SOE3213/4: CFD Lecture 1

Size: px
Start display at page:

Download "SOE3213/4: CFD Lecture 1"

Transcription

1 What is CFD SOE3213/4: CFD Lecture 1 3d

2 3d Computational Fluid Dynamics { use of computers to study uid dynamics. Solve the Navier-Stokes Equations (NSE) : r:u = 0 Du Dt = rp + r 2 u + F 4 s for 4 unknowns, coupled, non-linear, and often involve complex geometries.

3 3d 4 stage process 1 Modelling N-S s, Turbulence Combustion, multiphase, shocks : : : 2 Discretisation 3 Solving. M u = q ) p u = M 1 q p 4 Interpretation

4 3d From the user's point of view, CFD modelling is a 3 stage process : 1 Problem denition. geometry, mesh, boundary conditions physical models, constants 2 Numerical solution. dierencing schemes, soln techniques. tolerances actually running the solver 3 Postprocessing.

5 3d Finite Dierence methods { variables represented at discrete points in space. = p j+1 p j 1 2 x { very complex if the grid distorted or complicated. Finite Element (FE) methods have been used, but are not common. Finite Volume (FV) method most common. { used in most commercial codes { Fluent, STAR-CD, CFX etc.

6 3d ow region is divided into small boxes { cells or control volumes, forming mesh. s reexpressed in terms of ow into and out of each cell. This is done by integrating the s over the volume of each cell. The result is a set of dierence s which can be solved numerically as before. The advantage of doing things this way is that the cells can be any shape required - cubes, tetrahedra, distorted cubes, or more complicated structures.

7 Water owing in a river is contaminated by a chemical leak. Determine where the chemical has reached after a given time t. u u 3d δx Α w e W P E Flow uniform throughout the channel : const. speed u at all points.

8 3d Concentration q @x To apply the FV method, we 1 Split the channel into cells V = Ax 2 integrate eqn over the cell. { the 1-d.

9 3d First term : dv = d dt Second term : dv = Adx dv = ZZZV V qdv = d dt (qv Adx = (uqa) e (uqa) w These two terms are now being evaluated on the boundary face between the cells. However we do not know the value of the variables on w and e. Need to interpolate to get these values.

10 Upwind dierencing (uq) w = (uq) W ; (uq) e = (uq) P 3d Central dierencing (uq) w = (uq) W + (uq) P 2 Diusion can be treated similarly

11 Discretised s : d dt (qv ) + (uqa) e (uqa) A w 3d Rearanging a bit and using central dierencing to interpolate, we get dq dt + u 2x (q E q W ) = x (q 2 E 2q P + q W ) Number the cells i = 0 : : : N! : dq i dt = u 2x (q i+1 q i 1) + x 2 (q i+1 2q i + q i 1)

12 3d This problem is parabolic one { solve by timestepping { of time into M timesteps q j. Time derivative dq dt = qj+1 q j t At what timestep are the values on the r.h.s. evaluated? Take values at timestep j,! explicit scheme. Take values at timestep j + 1,! implicit scheme. Explicit scheme : q j+1 i q j i = ut 2x (q i+1 q i 1) j + t x 2 (q i+1 2q i + q i 1) j

13 Write C = ut x ; D = t x 2 C = Courant number { signicant parameter in determining the stability of the scheme. D relates to the diusion. 3d Writing this out as an algorithm : q j+1 i = C 2 + D q j i 1 + (1 2D) qj i + C 2 D q j i+1 A rule for advancing the values of q through one timestep, which could be written into a spreadsheet.

14 3d Implicit scheme : write as a matrix : 0 D U 0 L D U 0 L D C A q j+1 i 1 q j+1 i q j+1 i+1. 1 C A = 0 q j i 1 q j i q j i+1 Inverting this matrix provides the solution without the stability problems. (although the Courant number is still worth calculating if there are problems).. 1 C A

15 3d 3d This scheme could be derived by standard FD techniques. This is because the mesh we are dealing with was regular and uniform. However this is not always the case. FV approach makes it much easier to evaluate the various terms for irregular shaped cells. The + r:uq = r: rq + S q When we integrate the second term here, we nd ZZZ X r:uq dv = uq V A { Gauss' theorem in vector calculus.

