study: The breakup of charged capillary jets 5. Conclusions 10

11 Electrokinetic equations NERNST-PLANCK-POISSON c i t + r (c i u) = r (PNP) EQUATION! i k B T rc i e! i z i c i E r ("E) = r ( "r') = q = X i ez i c i NAVIER-STOKES EQUATIONS r u = 0; + u ru = rp + r T v + F e + ¾ ± s n T v = 2¹D = ¹(ru + ru T ) T e = " µee E2 2 I F e = r T e = qe 1 2 E2 r": 11

12 Equations Dimensionless parameter Basis: ½ e, c o, L, ¾ and " o. ² Dimensionless ion di usivities, D i =!i k B T LU c being U c = (¾=½ e L) 1=2. P e i = 1=D i. ² Ratio of characteristic electric elds, i = E c Lez i =(k B T ), with E c = (¾=" o L) 1=2. ion speci c conductivities, i = D i i. ² The Ohnesorge number, C ¹ = ¹ e = p ¾L½ e. ² The dimensionless q Debye parameter, K i = L= D, D = is the Debye length. "e k B T 2e 2 (z i ) 2 c o ² Ratios of the relevant uid properties, R = ½ o =½ e ; M = ¹ o =¹ e and S = " e =" o. 12

13 INDEX 1. Introduction 2. The electrokinetic model 3. A VOF approach a. conservation equation of ionic species b. Validation 4. An study: The breakup of charged capillary jets 5. Conclusions 13

14 A VOF approach. Conservation of ionic species. c i t + r (c i u) = r D i rc i + c i i r' Á t + r (Áu) = 0 (c i Á) t + r (c i Áu) = r ÁD i rc i + r i Ác i r' 14

15 A VOF approach. Conservation of ionic species. (c i Á) t + r (c i Áu) = r ÁD i rc i + r i Ác i r' ² The concentration c i is advected using the geometrical Volume-Of-Fluid technique. Z dt r (Ác i u) = X c f u f t C faces ² The concentration face value, c f is calculated from cell concentration and slope-limited concentration gradients. ² Gerris wording: GfsVariableVOFConcentration 15

16 A VOF approach. Conservation of ionic species. (c i Á) t + r (c i Áu) = r ÁD i rc i + r i Ác i r' The factor Á in the migration terms is as a weighted di usivity/conductivity ( ¹ D i / ¹ i ) that nulli es the migration uxes across boundaries out of the solvent phase. 16

17 Conservation of ionic species: A VOF approach (IV) r (ÁD i rc i ) = r [D i r(c i Á)] r (D i c i rá) ; (c i Á) t + r (c i Áu) = r [D i r(c i Á)] r (D i c i rá) r i Ác i E ; {z } {z } {z } term A term B term C Z Z h r [D i r(c i Á)] = D i r(c i Á) n = X (D i ) f r f (c i Á); f GERRIS wording: term A: SourceDiffusion term B: SourceDiffusionExplicit term C: SourceDiffusionExplicit 17

18 Validation BC: Slip velocity 18

19 Validation Ca E = 0:025 To the dielectric limit To the leaky-dielectric limit d = 9 (S 1) ns 2 K 2 =(K coth K 1) o K 2 S Ca E 16 [2(S 1) + SK 2 =(K coth K 1)] 2 corresponds to R = 1, C ¹ = 1, M = 1, D + = D = 1 Zholkovskij et al. J. Fluid Mech. 472 (2002) 19

20 Validation Level d rate of convergence relative error (%) K = 0: { K = { ² The rate of convergence with the grid is similar for K = 0:1 and K = 6. ² The relative error is larger for lower K values, Artifact due to very low value of d for K = 0:1 (dj K=0:1 = 7: ). 20

21 INDEX 1. Introduction 2. The electrokinetic model 3. A VOF approach 4. An study: The breakup of charged capillary jets a. Description of the problem b. Results 5. Conclusions 21

22 DESCRIPTION OF THE PROBLEM Breakup of a liquid charged capillary column Initial conditions f(z; 0) = 1 + ² sin( w z) c + (z; r; 0) = B + c (z; r; 0) = B Dimensionless governing parameters (1) for the perturbation, ² and w; (2) for the charged species, D +, D, and K; (3) for the electrical conditions, B +, B and R 1 =A; and (4) for the uid properties, C ¹, S, R and M. 22

23 RESULTS Breakup of a liquid charged capillary column We focus mainly in electrokinetic effects. So the following parameters are kept fixed. ² = 0:1, w = 0:6283, C ¹ = 0:05, R = M = 10 2 and S = 10. In order to have a more pronounced effect cation is smaller than anion We investigate the influence of polarity, Positive polarity: B + = 1:01 and B + = 0:99 Negative polariy: B + = 0:99 and B + = 1:01. The only free parameter is K= L/λ D. The level of electrification is kept fixed, Ca E = Then γ is calculated from D + = 7 and D = 1. 23

24 RESULTS Breakup of a liquid charged capillary column 24

25 Results The validity of the homogeneous conductivity assumption Classic EHD Model: From PNP equation: q t + r (qu) = r ( SE) Dimensionless homogeneous conductivity q = SK2 2 (c+ c ) c + t + r (c + u) = r D + rc + D + E c t + r (c u) = r D rc + D E µ q t + r (qu) = K2 S D 2 r (D+ rc + D rc + c + + D c ) r K 2 SE 2 25

26 Results The validity of the homogeneous conductivity assumption Relative bulk conductivity = Positive polarity K=0.5 K=20 26

