Key Concepts for section IV (Electrokinetics and Forces)

Size: px
Start display at page:

Download "Key Concepts for section IV (Electrokinetics and Forces)"

Transcription

1 Key Concepts for section IV (Electrokinetics and Forces) 1: Debye layer, Zeta potential, Electrokinetics 2: Electrophoresis, Electroosmosis 3: Dielectrophoresis 4: InterDebye layer force, VanDer Waals forces 5: Coupled systems, Scaling, Dimensionless Number Goals of Part IV: (1) Understand electrokinetic phenomena and apply them in (natural or artificial) biosystems (2) Understand various driving forces and be able to identify dominating forces in coupled systems

2 Helmholtz model (1853) GuoyChapman model ( ) Stern model (1924) κ 1 κ 1 Φ 0 x κ 1 1 κ x Φ 0 κ 1 κ 1 Φ 0 x slip boundary (zeta potential) ξ

3

4

5 Debye layer is a extraordinary capacitor! Image removed due to copyright restrictions. Graph of power vs. energy characteristics of energy storage devices. From NessCAP Inc. website

6 Image removed due to copyright restrictions. Datasheet for NESSCAP Ultracapacitor 3500F/2.3V

7 Motion of DNA in Channels (anode) 35.7 V/cm (surface charges) electroosmosis electrophoresis (cathode) E field Source: Prof. Han s Ph.D thesis

8 DNA electrophoresis in a channel Velocity of DNA in obstaclefree channel Velocity (μm/sec) X TBE T7 T2 0.5X TBE Buffer concentration(m)

9 Electroosmosis The oxide or glass surface become unprotonated (pk ~ 2) when they are in contact with water, forming electrical double layer. When applied an electric field, a part of the ion cloud near the surface can move along the electric field. The motion of ions at the boundary of the channel induces bulk flow by viscous drag Figure by MIT OCW.

10 Image removed due to copyright restrictions. Schematic of electroosmotic flow of water in a porous charged medium. Figure in Probstein, R. F. Physicochemical Hydrodynamics: An Introduction. New York: NY, John Wiley & Sons,

11 Gels and Tissues Nanoporous materials ExtraCellular matrix Microfluidic system Electrokinetic pumping

12 Courtesy of Daniel J. Laser. Used with permission.

13 Electroosmosis Streaming potential E field (ΔΦ) generates fluid flow (Q) v P 1 v P 0 fluid flow (Q) generates Efield (ΔΦ) v E field (ΔΦ) generates particle motion (v) v E v v E E v particle motion (v) generates Efield (ΔΦ) Electrophoresis Sedimentation potential Figure by MIT OCW.

14 Fick s law of diffusion Concentration(c) (ρ) Electrophoresis ρ, J : source E and B field Maxwell s equation Osmosis Convection Electroosmosis Streaming potential (aqueous) medium, Flow velocity (v m ) NavierStokes equation

15 Stern layer (Realistic Debye layer model) Particle Surface Stern Plane Stern Layer Surface of Shear Diffuse Layer φ w Potential, φ φ δ ζ 0 δ λ D Distance Structure of electric double layer with inner Stern layer (after Shaw, 1980.) Figure by MIT OCW.

16 Sheer boundary, zeta potential E z x x v EEO Slip (shear) boundary Stern layer Φ(0) ξ Zeta potential Stern layer : adsorbed ions, linear potential drop GouyChapman layer : diffusedouble layer exponential drop Shear boundary : v z =0 NavierStokes equation r dv 2r r ρ = p μ v ρee dt r v = 0( incompressible) 0 Φ New term δ ~ κ 1 v z

17 2 2 ε R r ΔP vz() r = ( ζ Φ() r ) Ezo μ 4μ L electroosmotic flow Poiseuille flow ΔP 0, E z = 0 : Poiseuille flow parabolic flow profile Δ P= 0, E z 0 : Electroosmotic flow flat (pluglike) profile εζ veeo = Ez = μeeoe z (outside of the Debye layer) μ μ : electroosmotic 'mobility' EEO

18 Paul s experiment Figure by MIT OCW. After Paul, et al. Anal Chem 70 (1998): Pressuredriven flow vs. Electroosmotic flow. These images were taken by caged dye techniques (Paul et al. Anal. Chem. 70, 2459 (1998)). At t=0, an initial flat fluorescent line is generated in microchannel by pulseexposing and breaking the caged dye, rendering them fluorescent. These dyes were transported by the fluid flow generated by pressure (left column) or electroosmosis (right column), demonstrating the flow profile.

19 v EEO εζ = E μ z 2 R ΔP vpoiseuille = 8μ L (averaged over r) Electroosmotic flow velocity is independent of the size (and shape) of the tube. Pressuredriven flow velocity is a strong function of R. R=1μm R=10μm R=1m v EEO εζ μ εζ μ = Ez veeo = E EEO z z v εζ = E μ?