SOE3213/4: CFD Lecture 3

SOE3213/4: CFD Lecture 3 CFD { SOE323/4: CFD Lecture 3 @u x @t @u y @t @u z @t r:u = 0 () + r:(uu x ) = + r:(uu y ) = + r:(uu z ) = @x @y @z + r 2 u x (2) + r 2 u y (3) + r 2 u z (4) Transport equation form, with source @x Two

More information

5. FVM discretization and Solution Procedure

5. FVM discretization and Solution Procedure 5. FVM discretization and Solution Procedure 1. The fluid domain is divided into a finite number of control volumes (cells of a computational grid). 2. Integral form of the conservation equations are discretized

More information

The Relationship between Discrete Calculus Methods and other Mimetic Approaches

The Relationship between Discrete Calculus Methods and other Mimetic Approaches The Relationship between Discrete Calculus Methods and other Mimetic Approaches Blair Perot Theoretical and Computational Fluid Dynamics Laboratory Woudschoten Conerence Oct. 2011 October 7, 2011 Background

More information

Physics-Based Animation

Physics-Based Animation CSCI 5980/8980: Special Topics in Computer Science Physics-Based Animation 13 Fluid simulation with grids October 20, 2015 Today Presentation schedule Fluid simulation with grids Course feedback survey

More information

SOE3211/2 Fluid Mechanics lecture 2

SOE3211/2 Fluid Mechanics lecture 2 SOE311/ Fluid Mechanics lecture example example Fluid ows governed by conservation of mass, momentum. We can use this to solve ow problems. Draw box (control volume) around region of interest, then equate

More information

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics Diffusion / Parabolic Equations Summary of PDEs (so far...) Hyperbolic Think: advection Real, finite speed(s) at which information propagates carries changes in the solution Second-order explicit methods

More information

Solution of the Two-Dimensional Steady State Heat Conduction using the Finite Volume Method

Solution of the Two-Dimensional Steady State Heat Conduction using the Finite Volume Method Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016 ICCFD9-0113 Solution of the Two-Dimensional Steady State Heat Conduction using the Finite Volume

More information

n i,j+1/2 q i,j * qi+1,j * S i+1/2,j

n i,j+1/2 q i,j * qi+1,j * S i+1/2,j Helsinki University of Technology CFD-group/ The Laboratory of Applied Thermodynamics MEMO No CFD/TERMO-5-97 DATE: December 9,997 TITLE A comparison of complete vs. simplied viscous terms in boundary layer

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Introduction Deng Li Discretization Methods Chunfang Chen, Danny Thorne, Adam Zornes CS521 Feb.,7, 2006 What do You Stand For? A PDE is a Partial Differential Equation This

More information

Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes

Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes Thomas Gallinger * Alexander Kupzok Roland Wüchner Kai-Uwe Bletzinger Lehrstuhl für Statik Technische Universität München

More information

Finite difference methods for the diffusion equation

Finite difference methods for the diffusion equation Finite difference methods for the diffusion equation D150, Tillämpade numeriska metoder II Olof Runborg May 0, 003 These notes summarize a part of the material in Chapter 13 of Iserles. They are based

More information

VISCOUS FLUX LIMITERS

VISCOUS FLUX LIMITERS VISCOUS FLUX LIMITERS E. F. Toro Department of Aerospace Science College of Aeronautics Cranfield Institute of Technology Cranfield, Beds MK43 OAL England. Abstract We present Numerical Viscosity Functions,

More information

First, Second, and Third Order Finite-Volume Schemes for Diffusion

First, Second, and Third Order Finite-Volume Schemes for Diffusion First, Second, and Third Order Finite-Volume Schemes for Diffusion Hiro Nishikawa 51st AIAA Aerospace Sciences Meeting, January 10, 2013 Supported by ARO (PM: Dr. Frederick Ferguson), NASA, Software Cradle.

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

Lecture 2: Fundamentals 2/3: Navier-Stokes Equation + Basics of Discretization

Lecture 2: Fundamentals 2/3: Navier-Stokes Equation + Basics of Discretization Lecture 2: Fundamentals 2/3: Navier-Stokes Equation Basics of Discretization V.Vuorinen Aalto University School of Engineering CFD Course, Spring 2018 January 15th 2018, Otaniemi ville.vuorinen@aalto.fi

More information

3D Numerical Simulation of Supercritical Flow in Bends of Channel

3D Numerical Simulation of Supercritical Flow in Bends of Channel 3D Numerical Simulation of Supercritical Flow in Bends of Channel Masoud. Montazeri-Namin, Reyhaneh-Sadat. Ghazanfari-Hashemi, and Mahnaz. Ghaeini- Hessaroeyeh Abstract An attempt has been made to simulate