27 Results The validity of the homogeneous conductivity assumption 27

28 INDEX 1. Introduction 2. The electrokinetic model 3. A VOF approach 4. An study: The breakup of charged capillary jets 5. Conclusions 28

29 Conclusions 1. A general electrokinetic model and numerical scheme has been presented and validated. 2. The numerical scheme is available through GERRIS. 3. In the cases when thermal diffusion, electrosmotic motion and singularities compete EHD model can yield different results than the present electrokinetic model. 4. Method can be improved restricting the resolution of the diffusion term to the domain of interest. 29

30 Electrokinetic effects in the breakup of electrified jets: a Volume-Of-Fluid numerical study J. M. Lopez-Herrera 1, A. M. Gañan-Calvo 1, S. Popinet 2, M. A. Herrada 1 1.-University of Sevilla, Spain. 2.-Université Pierre et Marie Curie, Paris, France. 30

A charge-conservative approach for simulating electrohydrodynamic two-phase flows using Volume-Of-Fluid

A charge-conservative approach for simulating electrohydrodynamic two-phase flows using Volume-Of-Fluid A charge-conservative approach for simulating electrohydrodynamic two-phase flows using Volume-Of-Fluid J. M. López-Herrera,, S. Popinet b, M. A. Herrada a Dept. Ingeniería Aerospacial y Mecánica de Fluidos,

More information

An OpenFOAM-based electro-hydrodynamical model

An OpenFOAM-based electro-hydrodynamical model An OpenFOAM-based electro-hydrodynamical model Ivo Roghair, Dirk van den Ende, Frieder Mugele Department of Science and Technology, University of Twente, Enschede, The Netherlands Keywords: modelling,

More information

Electroviscous Effects in Low Reynolds Number Flow through a Microfluidic Contraction with Rectangular Cross-Section

Electroviscous Effects in Low Reynolds Number Flow through a Microfluidic Contraction with Rectangular Cross-Section PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 3 JULY 28 ISSN 37-6884 Electroviscous Effects in Low Reynolds Number Flow through a Microfluidic Contraction with Rectangular

More information

Electrolyte Concentration Dependence of Ion Transport through Nanochannels

Electrolyte Concentration Dependence of Ion Transport through Nanochannels Electrolyte Concentration Dependence of Ion Transport through Nanochannels Murat Bakirci mbaki001@odu.edu Yunus Erkaya yerka001@odu.edu ABSTRACT The magnitude of current through a conical nanochannel filled

More information

Supporting Information

Supporting Information Supporting Information Abnormal Ionic Current Rectification Caused by Reversed Electroosmotic flow under Viscosity Gradients across Thin Nanopores Yinghua Qiu, 1 * # Zuzanna S. Siwy, 2 and Meni Wanunu

More information

Numerical Computation of Cone-Jet Formation and Deposition Characteristics in Electrostatic Spray

Numerical Computation of Cone-Jet Formation and Deposition Characteristics in Electrostatic Spray Blucher Mechanical Engineering Proceedings May 2014, vol. 1, num. 1 www.proceedings.blucher.com.br/evento/10wccm Numerical Computation of Cone-Jet Formation and Deposition Characteristics in Electrostatic

More information

Electrohydrodynamic Micropumps

Electrohydrodynamic Micropumps Electrohydrodynamic Micropumps Antonio Ramos Dept. Electrónica y Electromagnetismo Universidad de Sevilla Avda. Reina Mercedes s/n 41012 Sevilla. Spain 1. Introduction Microfluidics deals with the pumping,

More information

Dynamical behavior of electrified pendant drops. Abstract

Dynamical behavior of electrified pendant drops. Abstract Dynamical behavior of electrified pendant drops C. Ferrera 1, J. M. López-Herrera 2, M. A. Herrada 2, J. M. Montanero 1, and A. J. Acero 1 (1) Depto. de Ingeniería Mecánica, Energética y de los Materiales,

More information

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk D. Fuster, and S. Popinet Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 79 Institut Jean Le Rond d Alembert,

More information

V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes

V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes MIT Student 1. Poisson-Nernst-Planck Equations The Nernst-Planck Equation is a conservation of mass equation that describes the influence of

More information

Separation Sciences. 1. Introduction: Fundamentals of Distribution Equilibrium. 2. Gas Chromatography (Chapter 2 & 3)

Separation Sciences. 1. Introduction: Fundamentals of Distribution Equilibrium. 2. Gas Chromatography (Chapter 2 & 3) Separation Sciences 1. Introduction: Fundamentals of Distribution Equilibrium 2. Gas Chromatography (Chapter 2 & 3) 3. Liquid Chromatography (Chapter 4 & 5) 4. Other Analytical Separations (Chapter 6-8)

More information

al., 2000) to extend the previous numerical model to account for the effect of interfacial charges. This extension allows the analysis of the electrok

al., 2000) to extend the previous numerical model to account for the effect of interfacial charges. This extension allows the analysis of the electrok The Journal of Engineering and Exact Sciences - JCEC ISSN: 2446-9416 Vol. 03 N. 03 (2017) 294 319 doi: https://doi.org/10.18540/2446941603032017294 OPEN ACCESS SIMULATION OF A PERFECTLY DIELECTRIC DROP

More information

Implementation of a symmetry-preserving discretization in Gerris

Implementation of a symmetry-preserving discretization in Gerris Implementation of a symmetry-preserving discretization in Gerris Daniel Fuster Cols: Pierre Sagaut, Stephane Popinet Université Pierre et Marie Curie, Institut Jean Le Rond D Alembert Introduction 10/11:

More information

Part II: Self Potential Method and Induced Polarization (IP)

Part II: Self Potential Method and Induced Polarization (IP) Part II: Self Potential Method and Induced Polarization (IP) Self-potential method (passive) Self-potential mechanism Measurement of self potentials and interpretation Induced polarization method (active)

More information

Supporting Information for Conical Nanopores. for Efficient Ion Pumping and Desalination

Supporting Information for Conical Nanopores. for Efficient Ion Pumping and Desalination Supporting Information for Conical Nanopores for Efficient Ion Pumping and Desalination Yu Zhang, and George C. Schatz,, Center for Bio-inspired Energy Science, Northwestern University, Chicago, Illinois

More information

Electrohydromechanical analysis based on conductivity gradient in microchannel

Electrohydromechanical analysis based on conductivity gradient in microchannel Vol 17 No 12, December 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(12)/4541-06 Chinese Physics B and IOP Publishing Ltd Electrohydromechanical analysis based on conductivity gradient in microchannel

More information

= σ ε ( ) ( ) DROPLET DEFORMATION AND COALESCENCE UNDER UNIFORM ELECTRIC FIELD. Mostafa Brik 1, Robert Ruscassie 2, Abdellah Saboni 1.

= σ ε ( ) ( ) DROPLET DEFORMATION AND COALESCENCE UNDER UNIFORM ELECTRIC FIELD. Mostafa Brik 1, Robert Ruscassie 2, Abdellah Saboni 1. Journal of Mostafa Chemical Brik, Technology Robert Ruscassie, and Metallurgy, Abdellah 51, Saboni 6, 016, 649-659 DROPLET DEFORMATION AND COALESCENCE UNDER UNIFORM ELECTRIC FIELD Mostafa Brik 1, Robert

More information

An electrokinetic LB based model for ion transport and macromolecular electrophoresis

An electrokinetic LB based model for ion transport and macromolecular electrophoresis An electrokinetic LB based model for ion transport and macromolecular electrophoresis Raffael Pecoroni Supervisor: Michael Kuron July 8, 2016 1 Introduction & Motivation So far an mesoscopic coarse-grained

More information

Nonlinear Electrokinetic Transport Under Combined ac and dc Fields in Micro/ Nanofluidic Interface Devices

Nonlinear Electrokinetic Transport Under Combined ac and dc Fields in Micro/ Nanofluidic Interface Devices Vishal V. R. Nandigana e-mail: nandiga1@illinois.edu N. R. Aluru 1 e-mail: aluru@illinois.edu Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University

More information

Simulation numérique de l atomisation. Institut Jean Le Rond d Alembert, CNRS & Université Pierre et Marie Curie -- UPMC Paris 6

Simulation numérique de l atomisation. Institut Jean Le Rond d Alembert, CNRS & Université Pierre et Marie Curie -- UPMC Paris 6 Simulation numérique de l atomisation Stéphane Zaleski & Yue Ling Institut Jean Le Rond d Alembert, CNRS & Université Pierre et Marie Curie -- UPMC Paris 6 web site http://www.ida.upmc.fr/~zaleski 1/79

More information

Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles

Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles Anand Senguttuvan Supervisor Gordon A Irons 1 Approach to Simulate Slag Metal Entrainment using Computational Fluid Dynamics Introduction &

More information

Simulation of a Pressure Driven Droplet Generator

Simulation of a Pressure Driven Droplet Generator Simulation of a Pressure Driven Droplet Generator V. Mamet* 1, P. Namy 2, N. Berri 1, L. Tatoulian 1, P. Ehouarn 1, V. Briday 1, P. Clémenceau 1 and B. Dupont 1 1 DBV Technologies, 2 SIMTEC *84 rue des

More information

Poisson equation based modeling of DC and AC electroosmosis

Poisson equation based modeling of DC and AC electroosmosis COMSOL Conference Prague 2006 Page 1 Poisson equation based modeling of DC and AC electroosmosis Michal Přibyl & Dalimil Šnita Institute of Chemical Technology, Prague, Czech Republic Department of Chemical

More information

Number of pages in the question paper : 06 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

A phase field model for the coupling between Navier-Stokes and e

A phase field model for the coupling between Navier-Stokes and e A phase field model for the coupling between Navier-Stokes and electrokinetic equations Instituto de Matemáticas, CSIC Collaborators: C. Eck, G. Grün, F. Klingbeil (Erlangen Univertsität), O. Vantzos (Bonn)

More information

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological

More information

Numerical simulations of drop impacts

Numerical simulations of drop impacts Numerical simulations of drop impacts Christophe Josserand Institut D Alembert, CNRS-UPMC L. Duchemin, Z. Jian, P. Ray and S. Zaleski Numerical simulations of drop impacts Christophe Josserand Institut

More information

Charging Kinetics of Micropores in Supercapacitors

Charging Kinetics of Micropores in Supercapacitors Clemson University TigerPrints All Theses Theses 5-2012 Charging Kinetics of Micropores in Supercapacitors Daniel Oberklein Clemson University, dfoberklein@roadrunner.com Follow this and additional works

More information

Viscous non-linear theory of Richtmyer-Meshkov Instability. Abstract

Viscous non-linear theory of Richtmyer-Meshkov Instability. Abstract Viscous non-linear theory of Richtmyer-Meshkov Instability Pierre Carles and Stéphane Popinet Laboratoire de Modélisation en Mécanique, Université Pierre et Marie Curie, Case 162, 4 place Jussieu, 75252