Key Concepts for section IV (Electrokinetics and Forces)

Key Concepts for section IV (Electrokinetics and Forces) Key Concepts for section IV (Electrokinetics and Forces) 1: Debye layer, Zeta potential, Electrokinetics 2: Electrophoresis, Electroosmosis 3: Dielectrophoresis 4: InterDebye layer force, VanDer Waals

More information

/ / Fields, Forces and Flows in Biological Systems

/ / Fields, Forces and Flows in Biological Systems 20.330 / 6.023 / 2.793 Fields, Forces and Flows in Biological Systems Instructors: Jongyoon Jay Han and Scott Manalis TOPICS Introduction to electric fields Maxwell s equations Introduction to fluid flows

More information

DYNAMICS OF SUSPENDED COLLOIDAL PARTICLES NEAR A WALL

DYNAMICS OF SUSPENDED COLLOIDAL PARTICLES NEAR A WALL DYNAMICS OF SUSPENDED COLLOIDAL PARTICLES NEAR A WALL Minami Yoda G. W. Woodruff School of Mechanical Engineering minami@gatech.edu OUTLINE The problem and its motivation The (evanescent-wave PTV) technique

More information

Electrostatic Field Calculations for Electrophoresis Using Surfaces

Electrostatic Field Calculations for Electrophoresis Using Surfaces Mater. Res. Soc. Symp. Proc. Vol. 1061 2008 Materials Research Society 1061-MM09-25 Electrostatic Field Calculations for Electrophoresis Using Surfaces Perumal Ramasamy 1, Raafat M Elmaghrabi 2, and Gary

More information

Electrokinetic Phenomena

Electrokinetic Phenomena Introduction to BioMEMS & Medical Microdevices Microfluidic Principles Part 2 Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Prof., http://saliterman.umn.edu/ Electrokinetic

More information

Number of pages in the question paper : 06 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Number of pages in the question paper : 05 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Nucleic Acids. Carries and stores genetic information of species. Chemically stable. Very long

Nucleic Acids. Carries and stores genetic information of species. Chemically stable. Very long Nucleic Acids Carries and stores genetic information of species Chemically stable Very long base pairs (kb) length (μm) SV40 5.1 1.7 lambda phage 48.6 17 T2 phage 166 56 Mycoplasma 760 260 E.coli 4,000

More information

ISO Colloidal systems Methods for zetapotential. Part 1: Electroacoustic and electrokinetic phenomena

ISO Colloidal systems Methods for zetapotential. Part 1: Electroacoustic and electrokinetic phenomena INTERNATIONAL STANDARD ISO 13099-1 First edition 2012-06-15 Colloidal systems Methods for zetapotential determination Part 1: Electroacoustic and electrokinetic phenomena Systèmes colloïdaux Méthodes de

More information

Separation Sciences. 1. Introduction: Fundamentals of Distribution Equilibrium. 2. Gas Chromatography (Chapter 2 & 3)

Separation Sciences. 1. Introduction: Fundamentals of Distribution Equilibrium. 2. Gas Chromatography (Chapter 2 & 3) Separation Sciences 1. Introduction: Fundamentals of Distribution Equilibrium 2. Gas Chromatography (Chapter 2 & 3) 3. Liquid Chromatography (Chapter 4 & 5) 4. Other Analytical Separations (Chapter 6-8)

More information

Lecture 18: Microfluidic MEMS, Applications

Lecture 18: Microfluidic MEMS, Applications MECH 466 Microelectromechanical Systems University of Victoria Dept. of Mechanical Engineering Lecture 18: Microfluidic MEMS, Applications 1 Overview Microfluidic Electrokinetic Flow Basic Microfluidic

More information

Electrophoretic Deposition. - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode

Electrophoretic Deposition. - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode Electrophoretic Deposition - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode no redox differs from electrolytic in several ways deposit

More information

Electrokinetically Driven Liquid Micro Flows

Electrokinetically Driven Liquid Micro Flows 8 Electrokinetically Driven Liquid Micro Flows This is page 193 Printer: Opaque this The rapid developments in micro fabrication technologies have enabled a variety of micro fluidic systems consisting

More information

ELECTROCHEMICAL SYSTEMS

ELECTROCHEMICAL SYSTEMS ELECTROCHEMICAL SYSTEMS Third Edition JOHN NEWMAN and KAREN E. THOMAS-ALYEA University of California, Berkeley ELECTROCHEMICAL SOCIETY SERIES WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC PUBLICATION PREFACE

More information

Electro-osmotic Flow Through a Rotating Microchannel

Electro-osmotic Flow Through a Rotating Microchannel Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015) Barcelona, Spain July 20-21, 2015 Paper No. 306 Electro-osmotic Flow Through a Rotating Microchannel Cheng