More information

OpenFOAM selected solver

OpenFOAM selected solver OpenFOAM selected solver Roberto Pieri - SCS Italy 16-18 June 2014 Introduction to Navier-Stokes equations and RANS Turbulence modelling Numeric discretization Navier-Stokes equations Convective term {}}{

More information

Basic Aspects of Discretization

Basic Aspects of Discretization Basic Aspects of Discretization Solution Methods Singularity Methods Panel method and VLM Simple, very powerful, can be used on PC Nonlinear flow effects were excluded Direct numerical Methods (Field Methods)

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Computational Fluid Dynamics

Computational Fluid Dynamics Computational Fluid Dynamics A Practical Approach Jiyuan Tu RMIT University, Australia Guan Heng Yeoh Australian Nuclear Science and Technology Organisation Chaoqun Liu University of Texas, Arlington ^fl

More information

Numerical Modelling in Fortran: day 10. Paul Tackley, 2016

Numerical Modelling in Fortran: day 10. Paul Tackley, 2016 Numerical Modelling in Fortran: day 10 Paul Tackley, 2016 Today s Goals 1. Useful libraries and other software 2. Implicit time stepping 3. Projects: Agree on topic (by final lecture) (No lecture next

More information

Active Flux for Advection Diffusion

Active Flux for Advection Diffusion Active Flux for Advection Diffusion A Miracle in CFD Hiroaki Nishikawa National Institute of Aerospace! NIA CFD Seminar! August 25, 2015 In collaboration with the University of Michigan Supported by NASA

More information

Computational Fluid Dynamics-1(CFDI)

Computational Fluid Dynamics-1(CFDI) بسمه تعالی درس دینامیک سیالات محاسباتی 1 دوره کارشناسی ارشد دانشکده مهندسی مکانیک دانشگاه صنعتی خواجه نصیر الدین طوسی Computational Fluid Dynamics-1(CFDI) Course outlines: Part I A brief introduction to

More information

Supporting information to

Supporting information to Supporting information to Cylindrical Water Triboelectric Nanogenerator via Controlling Geometrical Shape of Anodized Aluminum for Enhanced Electrostatic Induction Sukyung Lee, a, Jihoon Chung, a, Dae

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

An Approach to Higher- Order Mimetic Finite Volume Schemes

An Approach to Higher- Order Mimetic Finite Volume Schemes An Approach to Higher- Order Mimetic Finite Volume Schemes Blair Perot Context Mimetic Methods Finite Dierence Mimetic SOM Finite Element Edge/Face Staggered Finite Volume Meshless Natural Neighbors DC

More information

IMPACT OF LES TURBULENCE SUBGRID MODELS IN THE JET RELEASE SIMULATION

IMPACT OF LES TURBULENCE SUBGRID MODELS IN THE JET RELEASE SIMULATION IMPACT OF LES TURBULENCE SUBGRID MODELS IN THE JET RELEASE SIMULATION E. S. FERREIRA JÚNIOR 1, S. S. V. VIANNA 1 1 State University of Campinas, Faculty of Chemical Engineering E-mail: elmo@feq.unicamp.br,

More information

ME Computational Fluid Mechanics Lecture 5

ME Computational Fluid Mechanics Lecture 5 ME - 733 Computational Fluid Mechanics Lecture 5 Dr./ Ahmed Nagib Elmekawy Dec. 20, 2018 Elliptic PDEs: Finite Difference Formulation Using central difference formulation, the so called five-point formula

More information

Solution Methods. Steady State Diffusion Equation. Lecture 04

Solution Methods. Steady State Diffusion Equation. Lecture 04 Solution Methods Steady State Diffusion Equation Lecture 04 1 Solution methods Focus on finite volume method. Background of finite volume method. Discretization example. General solution method. Convergence.

More information

Multiphase Flows. Mohammed Azhar Phil Stopford

Multiphase Flows. Mohammed Azhar Phil Stopford Multiphase Flows Mohammed Azhar Phil Stopford 1 Outline VOF Model VOF Coupled Solver Free surface flow applications Eulerian Model DQMOM Boiling Model enhancements Multi-fluid flow applications Coupled

More information

Answers to Exercises Computational Fluid Dynamics

Answers to Exercises Computational Fluid Dynamics Answers to Exercises Computational Fluid Dynamics Exercise - Artificial diffusion upwind computations.9 k=. exact.8 k=..7 k=..6 k=..5.4.3.2...2.3.4.5.6.7.8.9 x For k =.,. and., and for N = 2, the discrete