More information

Optimized Surface Acoustic Waves Devices With FreeFem++ Using an Original FEM/BEM Numerical Model

Optimized Surface Acoustic Waves Devices With FreeFem++ Using an Original FEM/BEM Numerical Model Optimized Surface Acoustic Waves Devices With FreeFem++ Using an Original FEM/BEM Numerical Model P. Ventura*, F. Hecht**, Pierre Dufilié*** *PV R&D Consulting, Nice, France Laboratoire LEM3, Université

More information

Applying Gerris to Mixing and Sedimentation in Estuaries

Applying Gerris to Mixing and Sedimentation in Estuaries Applying Gerris to Mixing and Sedimentation in Estuaries Timothy R. Keen U.S. Naval Research Laboratory Stennis Space Center, Mississippi, U.S.A. 4 July 2011 Université Pierre et Marie Curie Paris, France

More information

International Journal of Engineering & Technology IJET-IJENS Vol:18 No:03 1

International Journal of Engineering & Technology IJET-IJENS Vol:18 No:03 1 International Journal of Engineering & Technology IJET-IJENS Vol:18 No:03 1 Analytical Derivation of Diffusio-osmosis Electric Potential and Velocity Distribution of an Electrolyte in a Fine Capillary

More information

arxiv: v1 [physics.flu-dyn] 3 May 2018

arxiv: v1 [physics.flu-dyn] 3 May 2018 Breakup of finite-size liquid filaments: Transition from no-breakup to breakup including substrate effects arxiv:1805.01558v1 [physics.flu-dyn] 3 May 2018 A. Dziedzic, 1 M. Nakrani, 1 B. Ezra, 1 M. Syed,

More information

Numerical Simulation of Cone-jet Formation in Colloid Thruster

Numerical Simulation of Cone-jet Formation in Colloid Thruster Numerical Simulation of Cone-jet Formation in Colloid Thruster IEPC991 Presented at the 31st International Electric Propulsion Conference, University of Michigan Ann Arbor, Michigan USA Chao-Jin Qin 1,

More information

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang,

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, yfwang09@stanford.edu 1. Problem setting In this project, we present a benchmark simulation for segmented flows, which contain

More information

On the use of hypodermic needles in electrospray

On the use of hypodermic needles in electrospray EPJ Web of Conferences 45, 01128 (2013) DOI: 10.1051/ epjconf/ 20134501128 C Owned by the authors, published by EDP Sciences, 2013 On the use of hypodermic needles in electrospray N. Rebollo-Muñoz 1,a,

More information

Application of the immersed boundary method to simulate flows inside and outside the nozzles

Application of the immersed boundary method to simulate flows inside and outside the nozzles Application of the immersed boundary method to simulate flows inside and outside the nozzles E. Noël, A. Berlemont, J. Cousin 1, T. Ménard UMR 6614 - CORIA, Université et INSA de Rouen, France emeline.noel@coria.fr,

More information

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores Long Luo, Robert P. Johnson, Henry S. White * Department of Chemistry, University of Utah, Salt Lake City, UT 84112,

More information

Instabilities in the Flow of Thin Liquid Films

Instabilities in the Flow of Thin Liquid Films Instabilities in the Flow of Thin Liquid Films Lou Kondic Department of Mathematical Sciences Center for Applied Mathematics and Statistics New Jersey Institute of Technology Presented at Annual Meeting

More information

Supplementary Information for Engineering and Analysis of Surface Interactions in a Microfluidic Herringbone Micromixer

Supplementary Information for Engineering and Analysis of Surface Interactions in a Microfluidic Herringbone Micromixer Supplementary Information for Engineering and Analysis of Surface Interactions in a Microfluidic Herringbone Micromixer Thomas P. Forbes and Jason G. Kralj National Institute of Standards and Technology,

More information

ρ Du i Dt = p x i together with the continuity equation = 0, x i

ρ Du i Dt = p x i together with the continuity equation = 0, x i 1 DIMENSIONAL ANALYSIS AND SCALING Observation 1: Consider the flow past a sphere: U a y x ρ, µ Figure 1: Flow past a sphere. Far away from the sphere of radius a, the fluid has a uniform velocity, u =

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Diffuse-charge effects on the transient response of electrochemical cells

Diffuse-charge effects on the transient response of electrochemical cells Diffuse-charge effects on the transient response of electrochemical cells M. van Soestbergen,,2 P. M. Biesheuvel, 3 and M. Z. Bazant 4 Materials Innovation Institute, Mekelweg 2, 2628 CD Delft, The Netherlands

More information

c 2011 Vishal Venkata Raghave Nandigana

c 2011 Vishal Venkata Raghave Nandigana c 2011 Vishal Venkata Raghave Nandigana NONLINEAR ELECTROKINETIC TRANSPORT AND ITS APPLICATIONS UNDER COMBINED AC AND DC FIELDS IN MICRO/NANOFLUIDIC INTERFACE DEVICES BY VISHAL VENKATA RAGHAVE NANDIGANA

More information

MODELING OF SURFACE-FLUID ELECTROKINETIC COUPLING ON THE LAMINAR FLOW FRICTION FACTOR IN MICROTUBES

MODELING OF SURFACE-FLUID ELECTROKINETIC COUPLING ON THE LAMINAR FLOW FRICTION FACTOR IN MICROTUBES First International Conference on Microchannels and Minichannels April 24-25 2003, Rochester, New York, USA ICMM2003-1044 MODELING OF SURFACE-FLUID ELECTROKINETIC COUPLING ON THE LAMINAR FLOW FRICTION