More information

Electrokinetic assembly and manipulation II Lecture by Chung, Jae-Hyun

Electrokinetic assembly and manipulation II Lecture by Chung, Jae-Hyun Electrokinetic assembly and manipulation II Lecture by Chung, Jae-Hyun Chung, Jae-Hyun, Mechanical Engineering, University of Washington Liu, Wing Kam, Mechanical Engineering, Northwestern University Liu,

More information

Charged Interfaces & electrokinetic

Charged Interfaces & electrokinetic Lecture Note #7 Charged Interfaces & electrokinetic phenomena Reading: Shaw, ch. 7 Origin of the charge at colloidal surfaces 1. Ionization Proteins acquire their charge by ionization of COOH and NH 2

More information

Colloid Chemistry. La chimica moderna e la sua comunicazione Silvia Gross.

Colloid Chemistry. La chimica moderna e la sua comunicazione Silvia Gross. Colloid Chemistry La chimica moderna e la sua comunicazione Silvia Gross Istituto Dipartimento di Scienze di e Scienze Tecnologie Chimiche Molecolari ISTM-CNR, Università Università degli Studi degli Studi

More information

Anindya Aparajita, Ashok K. Satapathy* 1.

Anindya Aparajita, Ashok K. Satapathy* 1. μflu12-2012/24 NUMERICAL ANALYSIS OF HEAT TRANSFER CHARACTERISTICS OF COMBINED ELECTROOSMOTIC AND PRESSURE-DRIVEN FULLY DEVELOPED FLOW OF POWER LAW NANOFLUIDS IN MICROCHANNELS Anindya Aparajita, Ashok

More information

An electrokinetic LB based model for ion transport and macromolecular electrophoresis

An electrokinetic LB based model for ion transport and macromolecular electrophoresis An electrokinetic LB based model for ion transport and macromolecular electrophoresis Raffael Pecoroni Supervisor: Michael Kuron July 8, 2016 1 Introduction & Motivation So far an mesoscopic coarse-grained

More information

Microfluidic Principles Part 2

Microfluidic Principles Part 2 Introduction to BioMEMS & Medical Microdevices Microfluidic Principles Part 2 Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Prof., http://saliterman.umn.edu/ Electrokinetic

More information

Zeta Potential Analysis using Z-NTA

Zeta Potential Analysis using Z-NTA Zeta Potential Analysis using Z-NTA Summary Zeta Potential Nanoparticle Tracking Analysis (Z-NTA) adds measurements of electrostatic potential to simultaneous reporting of nanoparticle size, light scattering

More information

c 2011 Vishal Venkata Raghave Nandigana

c 2011 Vishal Venkata Raghave Nandigana c 2011 Vishal Venkata Raghave Nandigana NONLINEAR ELECTROKINETIC TRANSPORT AND ITS APPLICATIONS UNDER COMBINED AC AND DC FIELDS IN MICRO/NANOFLUIDIC INTERFACE DEVICES BY VISHAL VENKATA RAGHAVE NANDIGANA

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,700 108,500 1.7 M Open access books available International authors and editors Downloads Our

More information

Electroosmotic Flow Mixing in a Microchannel

Electroosmotic Flow Mixing in a Microchannel *c: Unmarked Revised manuscript Click here to view linked References 1 1 1 0 1 0 1 0 1 0 1 0 1 Effects of Ionic Concentration Gradient on Electroosmotic Flow Mixing in a Microchannel Ran Peng and Dongqing

More information

Insulator-Based Dielectrophoretic Manipulation of DNA in a Microfluidic Device

Insulator-Based Dielectrophoretic Manipulation of DNA in a Microfluidic Device Insulator-Based Dielectrophoretic Manipulation of DNA in a Microfluidic Device Lin Gan 07/17/2015 1 Motivation Photo credit: (1) commons.wikimedia.org (2) h-a-y-s-t-a-c-k.net (3) joshmayo.com 2 Motivation

More information

Review: Electric field driven pumping in microfluidic device

Review: Electric field driven pumping in microfluidic device 702 Electrophoresis 2018, 39, 702 731 Mohammad R. Hossan 1 Diganta Dutta 2 Nazmul Islam 3 Prashanta Dutta 4 1 Department of Engineering and Physics, University of Central Oklahoma, Edmond, OK, USA 2 Department

More information

Reactive-transport modelling of electrokinetic extraction of heavy metals from marine sediments

Reactive-transport modelling of electrokinetic extraction of heavy metals from marine sediments EREM63 Reactive-transport modelling of electrokinetic extraction of heavy metals from marine sediments Matteo Masi a, *, Alessio Ceccarini b, Renato Iannelli a a University of Pisa, Department of Energy,