More information

Simulation of unsteady muzzle flow of a small-caliber gun

Simulation of unsteady muzzle flow of a small-caliber gun Advances in Fluid Mechanics VI 165 Simulation of unsteady muzzle flow of a small-caliber gun Y. Dayan & D. Touati Department of Computational Mechanics & Ballistics, IMI, Ammunition Group, Israel Abstract

More information

author's personal copy

author's personal copy Mechanics Research Communications 40 (2012) 46 51 Contents lists available at SciVerse ScienceDirect Mechanics Research Communications jo ur nal homep age : www.elsevier.com/locate/mechrescom Verifying

More information

Lecture 1: Newton s Cooling Law, Fourier s Law and Heat Conduction

Lecture 1: Newton s Cooling Law, Fourier s Law and Heat Conduction Lecture 1: Newton s Cooling Law, Fourier s Law and Heat Conduction V.Vuorinen Aalto University School of Engineering Heat and Mass Transfer Course, Autumn 2016 October 31 st 2017, Otaniemi ville.vuorinen@aalto.fi

More information

Numerical Modelling of Twin-screw Pumps Based on Computational Fluid Dynamics

Numerical Modelling of Twin-screw Pumps Based on Computational Fluid Dynamics Numerical Modelling of Twin-screw Pumps Based on Computational Fluid Dynamics 6-8 th March 2017 Dr Sham Rane, Professor Ahmed Kovačević, Dr Di Yan, Professor Qian Tang, Centre for Compressor Technology,

More information

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract nd Workshop on CFD Uncertainty Analysis - Lisbon, 19th and 0th October 006 AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION Alfredo Iranzo 1, Jesús Valle, Ignacio Trejo 3, Jerónimo

More information

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

Prediction of CO Burnout using a CHEMKIN based Network Tool

Prediction of CO Burnout using a CHEMKIN based Network Tool Prediction of CO Burnout using a CHEMKIN based Network Tool Engler-Bunte-Institut / Bereich Verbrennungstechnik Universität Karlsruhe Contents Complex reaction schemes vs. complex transport models. Complex

More information

X i t react. ~min i max i. R ij smallest. X j. Physical processes by characteristic timescale. largest. t diff ~ L2 D. t sound. ~ L a. t flow.

X i t react. ~min i max i. R ij smallest. X j. Physical processes by characteristic timescale. largest. t diff ~ L2 D. t sound. ~ L a. t flow. Physical processes by characteristic timescale Diffusive timescale t diff ~ L2 D largest Sound crossing timescale t sound ~ L a Flow timescale t flow ~ L u Free fall timescale Cooling timescale Reaction

More information

Computational Fluid Dynamics Overview, Scope and Relevance

Computational Fluid Dynamics Overview, Scope and Relevance Computational Fluid Dynamics Overview, Scope and Relevance P. R. Naren School of Chemical & Biotechnology SASTRA University Thanjavur 613401 E-mail: prnaren@scbt.sastra.edu at Faculty Development Program

More information

Introduction to numerical simulation of fluid flows

Introduction to numerical simulation of fluid flows Introduction to numerical simulation of fluid flows Mónica de Mier Torrecilla Technical University of Munich Winterschool April 2004, St. Petersburg (Russia) 1 Introduction The central task in natural

More information

Numerical modelling of phase change processes in clouds. Challenges and Approaches. Martin Reitzle Bernard Weigand

Numerical modelling of phase change processes in clouds. Challenges and Approaches. Martin Reitzle Bernard Weigand Institute of Aerospace Thermodynamics Numerical modelling of phase change processes in clouds Challenges and Approaches Martin Reitzle Bernard Weigand Introduction Institute of Aerospace Thermodynamics

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 21

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 21 Spring 2015 Lecture 21 REVIEW Lecture 20: Time-Marching Methods and ODEs IVPs Time-Marching Methods and ODEs Initial Value Problems Euler s method Taylor Series Methods Error analysis: for two time-levels,

More information

Evaluating methods for 3D CFD Models in sediment transport computations

Evaluating methods for 3D CFD Models in sediment transport computations American Journal of Civil Engineering 2015; 3(2-2): 33-37 Published online February 10, 2015 (http://www.sciencepublishinggroup.com/j/ajce) doi: 10.11648/j.ajce.s.2015030202.17 ISSN: 2330-8729 (Print);