More information

Key Concepts for section IV (Electrokinetics and Forces)

Key Concepts for section IV (Electrokinetics and Forces) Key Concepts for section IV (Electrokinetics and Forces) 1: Debye layer, Zeta potential, Electrokinetics 2: Electrophoresis, Electroosmosis 3: Dielectrophoresis 4: InterDebye layer force, VanDer Waals

More information

ELASTIC INSTABILITIES IN CONE{AND{PLATE FLOW: SMALL GAP THEORY. David O. Olagunju. University of Delaware. Newark, DE 19716

ELASTIC INSTABILITIES IN CONE{AND{PLATE FLOW: SMALL GAP THEORY. David O. Olagunju. University of Delaware. Newark, DE 19716 ELASTIC INSTABILITIES IN CONE{AND{PLATE FLOW: SMALL GAP THEORY David O. Olagunju Department of Mathematical Sciences University of Delaware Newark, DE 19716 June 15, 1995 Abstract Consider the axisymmetric,

More information

Research Article Uniqueness of Weak Solutions to an Electrohydrodynamics Model

Research Article Uniqueness of Weak Solutions to an Electrohydrodynamics Model Abstract and Applied Analysis Volume 2012, Article ID 864186, 14 pages doi:10.1155/2012/864186 Research Article Uniqueness of Weak Solutions to an Electrohydrodynamics Model Yong Zhou 1 and Jishan Fan

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Dispensing nano-pico droplets and liquid patterning by pyroelectrodynamic shooting P. Ferraro, S. Coppola, S. Grilli, M. Paturzo and V. Vespini Theoretical simulation of temperature

More information

HEAT TRANSFER IN ELECTROOSMOTIC FLOW OF POWER-LAW FLUIDS IN MICRO-CHANNEL OMKARESHWAR RAO BAKARAJU. Bachelor of Engineering in Mechanical Engineering

HEAT TRANSFER IN ELECTROOSMOTIC FLOW OF POWER-LAW FLUIDS IN MICRO-CHANNEL OMKARESHWAR RAO BAKARAJU. Bachelor of Engineering in Mechanical Engineering HEAT TRANSFER IN ELECTROOSMOTIC FLOW OF POWER-LAW FLUIDS IN MICRO-CHANNEL OMKARESHWAR RAO BAKARAJU Bachelor of Engineering in Mechanical Engineering Jawaharlal Nehru Technological University Submitted

More information

Number of pages in the question paper : 05 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Enhancement of Heat Transfer by an Electric Field for a Drop Translating at Intermediate Reynolds Number

Enhancement of Heat Transfer by an Electric Field for a Drop Translating at Intermediate Reynolds Number Rajkumar Subramanian M. A. Jog 1 e-mail: milind.jog@uc.edu Department of Mechanical, Industrial, and Nuclear Engineering, University of Cincinnati, Cincinnati, OH 45221-0072 Enhancement of Heat Transfer

More information

Chapter 6. Neutral droplets in high electric fields as a. source of ions. Introduction to field-induced droplet

Chapter 6. Neutral droplets in high electric fields as a. source of ions. Introduction to field-induced droplet Chapter 6. Neutral droplets in high electric fields as a source of ions. Introduction to field-induced droplet ionization mass spectrometry 6-1 Adapted from Grimm, R. L. and Beauchamp, J. L. J. Phys. Chem.

More information

A Nonlocal Problem Arising from a Poiseuille Flow with Electrical Body Forces

A Nonlocal Problem Arising from a Poiseuille Flow with Electrical Body Forces International Mathematical Forum, 1, 6, no. 39, 1913-1918 A Nonlocal Problem Arising from a Poiseuille Flow with Electrical Body Forces Giovanni Cimatti Department of Mathematics, University of Pisa Largo

More information

Finite difference method for solving Advection-Diffusion Problem in 1D

Finite difference method for solving Advection-Diffusion Problem in 1D Finite difference method for solving Advection-Diffusion Problem in 1D Author : Osei K. Tweneboah MATH 5370: Final Project Outline 1 Advection-Diffusion Problem Stationary Advection-Diffusion Problem in

More information

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations Math 575-Lecture 13 In 1845, tokes extended Newton s original idea to find a constitutive law which relates the Cauchy stress tensor to the velocity gradient, and then derived a system of equations. The

More information

This is a repository copy of Analysis of partial electrocoalescence by Level-Set and finite element methods.

This is a repository copy of Analysis of partial electrocoalescence by Level-Set and finite element methods. This is a repository copy of Analysis of partial electrocoalescence by Level-Set and finite element methods. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/104275/ Version:

More information

Modeling moisture transport by periodic homogenization in unsaturated porous media

Modeling moisture transport by periodic homogenization in unsaturated porous media Vol. 2, 4. 377-384 (2011) Revue de Mécanique Appliquée et Théorique Modeling moisture transport by periodic homogenization in unsaturated porous media W. Mchirgui LEPTIAB, Université de La Rochelle, France,

More information

Fast Biofluid Transport of High Conductive Liquids Using AC Electrothermal Phenomenon, A Study on Substrate Characteristics

Fast Biofluid Transport of High Conductive Liquids Using AC Electrothermal Phenomenon, A Study on Substrate Characteristics Fast Biofluid Transport of High Conductive Liquids Using AC Electrothermal Phenomenon, A Study on Substrate Characteristics A. Salari, C. Dalton Department of Electrical & Computer Engineering, University