More information

V. Electrostatics. MIT Student

V. Electrostatics. MIT Student V. Electrostatics Lecture 26: Compact Part of the Double Layer MIT Student 1 Double-layer Capacitance 1.1 Stern Layer As was discussed in the previous lecture, the Gouy-Chapman model predicts unphysically

More information

An Improved Method of Determining the ζ -Potential and Surface Conductance

An Improved Method of Determining the ζ -Potential and Surface Conductance Journal of Colloid and Interface Science 232, 186 197 (2000) doi:10.1006/jcis.2000.7153, available online at http://www.idealibrary.com on An Improved Method of Determining the ζ -Potential and Surface

More information

Fully Coupled Computational Modeling of Transport Phenomena in Microfluidics Applications. Abstract

Fully Coupled Computational Modeling of Transport Phenomena in Microfluidics Applications. Abstract 2 nd International Bhurban Conference on Applied Sciences and Technology, Bhurban, Pakistan. June 16 21, 2003 Fully Coupled Computational Modeling of Transport Phenomena in Microfluidics Applications Athonu

More information

International Journal of Engineering & Technology IJET-IJENS Vol:18 No:03 1

International Journal of Engineering & Technology IJET-IJENS Vol:18 No:03 1 International Journal of Engineering & Technology IJET-IJENS Vol:18 No:03 1 Analytical Derivation of Diffusio-osmosis Electric Potential and Velocity Distribution of an Electrolyte in a Fine Capillary

More information

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores Long Luo, Robert P. Johnson, Henry S. White * Department of Chemistry, University of Utah, Salt Lake City, UT 84112,

More information

al., 2000) to extend the previous numerical model to account for the effect of interfacial charges. This extension allows the analysis of the electrok

al., 2000) to extend the previous numerical model to account for the effect of interfacial charges. This extension allows the analysis of the electrok The Journal of Engineering and Exact Sciences - JCEC ISSN: 2446-9416 Vol. 03 N. 03 (2017) 294 319 doi: https://doi.org/10.18540/2446941603032017294 OPEN ACCESS SIMULATION OF A PERFECTLY DIELECTRIC DROP

More information

Impacts of Electroosmosis Forces on Surface-Tension- Driven Micro-Pumps

Impacts of Electroosmosis Forces on Surface-Tension- Driven Micro-Pumps Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015) Barcelona, Spain July 20-21, 2015 Paper No. 290 Impacts of Electroosmosis Forces on Surface-Tension- Driven

More information

PHYchip Corporation. SCU Nanotechnology Course presentation. Dhaval Brahmbhatt President & CEO. Friday, June 3 rd, 2005

PHYchip Corporation. SCU Nanotechnology Course presentation. Dhaval Brahmbhatt President & CEO. Friday, June 3 rd, 2005 SCU Nanotechnology Course presentation Dhaval Brahmbhatt President & CEO Friday, June 3 rd, 2005, San Jose, CA 95110. 1 Course Books (1) Primary Book: Introduction to Nanoscale Science and Technology Edited

More information

Analytical Solution of Combined Electroosmotic/ Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye Layer Effects

Analytical Solution of Combined Electroosmotic/ Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye Layer Effects Anal. Chem. 2001, 73, 1979-1986 Analytical Solution of Combined Electroosmotic/ Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye Layer Effects Prashanta Dutta and Ali Beskok* Microfluidics

More information

IUPAC Provisional Recommendations

IUPAC Provisional Recommendations INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ANALYTICAL CHEMISTRY DIVISION COMMISSION ON SEPARATION METHODS IN ANALYTICAL CHEMISTRY* Project 530/10/95 (Revised title) July 2001 TERMINOLOGY FOR ANALYTICAL

More information

Viscoelastic Effects on Dispersion due to Electroosmotic Flow with Variable Zeta Potential

Viscoelastic Effects on Dispersion due to Electroosmotic Flow with Variable Zeta Potential Proceedings of the 3 rd World Congress on Mechanical, Chemical, and Material Engineering (MCM'17) Rome, Italy June 8 10, 2017 Paper No. HTFF 147 ISSN: 2369-8136 DOI: 10.11159/htff17.147 Viscoelastic Effects

More information

Microfluidic analysis of electrokinetic streaming potential induced by microflows of monovalent electrolyte solution

Microfluidic analysis of electrokinetic streaming potential induced by microflows of monovalent electrolyte solution INSTITUTE OFPHYSICS PUBISHING JOURNA OFMICROMECHANICS ANDMICROENGINEERING J Micromech Microeng 15 (25 71 719 doi:1188/96-1317/15/4/7 Microfluidic analysis of electrokinetic streaming potential induced