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 13

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 13 REVIEW Lecture 12: Spring 2015 Lecture 13 Grid-Refinement and Error estimation Estimation of the order of convergence and of the discretization error Richardson s extrapolation and Iterative improvements

More information

A Space-Time Multigrid Solver Methodology for the Optimal Control of Time-Dependent Fluid Flow

A Space-Time Multigrid Solver Methodology for the Optimal Control of Time-Dependent Fluid Flow A Space-Time Multigrid Solver Methodology for the Optimal Control of Time-Dependent Fluid Flow Michael Köster, Michael Hinze, Stefan Turek Michael Köster Institute for Applied Mathematics TU Dortmund Trier,

More information

Module 3: BASICS OF CFD. Part A: Finite Difference Methods

Module 3: BASICS OF CFD. Part A: Finite Difference Methods Module 3: BASICS OF CFD Part A: Finite Difference Methods THE CFD APPROACH Assembling the governing equations Identifying flow domain and boundary conditions Geometrical discretization of flow domain Discretization

More information

Express Introductory Training in ANSYS Fluent Lecture 2 Boundary Conditions & Solver Settings

Express Introductory Training in ANSYS Fluent Lecture 2 Boundary Conditions & Solver Settings Express Introductory Training in ANSYS Fluent Lecture 2 Boundary Conditions & Solver Settings Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

EFFECT OF ROTOR S ANGULAR SPEED AND ASPECT RATIO ON ENTROPY GENERATION IN A ROTOR-CASING ASSEMBLY

EFFECT OF ROTOR S ANGULAR SPEED AND ASPECT RATIO ON ENTROPY GENERATION IN A ROTOR-CASING ASSEMBLY Third International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 1-1 December 3 EFFECT OF ROTOR S ANGUL SPEED AND ASPECT RATIO ON ENTROPY GENERATION IN A ROTOR-CASING

More information

Element diameter free stability parameters. for stabilized methods applied to uids

Element diameter free stability parameters. for stabilized methods applied to uids Element diameter free stability parameters for stabilized methods applied to uids by Leopoldo P. Franca Laboratorio Nacional de Computac~ao Cientica (LNCC/CNPq) Rua Lauro Muller 455 22290 Rio de Janeiro,

More information

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions R. S. Sellers MAE 5440, Computational Fluid Dynamics Utah State University, Department of Mechanical and Aerospace Engineering

More information

Implementation of Implicit Solution Techniques for Non-equilibrium Hypersonic Flows

Implementation of Implicit Solution Techniques for Non-equilibrium Hypersonic Flows Short Training Program Report Implementation of Implicit Solution Techniques for Non-equilibrium Hypersonic Flows Julian Koellermeier RWTH Aachen University Supervisor: Advisor: Prof. Thierry Magin von

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Many astrophysical scenarios are modeled using the field equations of fluid dynamics. Fluids are generally challenging systems to describe analytically, as they form a nonlinear

More information

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations Today's Lecture 2D grid colocated arrangement staggered arrangement Exercise: Make a Fortran program which solves a system of linear equations using an iterative method SIMPLE algorithm Pressure-velocity

More information

Stratified scavenging in two-stroke engines using OpenFOAM

Stratified scavenging in two-stroke engines using OpenFOAM Stratified scavenging in two-stroke engines using OpenFOAM Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 1 Acknowledgements I would like to thank Associate Professor Håkan Nilsson at the

More information

Solving the Euler Equations!

Solving the Euler Equations! http://www.nd.edu/~gtryggva/cfd-course/! Solving the Euler Equations! Grétar Tryggvason! Spring 0! The Euler equations for D flow:! where! Define! Ideal Gas:! ρ ρu ρu + ρu + p = 0 t x ( / ) ρe ρu E + p

More information

DESIGN & COMPUTATIONAL FLUID DYNAMICS ANALYSES OF AN AXISYMMETRIC NOZZLE AT TRANSONIC FREE STREAM CONDITIONS

DESIGN & COMPUTATIONAL FLUID DYNAMICS ANALYSES OF AN AXISYMMETRIC NOZZLE AT TRANSONIC FREE STREAM CONDITIONS DESIGN & COMPUTATIONAL FLUID DYNAMICS ANALYSES OF AN AXISYMMETRIC NOZZLE AT TRANSONIC FREE STREAM CONDITIONS S Wasim Akram 1, S. Rajesh 2 1 M.Tech Student, Department of Mechanical Engineering, Krishna