More information

Electroosmotic Flow Mixing in a Microchannel

Electroosmotic Flow Mixing in a Microchannel *c: Unmarked Revised manuscript Click here to view linked References 1 1 1 0 1 0 1 0 1 0 1 0 1 Effects of Ionic Concentration Gradient on Electroosmotic Flow Mixing in a Microchannel Ran Peng and Dongqing

More information

Electroosmotic flow in a rectangular channel with variable wall zeta-potential: Comparison of numerical simulation with asymptotic theory

Electroosmotic flow in a rectangular channel with variable wall zeta-potential: Comparison of numerical simulation with asymptotic theory Electrophoresis 2006, 27, 611 619 611 Subhra Datta Sandip Ghosal Neelesh A. Patankar Department of Mechanical Engineering, Northwestern University, Evanston, USA Received August 23, 2005 Revised October

More information

Anindya Aparajita, Ashok K. Satapathy* 1.

Anindya Aparajita, Ashok K. Satapathy* 1. μflu12-2012/24 NUMERICAL ANALYSIS OF HEAT TRANSFER CHARACTERISTICS OF COMBINED ELECTROOSMOTIC AND PRESSURE-DRIVEN FULLY DEVELOPED FLOW OF POWER LAW NANOFLUIDS IN MICROCHANNELS Anindya Aparajita, Ashok

More information

arxiv: v2 [cond-mat.soft] 4 May 2018

arxiv: v2 [cond-mat.soft] 4 May 2018 Solvation effects and contact angle saturation in electrowetting Nicolas Rivas 1, and Jens Harting 1,2 1 Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Fürther

More information

ENHANCEMENT OF CONVECTIVE HEAT TRANSFER IN INTERNAL FLOWS USING AN ELECTRICALLY-INDUCED CORONA JET

ENHANCEMENT OF CONVECTIVE HEAT TRANSFER IN INTERNAL FLOWS USING AN ELECTRICALLY-INDUCED CORONA JET ENHANCEMENT OF CONVECTIVE HEAT TRANSFER IN INTERNAL FLOWS USING AN ELECTRICALLY-INDUCED CORONA JET Reza Baghaei Lakeh Ph.D. Candidate PRESENTATION OUTLINE Corona Discharge Corona Wind and Ion-Drag Flows

More information

Stretching, bursting, splashing and bouncing: Electrohydrodynamics of microfluidic drops

Stretching, bursting, splashing and bouncing: Electrohydrodynamics of microfluidic drops Stretching, bursting, splashing and bouncing: Electrohydrodynamics of microfluidic drops by Rohit Pillai Multiphysics Fluid Dynamics Group Department of Chemical and Biomolecular Engineering University

More information

On Decaying Two-Dimensional Turbulence in a Circular Container

On Decaying Two-Dimensional Turbulence in a Circular Container Frontiers of Computational Sciences Y. Kaneda, H. Kawamura and M. Sasai (Eds.) Springer, 2007, pp. 89-95 On Decaying Two-Dimensional Turbulence in a Circular Container Kai Schneider and Marie Farge Univesité

More information

The Poisson-Nernst. Nernst-Planck (PNP) system for ion transport. Tai-Chia Lin National Taiwan University

The Poisson-Nernst. Nernst-Planck (PNP) system for ion transport. Tai-Chia Lin National Taiwan University The Poisson-Nernst Nernst-Planck (PNP) system for ion transport Tai-Chia Lin National Taiwan University 3rd OCAMI-TIMS Workshop in Japan, Osaka, March 13-16, 2011 Background Ion transport is crucial in

More information

A Finite Element Approximation of a Coupled Model for Two Turbulent Fluids

A Finite Element Approximation of a Coupled Model for Two Turbulent Fluids A Finite Element Approximation of a Coupled Model for Two Turbulent Fluids Driss Yakoubi: GIREF, Université Laval, Québec. Canada joint works with Tomas Chacon Rebollo: Laboratoire Jacques-Louis Lions,

More information

Andrés Santos* Badajoz (Spain)

Andrés Santos* Badajoz (Spain) Granular Poiseuille flow Andrés Santos* University of Extremadura Badajoz (Spain) *In collaboration with Mohamed Tij, Université Moulay Ismaïl, Meknès (Morocco) Departament de Física, Universitat Autònoma

More information

Simulation of free surface fluids in incompressible dynamique

Simulation of free surface fluids in incompressible dynamique Simulation of free surface fluids in incompressible dynamique Dena Kazerani INRIA Paris Supervised by Pascal Frey at Laboratoire Jacques-Louis Lions-UPMC Workshop on Numerical Modeling of Liquid-Vapor

More information

arxiv: v1 [physics.flu-dyn] 1 Mar 2017

arxiv: v1 [physics.flu-dyn] 1 Mar 2017 Direct numerical simulation of variable surface tension flows using a Volume-of-Fluid method arxiv:1703.00327v1 [physics.flu-dyn] 1 Mar 2017 Ivana Seric, Shahriar Afkhami, Lou Kondic Department of Mathematical

More information

Due Tuesday, November 23 nd, 12:00 midnight

Due Tuesday, November 23 nd, 12:00 midnight Due Tuesday, November 23 nd, 12:00 midnight This challenging but very rewarding homework is considering the finite element analysis of advection-diffusion and incompressible fluid flow problems. Problem

More information

A numerical study on the effects of cavitation on orifice flow

A numerical study on the effects of cavitation on orifice flow PHSICS OF FLUIDS, A numerical study on the effects of cavitation on orifice flow S. Dabiri, W. A. Sirignano, and D. D. Joseph, University of California, Irvine, California 9697, USA University of Minnesota,

More information

Microfluidic analysis of electrokinetic streaming potential induced by microflows of monovalent electrolyte solution

Microfluidic analysis of electrokinetic streaming potential induced by microflows of monovalent electrolyte solution INSTITUTE OFPHYSICS PUBISHING JOURNA OFMICROMECHANICS ANDMICROENGINEERING J Micromech Microeng 15 (25 71 719 doi:1188/96-1317/15/4/7 Microfluidic analysis of electrokinetic streaming potential induced

More information

What is the liquid jet atomization problem? Will Gerris help us solve it?