More information

Electrostatic Forces & The Electrical Double Layer

Electrostatic Forces & The Electrical Double Layer Electrostatic Forces & The Electrical Double Layer Dry Clay Swollen Clay Repulsive electrostatics control swelling of clays in water LiquidSolid Interface; Colloids Separation techniques such as : column

More information

3. Electrical forces in the double layer: Electroosmotic and AC Electroosmotic Pumps

3. Electrical forces in the double layer: Electroosmotic and AC Electroosmotic Pumps 3. Electrical forces in the double layer: Electroosmotic and AC Electroosmotic Pumps At the interface between solid walls and electrolytes, double layers are formed [1] due to differences in electrochemical

More information

Multi-Physics Analysis of Microfluidic Devices with Hydrodynamic Focusing and Dielectrophoresis

Multi-Physics Analysis of Microfluidic Devices with Hydrodynamic Focusing and Dielectrophoresis Multi-Physics Analysis of Microfluidic Devices with Hydrodynamic Focusing and Dielectrophoresis M. Kathryn Thompson Mechanical Engineering Dept, MIT John M. Thompson, PhD Consulting Engineer Abstract Among

More information

Experimental determination of sample stream focusing with fluorescent dye

Experimental determination of sample stream focusing with fluorescent dye Electrophoresis 2008, 29, 2953 2959 2953 Jay Taylor G. D. Stubley Carolyn L. Ren Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada Received December

More information

Microparticle Influenced Electroosmotic Flow

Microparticle Influenced Electroosmotic Flow Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2005-05-31 Microparticle Influenced Electroosmotic Flow John M. Young Brigham Young University - Provo Follow this and additional

More information

Modeling the electrochemical properties and the complex conductivity of calcite

Modeling the electrochemical properties and the complex conductivity of calcite Modeling the electrochemical properties and the complex conductivity of calcite Shuai Li Philippe Leroy Damien Jougnot André Revil Nicolas Devau Frank Heberling Mohamed Azaroual Complex conductivity in

More information

Electroosmotic control of width and position of liquid streams in hydrodynamic focusing

Electroosmotic control of width and position of liquid streams in hydrodynamic focusing Electroosmotic control of width and position of liquid streams in hydrodynamic focusing Haiwang Li, Teck Neng Wong, Nam-Trung Nguyen School of Mechanical and Aerospace, Nanyang Technological University,

More information

Highly Nonlinear Electrokinetic Simulations Using a Weak Form

Highly Nonlinear Electrokinetic Simulations Using a Weak Form Presented at the COMSOL Conference 2008 Boston Highly Nonlinear Electrokinetic Simulations Using a Weak Form Gaurav Soni, Todd Squires, Carl Meinhart University Of California Santa Barbara, USA Induced

More information

Lecture 3 Charged interfaces

Lecture 3 Charged interfaces Lecture 3 Charged interfaces rigin of Surface Charge Immersion of some materials in an electrolyte solution. Two mechanisms can operate. (1) Dissociation of surface sites. H H H H H M M M +H () Adsorption

More information

Nonlinear electrokinetic phenomena

Nonlinear electrokinetic phenomena Nonlinear electrokinetic phenomena Synonyms Induced-charge electro-osmosis (ICEO), induced-charge electrophoresis (ICEP), AC electroosmosis (ACEO), electro-osmosis of the second kind, electrophoresis of

More information

Electroosmotic Flow Characterization and Enhancement in PDMS Microchannels

Electroosmotic Flow Characterization and Enhancement in PDMS Microchannels Electroosmotic Flow Characterization and Enhancement in PDMS Microchannels by Zeyad Almutairi A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Potential changes of the cross section for rectangular microchannel with different aspect ratios

Potential changes of the cross section for rectangular microchannel with different aspect ratios Korean J. Chem. Eng., 24(1), 186-190 (2007) SHORT COMMUNICATION Potential changes of the cross section for rectangular microchannel with different aspect ratios Hyo Song Lee, Ki Ho Kim, Jae Keun Yu, Soon

More information

Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions

Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions Journal of Colloid and Interface Science 263 (2003) 133 143 www.elsevier.com/locate/jcis Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions Paul Takhistov, Ksenia Duginova,

More information

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki

More information

Physics and Chemistry of Interfaces

Physics and Chemistry of Interfaces Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl Physics and Chemistry of Interfaces Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI 1 Introduction

More information

AUTO-ELECTROKINETIC FLOWS IN DEAD-END PORES FROM MIXED ION SYSTEMS

AUTO-ELECTROKINETIC FLOWS IN DEAD-END PORES FROM MIXED ION SYSTEMS The Pennsylvania State University The Graduate School Department of Chemical Engineering AUTO-ELECTROKINETIC FLOWS IN DEAD-END PORES FROM MIXED ION SYSTEMS A Thesis in Chemical Engineering by Abhishek

More information

Dependence of Potential and Ion Distribution on Electrokinetic Radius in Infinite and Finite-length Nano-channels