More information

CIEPLNE MASZYNY PRZEPŁYWOWE No. 115 TURBOMACHINERY 1999 NUMERICAL SIMULATION OF 3D FLOW THROUGH A CONTROL VALVE

CIEPLNE MASZYNY PRZEPŁYWOWE No. 115 TURBOMACHINERY 1999 NUMERICAL SIMULATION OF 3D FLOW THROUGH A CONTROL VALVE CIEPLNE MASZYNY PRZEPŁYWOWE No. 115 TURBOMACHINERY 1999 Janusz BADUR, Mariusz BANASZKIEWICZ, Michał KARCZ Institute of Fluid-Flow Machinery PAS, Gdańsk Marian WINOWIECKI ABB Zamech Ltd, Elbląg NUMERICAL

More information

Efficient FEM-multigrid solver for granular material

Efficient FEM-multigrid solver for granular material Efficient FEM-multigrid solver for granular material S. Mandal, A. Ouazzi, S. Turek Chair for Applied Mathematics and Numerics (LSIII), TU Dortmund STW user committee meeting Enschede, 25th September,

More information

IMPLEMENTATION OF PRESSURE BASED SOLVER FOR SU2. 3rd SU2 Developers Meet Akshay.K.R, Huseyin Ozdemir, Edwin van der Weide

IMPLEMENTATION OF PRESSURE BASED SOLVER FOR SU2. 3rd SU2 Developers Meet Akshay.K.R, Huseyin Ozdemir, Edwin van der Weide IMPLEMENTATION OF PRESSURE BASED SOLVER FOR SU2 3rd SU2 Developers Meet Akshay.K.R, Huseyin Ozdemir, Edwin van der Weide Content ECN part of TNO SU2 applications at ECN Incompressible flow solver Pressure-based

More information

Chapter 2. Formulation of Finite Element Method by Variational Principle

Chapter 2. Formulation of Finite Element Method by Variational Principle Chapter 2 Formulation of Finite Element Method by Variational Principle The Concept of Variation of FUNCTIONALS Variation Principle: Is to keep the DIFFERENCE between a REAL situation and an APPROXIMATE

More information

(Refer Slide Time: 03: 09)

(Refer Slide Time: 03: 09) Computational Electromagnetics and Applications Professor Krish Sankaran Indian Institute of Technology Bombay Lecture No 26 Finite Volume Time Domain Method-I Welcome back in the precious lectures we

More information

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: 2-4 July, 2015

International Journal of Modern Trends in Engineering and Research  e-issn No.: , Date: 2-4 July, 2015 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 2-4 July, 2015 CFD Analysis of Airfoil NACA0012 Pritesh S. Gugliya 1, Yogesh R. Jaiswal 2,

More information

Lectures 15: Parallel Transport. Table of contents

Lectures 15: Parallel Transport. Table of contents Lectures 15: Parallel Transport Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams. In this lecture we study the

More information

CST Investigation on High Speed Liquid Jet using Computational Fluid Dynamics Technique

CST Investigation on High Speed Liquid Jet using Computational Fluid Dynamics Technique The 23 rd Conference of the Mechanical Engineering Network of Thailand November 4 7, 2009, Chiang Mai Investigation on High Speed Liquid Jet using Computational Fluid Dynamics Technique Wirapan Seehanam*,

More information

Mimetic Methods and why they are better

Mimetic Methods and why they are better Mimetic Methods and why they are better Blair Perot Theoretical and Computational Fluid Dynamics Laboratory February 25, 2015 Numerical Methods: Are more than Mathematics Math: Accuracy Stability Convergence

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS NUMERICAL FLUID MECHANICS FALL 2011

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS NUMERICAL FLUID MECHANICS FALL 2011 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139 2.29 NUMERICAL FLUID MECHANICS FALL 2011 QUIZ 2 The goals of this quiz 2 are to: (i) ask some general

More information

Numerical Hydraulics

Numerical Hydraulics ETHZ, Fall 017 Numerical Hydraulics Assignment 4 Numerical solution of 1D solute transport using Matlab http://www.bafg.de/ http://warholian.com Numerical Hydraulics Assignment 4 ETH 017 1 Introduction

More information

Department of Aerospace Engineering AE602 Mathematics for Aerospace Engineers Assignment No. 6

Department of Aerospace Engineering AE602 Mathematics for Aerospace Engineers Assignment No. 6 Department of Aerospace Engineering AE Mathematics for Aerospace Engineers Assignment No.. Find the best least squares solution x to x, x 5. What error E is minimized? heck that the error vector ( x, 5