What is the liquid jet atomization problem? Will Gerris help us solve it? What is the liquid jet atomization problem? Will Gerris help us solve it? Stéphane Zaleski Institut Jean Le Rond d Alembert, Université Pierre et Marie Curie UPMC Paris 6 http://www.lmm.jussieu.fr/~zaleski

More information

Key Concepts for section IV (Electrokinetics and Forces)

Key Concepts for section IV (Electrokinetics and Forces) Key Concepts for section IV (Electrokinetics and Forces) 1: Debye layer, Zeta potential, Electrokinetics 2: Electrophoresis, Electroosmosis 3: Dielectrophoresis 4: InterDebye layer force, VanDer Waals

More information

Flow Focusing Droplet Generation Using Linear Vibration

Flow Focusing Droplet Generation Using Linear Vibration Flow Focusing Droplet Generation Using Linear Vibration A. Salari, C. Dalton Department of Electrical & Computer Engineering, University of Calgary, Calgary, AB, Canada Abstract: Flow focusing microchannels

More information

On the breakup of slender liquid bridges: Experiments and a 1-D numerical analysis

On the breakup of slender liquid bridges: Experiments and a 1-D numerical analysis Eur. J. Mech. B/Fluids 18 (1999) 649 658 Elsevier, Paris On the breakup of slender liquid bridges: Experiments and a 1-D numerical analysis A. Ramos a, *, F.J. García a,b,j.m.valverde a a Departamento

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Viscoelastic Effects on Dispersion due to Electroosmotic Flow with Variable Zeta Potential

Viscoelastic Effects on Dispersion due to Electroosmotic Flow with Variable Zeta Potential Proceedings of the 3 rd World Congress on Mechanical, Chemical, and Material Engineering (MCM'17) Rome, Italy June 8 10, 2017 Paper No. HTFF 147 ISSN: 2369-8136 DOI: 10.11159/htff17.147 Viscoelastic Effects

More information

Ion Concentration and Electromechanical Actuation Simulations of Ionic Polymer-Metal Composites

Ion Concentration and Electromechanical Actuation Simulations of Ionic Polymer-Metal Composites October 5-7, 2016, Boston, Massachusetts, USA Ion Concentration and Electromechanical Actuation Simulations of Ionic Polymer-Metal Composites Tyler Stalbaum, Qi Shen, and Kwang J. Kim Active Materials

More information

ATOMISTIC/CONTINUUM MULTISCALE COUPLING

ATOMISTIC/CONTINUUM MULTISCALE COUPLING ATOMISTIC/CONTINUUM MULTISCALE COUPLING Michael Moseler Multiscale Modelling and Tribosimulation Fraunhofer Institute for Mechanics of Materials IWM Multiscale Materials Modelling (MMM) Continuum models

More information

Radar sensing of Wake Vortices in clear air

Radar sensing of Wake Vortices in clear air 1 Radar sensing of Wake Vortices in clear air a feasibility study V. Brion*, N. Jeannin** Wakenet workshop, 15-16 may 2013, DGAC STAC, Bonneuil-Sur-Marne *Onera Paris **Onera Toulouse 2 Introduction In-house

More information

Electrokinetic Phenomena

Electrokinetic Phenomena Introduction to BioMEMS & Medical Microdevices Microfluidic Principles Part 2 Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Prof., http://saliterman.umn.edu/ Electrokinetic

More information

Coupling of Multi fidelity Models Applications to PNP cdft and local nonlocal Poisson equations

Coupling of Multi fidelity Models Applications to PNP cdft and local nonlocal Poisson equations Coupling of Multi fidelity Models Applications to PNP cdft and local nonlocal Poisson equations P. Bochev, J. Cheung, M. D Elia, A. Frishknecht, K. Kim, M. Parks, M. Perego CM4 summer school, Stanford,

More information

Operational Modes of Dual-capillary Electrospraying and the Formation of the Stable Compound Cone-jet Mod

Operational Modes of Dual-capillary Electrospraying and the Formation of the Stable Compound Cone-jet Mod Operational Modes of Dual-capillary Electrospraying and the Formation of the Stable Compound Cone-jet Mod Fan Mei, Da-Ren Chen * Department of Energy, Environmental and Chemical Engineering, Washington

More information

Equivalent electrostatic capacitance Computation using FreeFEM++

Equivalent electrostatic capacitance Computation using FreeFEM++ Equivalent electrostatic capacitance Computation using FreeFEM++ P. Ventura*, F. Hecht** *PV R&D Consulting, Nice, France **Laboratoire Jacques Louis Lions, Université Pierre et Marie Curie, Paris, France

More information

Using AmgX to accelerate a PETSc-based immersed-boundary method code

Using AmgX to accelerate a PETSc-based immersed-boundary method code 29th International Conference on Parallel Computational Fluid Dynamics May 15-17, 2017; Glasgow, Scotland Using AmgX to accelerate a PETSc-based immersed-boundary method code Olivier Mesnard, Pi-Yueh Chuang,