Dependence of Potential and Ion Distribution on Electrokinetic Radius in Infinite and Finite-length Nano-channels Presented at the COMSOL Conference 2008 Boston Dependence of Potential and Ion Distribution on Electrokinetic Radius in Infinite and Finite-length Nano-channels Jarrod Schiffbauer *,1, Josh Fernandez 2,

More information

South pacific Journal of Technology and Science

South pacific Journal of Technology and Science Zetasizer Technique Dr. Nagham Mahmood Aljamali Abstract: Assist. Professor in Organic Chemistry, Chemistry Department.,College of Education.,Kufa University.,IRAQ. In this review study., zetasizer technique

More information

Microfluidic Devices. Microfluidic Device Market. Microfluidic Principles Part 1. Introduction to BioMEMS & Medical Microdevices.

Microfluidic Devices. Microfluidic Device Market. Microfluidic Principles Part 1. Introduction to BioMEMS & Medical Microdevices. Introduction to BioMEMS & Medical Microdevices Microfluidic Principles Part 1 Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Prof., http://saliterman.umn.edu/,

More information

Lecture 2 Fluid dynamics in microfluidic systems

Lecture 2 Fluid dynamics in microfluidic systems Lecture 2 Fluid dynamics in microfluidic systems 1) The range of validity of the fluid mechanics equations The hypothesis of the continuum in fluid mechanics (Batchelor, Introduction to Fluids Dynamics)

More information

METROLOGY AND SIMULATION OF CHEMICAL TRANSPORT IN MICROCHANNELS

METROLOGY AND SIMULATION OF CHEMICAL TRANSPORT IN MICROCHANNELS METROLOGY AND SIMULATION OF CHEMICAL TRANSPORT IN MICROCHANNELS P. M. St. John*, T. oudenberg, and C. Connell PE Applied Biosystems 850 Lincoln Centre Drive Foster City, CA 94404 M. Deshpande and J. R.

More information

Transport by convection. Coupling convection-diffusion

Transport by convection. Coupling convection-diffusion Transport by convection. Coupling convection-diffusion 24 mars 2017 1 When can we neglect diffusion? When the Peclet number is not very small we cannot ignore the convection term in the transport equation.

More information

Particle Transport Phenomena in Non-Newtonian Microfluidics

Particle Transport Phenomena in Non-Newtonian Microfluidics Clemson University TigerPrints All Dissertations Dissertations 8-2016 Particle Transport Phenomena in Non-Newtonian Microfluidics Xinyu Lu Clemson University Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

Demystifying Transmission Lines: What are They? Why are They Useful?

Demystifying Transmission Lines: What are They? Why are They Useful? Demystifying Transmission Lines: What are They? Why are They Useful? Purpose of This Note This application note discusses theory and practice of transmission lines. It outlines the necessity of transmission

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

Single action pressing (from top)

Single action pressing (from top) www.komage.de Single action pressing (from top) Double action pressing with fixed die Typical course of the pressure during pressing and ejection (Single action) Upper punch Pressure Lower punch Time Green

More information

Joule-heating effects in mixed electro-osmotic and pressure-driven microflows under constant wall heat flux

Joule-heating effects in mixed electro-osmotic and pressure-driven microflows under constant wall heat flux Journal of Engineering Mathematics (26) 54: 159 18 Springer 25 DOI 1.17/s166559199 Jouleheating effects in mixed electroosmotic and pressuredriven microflows under constant wall heat flux KEISUKE HORIUCHI,

More information

ENMA490 Capstone: Design of Microfluidics Mixer

ENMA490 Capstone: Design of Microfluidics Mixer ENMA490 Capstone: Design of Microfluidics Mixer By: Elyse Canosa, Josh Davis, Colin Heikes, Gao Li, Pavel Kotlyarskiy, Christina Senagore, Maeling Tapp, Alvin Wilson Outline Motivation for Microfluidic

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Poiseuille Flow of Two Immiscible Fluids Between Flat Plates with Applications to Microfluidics

Poiseuille Flow of Two Immiscible Fluids Between Flat Plates with Applications to Microfluidics PoiseuilleFlowofTwoImmiscibleFluidsBetweenFlatPlateswithApplicationsto Microfluidics BruceA.Finlayson ProfessorEmeritusofChemicalEngineering UniversityofWashington Seattle,WA98195 1750 Abstract An analytic

More information

Fast Biofluid Transport of High Conductive Liquids Using AC Electrothermal Phenomenon, A Study on Substrate Characteristics

Fast Biofluid Transport of High Conductive Liquids Using AC Electrothermal Phenomenon, A Study on Substrate Characteristics Fast Biofluid Transport of High Conductive Liquids Using AC Electrothermal Phenomenon, A Study on Substrate Characteristics A. Salari, C. Dalton Department of Electrical & Computer Engineering, University