More information

Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles

Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles Anand Senguttuvan Supervisor Gordon A Irons 1 Approach to Simulate Slag Metal Entrainment using Computational Fluid Dynamics Introduction &

More information

The Advanced Research WRF (ARW) Dynamics Solver

The Advanced Research WRF (ARW) Dynamics Solver Dynamics: Introduction The Advanced Research WRF (ARW) Dynamics Solver 1. What is a dynamics solver? 2. Variables and coordinates 3. Equations 4. Time integration scheme 5. Grid staggering 6. Advection

More information

Burgers equation - a first look at fluid mechanics and non-linear partial differential equations

Burgers equation - a first look at fluid mechanics and non-linear partial differential equations Burgers equation - a first look at fluid mechanics and non-linear partial differential equations In this assignment you will solve Burgers equation, which is useo model for example gas dynamics anraffic

More information

Develpment of NSCBC for compressible Navier-Stokes equations in OpenFOAM : Subsonic Non-Reflecting Outflow

Develpment of NSCBC for compressible Navier-Stokes equations in OpenFOAM : Subsonic Non-Reflecting Outflow Develpment of NSCBC for compressible Navier-Stokes equations in OpenFOAM : Subsonic Non-Reflecting Outflow F. Piscaglia, A. Montorfano Dipartimento di Energia, POLITECNICO DI MILANO Content Introduction

More information

INTERNAL FLOW IN A Y-JET ATOMISER ---NUMERICAL MODELLING---

INTERNAL FLOW IN A Y-JET ATOMISER ---NUMERICAL MODELLING--- ILASS-Europe 2002 Zaragoza 9 11 September 2002 INTERNAL FLOW IN A Y-JET ATOMISER ---NUMERICAL MODELLING--- Z. Tapia, A. Chávez e-mail: ztapia@imp.mx Instituto Mexicano del Petróleo Blvd. Adolfo Ruiz Cortines

More information

Optimal Control of Plane Poiseuille Flow

Optimal Control of Plane Poiseuille Flow Optimal Control of Plane Poiseuille Flow Workshop on Flow Control, Poitiers 11-14th Oct 04 J. Mckernan, J.F.Whidborne, G.Papadakis Cranfield University, U.K. King s College, London, U.K. Optimal Control

More information

Method in 1D. Introduction of the Basic Concepts and Comparison to Optimal FD Operators

Method in 1D. Introduction of the Basic Concepts and Comparison to Optimal FD Operators The Spectral Element Method in 1D Introduction of the Basic Concepts and Comparison to Optimal FD Operators Seismology and Seismics Seminar 17.06.2003 Ludwigs-Maximilians-Universität München by Bernhard

More information

Modeling Unsteady Flow in Turbomachinery Using a Harmonic Balance Technique

Modeling Unsteady Flow in Turbomachinery Using a Harmonic Balance Technique Modeling Unsteady Flow in Turbomachinery Using a Harmonic Balance Technique Torsten Palenschat 317220 30.04.2014 Master seminar CES WS 2013/2014 Center for Computational Engineering Sciences RWTH Aachen

More information

A recovery-assisted DG code for the compressible Navier-Stokes equations

A recovery-assisted DG code for the compressible Navier-Stokes equations A recovery-assisted DG code for the compressible Navier-Stokes equations January 6 th, 217 5 th International Workshop on High-Order CFD Methods Kissimmee, Florida Philip E. Johnson & Eric Johnsen Scientific

More information

CONVERGENCE OF GAUGE METHOD FOR INCOMPRESSIBLE FLOW CHENG WANG AND JIAN-GUO LIU

CONVERGENCE OF GAUGE METHOD FOR INCOMPRESSIBLE FLOW CHENG WANG AND JIAN-GUO LIU MATHEMATICS OF COMPUTATION Volume 69, Number 232, Pages 135{1407 S 0025-571(00)0124-5 Article electronically published on March 24, 2000 CONVERGENCE OF GAUGE METHOD FOR INCOMPRESSIBLE FLOW CHENG WANG AND

More information

Efficient simulation techniques for incompressible two-phase flow

Efficient simulation techniques for incompressible two-phase flow 3D-Surface Engineering für Werkzeugsysteme der Blechformteilefertigung - Erzeugung, Modellierung, Bearbeitung - Efficient simulation techniques for incompressible two-phase flow O. Mierka, O. Ouazzi, T.