More information

Mechanical Engineering, UCSB Electrokinetic Response of a Floating Bipolar Electrode in a Nanofluidic Channel

Mechanical Engineering, UCSB Electrokinetic Response of a Floating Bipolar Electrode in a Nanofluidic Channel Electrokinetic Response of a Floating Bipolar Electrode in a Nanofluidic Channel by Alex Eden, Karen Scida, Jan Eijkel, Sumita Pennathur, & Carl Meinhart 10/5/2017 + - Background: Bipolar Electrodes (BPEs)

More information

The Poisson Boltzmann equation and the charge separation phenomenon at the silica-water interface: A holistic approach

The Poisson Boltzmann equation and the charge separation phenomenon at the silica-water interface: A holistic approach The Poisson oltzmann equation and the charge separation phenomenon at the silica-water interface: A holistic approach Maijia Liao 1, Li Wan 2, Shixin Xu 3, Chun Liu 4, Ping Sheng 1,* 1 Department of Physics,

More information

ElectroSpray Deposition system as sample preparation for NP analysis by EM & HRMA as on line analysis technique for the smallest NP range

ElectroSpray Deposition system as sample preparation for NP analysis by EM & HRMA as on line analysis technique for the smallest NP range ElectroSpray Deposition system as sample preparation for NP analysis by EM & HRMA as on line analysis technique for the smallest NP range Industrial workshop. Frankfurt 24 October 2017 Silvia López Vidal

More information

FLOW ASSURANCE: DROP COALESCENCE IN THE PRESENCE OF SURFACTANTS

FLOW ASSURANCE: DROP COALESCENCE IN THE PRESENCE OF SURFACTANTS FLOW ASSURANCE: DROP COALESCENCE IN THE PRESENCE OF SURFACTANTS Vishrut Garg and Osman A. Basaran Davidson School of Chemical Engineering Purdue University With special thanks to: Krish Sambath (now at

More information

1. Poisson-Boltzmann 1.1. Poisson equation. We consider the Laplacian. which is given in spherical coordinates by (2)

1. Poisson-Boltzmann 1.1. Poisson equation. We consider the Laplacian. which is given in spherical coordinates by (2) 1. Poisson-Boltzmann 1.1. Poisson equation. We consider the Laplacian operator (1) 2 = 2 x + 2 2 y + 2 2 z 2 which is given in spherical coordinates by (2) 2 = 1 ( r 2 ) + 1 r 2 r r r 2 sin θ θ and in

More information

Multi-fluid Simulation Models for Inductively Coupled Plasma Sources

Multi-fluid Simulation Models for Inductively Coupled Plasma Sources Multi-fluid Simulation Models for Inductively Coupled Plasma Sources Madhusudhan Kundrapu, Seth A. Veitzer, Peter H. Stoltz, Kristian R.C. Beckwith Tech-X Corporation, Boulder, CO, USA and Jonathan Smith

More information

Amélie Neuville (1,2), Renaud Toussaint (2), Eirik Flekkøy (1), Jean Schmittbuhl (2)

Amélie Neuville (1,2), Renaud Toussaint (2), Eirik Flekkøy (1), Jean Schmittbuhl (2) Amélie Neuville (1,2), Renaud Toussaint (2), Eirik Flekkøy (1), Jean Schmittbuhl (2) Thermal exchanges between a hot fractured rock and a cold fluid Deep geothermal systems Enhanced Geothermal Systems

More information

SOE3213/4: CFD Lecture 1

SOE3213/4: CFD Lecture 1 What is CFD SOE3213/4: CFD Lecture 1 3d 3d Computational Fluid Dynamics { use of computers to study uid dynamics. Solve the Navier-Stokes Equations (NSE) : r:u = 0 Du Dt = rp + r 2 u + F 4 s for 4 unknowns,

More information

Contents. 2. Fluids. 1. Introduction

Contents. 2. Fluids. 1. Introduction Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

APMA 2811T. By Zhen Li. Today s topic: Lecture 3: New Methods beyond traditional DPD. Sep. 22, Division of Applied Mathematics, Brown University

APMA 2811T. By Zhen Li. Today s topic: Lecture 3: New Methods beyond traditional DPD. Sep. 22, Division of Applied Mathematics, Brown University Today s topic: APMA 2811T Dissipative Particle Dynamics Instructor: Professor George Karniadakis Location: 170 Hope Street, Room 118 Time: Thursday 12:00pm 2:00pm Dissipative Particle Dynamics: Foundation,

More information

Effects of viscoelasticity on droplet dynamics and break-up in microfluidic T-Junctions: a lattice Boltzmann study

Effects of viscoelasticity on droplet dynamics and break-up in microfluidic T-Junctions: a lattice Boltzmann study EPJ manuscript No. (will be inserted by the editor) Effects of viscoelasticity on droplet dynamics and break-up in microfluidic T-Junctions: a lattice Boltzmann study Anupam Gupta & Mauro Sbragaglia Department

More information

INTERNAL FLOW IN A Y-JET ATOMISER ---NUMERICAL MODELLING---

INTERNAL FLOW IN A Y-JET ATOMISER ---NUMERICAL MODELLING--- ILASS-Europe 2002 Zaragoza 9 11 September 2002 INTERNAL FLOW IN A Y-JET ATOMISER ---NUMERICAL MODELLING--- Z. Tapia, A. Chávez e-mail: ztapia@imp.mx Instituto Mexicano del Petróleo Blvd. Adolfo Ruiz Cortines

More information