More information

Module : 9 Electrophoretic Separation Methods

Module : 9 Electrophoretic Separation Methods Module : 9 Electrophoretic Separation Methods Dr. Sirshendu De Professor, Department of Chemical Engineering Indian Institute of Technology, Kharagpur e-mail: sde@che.iitkgp.ernet.in Keywords: Separation

More information

Part II: Self Potential Method and Induced Polarization (IP)

Part II: Self Potential Method and Induced Polarization (IP) Part II: Self Potential Method and Induced Polarization (IP) Self-potential method (passive) Self-potential mechanism Measurement of self potentials and interpretation Induced polarization method (active)

More information

Microfluidics 1 Basics, Laminar flow, shear and flow profiles

Microfluidics 1 Basics, Laminar flow, shear and flow profiles MT-0.6081 Microfluidics and BioMEMS Microfluidics 1 Basics, Laminar flow, shear and flow profiles 11.1.2017 Ville Jokinen Outline of the next 3 weeks: Today: Microfluidics 1: Laminar flow, flow profiles,

More information

Colloidal Materials: Part III

Colloidal Materials: Part III NPTEL Chemical Engineering Interfacial Engineering Module 1: Lecture 4 Colloidal Materials: Part III Dr. Pallab Ghosh Associate Professor Department of Chemical Engineering IIT Guwahati, Guwahati 781039

More information

Atomistic simulation of electro-osmosis in a nanometer-scale channel

Atomistic simulation of electro-osmosis in a nanometer-scale channel Center for Turbulence Research Proceedings of the Summer Program Atomistic simulation of electro-osmosis in a nanometer-scale channel By J. B. Freund An atomistic simulation of an electro-osmostic flow

More information

Supplementary Methods

Supplementary Methods Supplementary Methods Modeling of magnetic field In this study, the magnetic field was generated with N52 grade nickel-plated neodymium block magnets (K&J Magnetics). The residual flux density of the magnets

More information

The CMP Slurry Monitor - Background

The CMP Slurry Monitor - Background The CMP Slurry Monitor - Background Abstract The CMP slurry monitor uses electroacoustic and ultrasonic attenuation measurements to determine the size and zeta potential of slurry particles. The article

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell Galvanic cells convert different forms of energy (chemical fuel, sunlight, mechanical pressure, etc.) into electrical energy and heat. In this lecture, we are interested in some examples of galvanic cells.

More information

AC Electrokinetic Manipulation of Microfluids and Particles using Orthogonal Electrodes

AC Electrokinetic Manipulation of Microfluids and Particles using Orthogonal Electrodes University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2008 AC Electrokinetic Manipulation of Microfluids and Particles using Orthogonal Electrodes

More information

ELECTROPHORESIS SLAB (THIN LAYER GEL) AND CAPILLARY METHODS. A. General Introduction

ELECTROPHORESIS SLAB (THIN LAYER GEL) AND CAPILLARY METHODS. A. General Introduction ELECTROPHORESIS SLAB (THIN LAYER GEL) AND CAPILLARY METHODS A. General Introduction Electrophoresis: a saration method based on differential rate of migration of charged species in an applied dc electric

More information

Poisson equation based modeling of DC and AC electroosmosis

Poisson equation based modeling of DC and AC electroosmosis COMSOL Conference Prague 2006 Page 1 Poisson equation based modeling of DC and AC electroosmosis Michal Přibyl & Dalimil Šnita Institute of Chemical Technology, Prague, Czech Republic Department of Chemical

More information

Numerical analysis of fluid flow and heat transfer in 2D sinusoidal wavy channel

Numerical analysis of fluid flow and heat transfer in 2D sinusoidal wavy channel Numerical analysis of fluid flow and heat transfer in 2D sinusoidal wavy channel Arunanshu Chakravarty 1* 1 CTU in Prague, Faculty of Mechanical Engineering, Department of Process Engineering,Technická

More information

Nonlinear Electrokinetic Transport Under Combined ac and dc Fields in Micro/ Nanofluidic Interface Devices

Nonlinear Electrokinetic Transport Under Combined ac and dc Fields in Micro/ Nanofluidic Interface Devices Vishal V. R. Nandigana e-mail: nandiga1@illinois.edu N. R. Aluru 1 e-mail: aluru@illinois.edu Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University

More information

Electrohydrodynamic Micropumps

Electrohydrodynamic Micropumps Electrohydrodynamic Micropumps Antonio Ramos Dept. Electrónica y Electromagnetismo Universidad de Sevilla Avda. Reina Mercedes s/n 41012 Sevilla. Spain 1. Introduction Microfluidics deals with the pumping,

More information

Polarizability-Dependent Induced-Charge. Electroosmotic Flow of Dielectric Particles and. Its Applications

Polarizability-Dependent Induced-Charge. Electroosmotic Flow of Dielectric Particles and. Its Applications Polarizability-Dependent Induced-Charge Electroosmotic Flow of Dielectric Particles and Its Applications by Fang Zhang A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

PIPE FLOW. General Characteristic of Pipe Flow. Some of the basic components of a typical pipe system are shown in Figure 1.

PIPE FLOW. General Characteristic of Pipe Flow. Some of the basic components of a typical pipe system are shown in Figure 1. PIPE FLOW General Characteristic of Pipe Flow Figure 1 Some of the basic components of a typical pipe system are shown in Figure 1. They include the pipes, the various fitting used to connect the individual

More information

Electrokinetic Transport Process in Nanopores Generated on Cell Membrane during Electroporation

Electrokinetic Transport Process in Nanopores Generated on Cell Membrane during Electroporation Electrokinetic Transport Process in Nanopores Generated on Cell Membrane during Electroporation by Saeid Movahed A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

Microfluidic Design of Neuron-MOSFET Based on ISFET

Microfluidic Design of Neuron-MOSFET Based on ISFET Excerpt from the Proceedings of the COMSOL Conference 2010 India Microfluidic Design of Neuron-MOSFET Based on ISFET Akshat Jain 1, Akshat Garg 2 1 Birla Institute of Technology and Science (BITS)- Pilani,

More information

JOURNAL OF APPLIED PHYSICS 102, Simultaneous mixing and pumping using asymmetric microelectrodes

JOURNAL OF APPLIED PHYSICS 102, Simultaneous mixing and pumping using asymmetric microelectrodes JOURNAL OF APPLIED PHYSICS 102, 1 2007 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Simultaneous mixing and pumping using asymmetric microelectrodes Byoung Jae Kim, Sang Youl Yoon, and Hyung

More information

Thermoacoustic Devices

Thermoacoustic Devices Thermoacoustic Devices Peter in t panhuis Sjoerd Rienstra Han Slot 24th April 2008 Down-well power generation Vortex shedding in side branch Vortex shedding creates standing wave Porous medium near closed

More information

ELECTROVISCOUS FLOW THROUGH A MICROFLUIDIC T-JUNCTION

ELECTROVISCOUS FLOW THROUGH A MICROFLUIDIC T-JUNCTION Ninth International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 10-12 December 2012 ELECTROVISCOUS FLOW THROUGH A MICROFLUIDIC T-JUNCTION Joseph D. BERRY 1, Malcolm

More information

JOULE HEATING EFFECTS ON ELECTROKINETIC TRANSPORT IN CONSTRICTION MICROCHANNELS

JOULE HEATING EFFECTS ON ELECTROKINETIC TRANSPORT IN CONSTRICTION MICROCHANNELS Clemson University TigerPrints All Theses Theses 5-2011 JOULE HEATING EFFECTS ON ELECTROKINETIC TRANSPORT IN CONSTRICTION MICROCHANNELS Sriram Sridharan Clemson University, srirams@g.clemson.edu Follow

More information

On the time development of dispersion in electroosmotic flow through a rectangular channel

On the time development of dispersion in electroosmotic flow through a rectangular channel Title On the time development of dispersion in electroosmotic flow through a rectangular channel Author(s) Paul, S; Ng, CO Citation Acta Mechanica Sinica, 01, v. 8 n. 3, p. 631 643 Issued Date 01 URL http://hdl.handle.net/107/159563

More information

Computational Fluid Dynamical Simulations of Droplet Flow and Merger in Microfluidic Channels

Computational Fluid Dynamical Simulations of Droplet Flow and Merger in Microfluidic Channels Computational Fluid Dynamical Simulations of Droplet Flow and Merger in Microfluidic Channels Katrina J. Donovan 1, Shelly Gulati 2, Xize Niu 3, Bradley M. Stone 1 and Andrew J. demello 4 1. Department

More information

Fall 2012 Due In Class Friday, Oct. 19. Complete the following on separate paper. Show your work and clearly identify your answers.

Fall 2012 Due In Class Friday, Oct. 19. Complete the following on separate paper. Show your work and clearly identify your answers. CHEM 322 Name Fall 2012 Due In Class Friday, Oct. 19 Complete the following on separate paper. Show your work and clearly identify your answers. General Separations 1. Describe the relative contributions

More information

Hydrodynamic dispersion of pressure-induced and electroosmotic flow in porous glasses probed by Nuclear Magnetic Resonance

Hydrodynamic dispersion of pressure-induced and electroosmotic flow in porous glasses probed by Nuclear Magnetic Resonance The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application Hydrodynamic dispersion of pressure-induced and electroosmotic flow in porous glasses probed by Nuclear

More information