More information

Finite Difference Methods for

Finite Difference Methods for CE 601: Numerical Methods Lecture 33 Finite Difference Methods for PDEs Course Coordinator: Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

More information

Plasma Simulation in STAR-CCM+ -- towards a modern software tool

Plasma Simulation in STAR-CCM+ -- towards a modern software tool Plasma Simulation in STAR-CCM+ -- towards a modern software tool 1 Introduction Electrical arcs and other forms of industrial plasmas have a large number of technical applications, including circuit breakers,

More information

The Center for Astrophysical Thermonuclear Flashes. FLASH Hydrodynamics

The Center for Astrophysical Thermonuclear Flashes. FLASH Hydrodynamics The Center for Astrophysical Thermonuclear Flashes FLASH Hydrodynamics Jonathan Dursi (CITA), Alan Calder (FLASH) B. Fryxell, T. Linde, A. Mignone, G. Wiers Many others! Mar 23, 2005 An Advanced Simulation

More information

:536.24(075.8) , ANSYS FLUENT STAR CCM+ , , ISBN

:536.24(075.8) , ANSYS FLUENT STAR CCM+ , , ISBN .. КИК ЧЕЕ ИЕ 07 5.56:56.4(075.8) 66 :,,..,,.... :. /....:., 07. 4.,,,,.,,. ANSYS FLUENT STAR CCM+ ().,.0.0,.0.0,.04.0,.04.0И0..5..7. ISBN 978-5-74-590-6.., 07, 07 ,,,. ( ),.,,.,,,. 965...,, (). .,.,.

More information

FEM-Level Set Techniques for Multiphase Flow --- Some recent results

FEM-Level Set Techniques for Multiphase Flow --- Some recent results FEM-Level Set Techniques for Multiphase Flow --- Some recent results ENUMATH09, Uppsala Stefan Turek, Otto Mierka, Dmitri Kuzmin, Shuren Hysing Institut für Angewandte Mathematik, TU Dortmund http://www.mathematik.tu-dortmund.de/ls3

More information

Multi-Factor Finite Differences

Multi-Factor Finite Differences February 17, 2017 Aims and outline Finite differences for more than one direction The θ-method, explicit, implicit, Crank-Nicolson Iterative solution of discretised equations Alternating directions implicit

More information

Securing Manoeuverability of a Deep Draft Ship in a Sediment loaded Tidal River Berth

Securing Manoeuverability of a Deep Draft Ship in a Sediment loaded Tidal River Berth Securing Manoeuverability of a Deep Draft Ship in a Sediment loaded Tidal River Berth O. Stoschek 1, A. Matheja 1 & C. Zimmermann 1 1 Franzius-Institute for Hydraulic, Waterways and Coastal Engineering,

More information

An Introduction to the Discontinuous Galerkin Method

An Introduction to the Discontinuous Galerkin Method An Introduction to the Discontinuous Galerkin Method Krzysztof J. Fidkowski Aerospace Computational Design Lab Massachusetts Institute of Technology March 16, 2005 Computational Prototyping Group Seminar

More information

The hybridized DG methods for WS1, WS2, and CS2 test cases

The hybridized DG methods for WS1, WS2, and CS2 test cases The hybridized DG methods for WS1, WS2, and CS2 test cases P. Fernandez, N.C. Nguyen and J. Peraire Aerospace Computational Design Laboratory Department of Aeronautics and Astronautics, MIT 5th High-Order

More information

Time Integration Methods for the Heat Equation

Time Integration Methods for the Heat Equation Time Integration Methods for the Heat Equation Tobias Köppl - JASS March 2008 Heat Equation: t u u = 0 Preface This paper is a short summary of my talk about the topic: Time Integration Methods for the

More information

Chp 4: Non-linear Conservation Laws; the Scalar Case. By Prof. Dinshaw S. Balsara

Chp 4: Non-linear Conservation Laws; the Scalar Case. By Prof. Dinshaw S. Balsara Chp 4: Non-linear Conservation Laws; the Scalar Case By Prof. Dinshaw S. Balsara 1 4.1) Introduction We have seen that monotonicity preserving reconstruction and iemann solvers are essential building blocks

More information

The Numerical Solution of Reacting Flow Problems. Idrees Ahmad. Submitted in accordance with the requirements. for the degree of Doctor of Philosophy

The Numerical Solution of Reacting Flow Problems. Idrees Ahmad. Submitted in accordance with the requirements. for the degree of Doctor of Philosophy The Numerical Solution of Reacting Flow Problems by Idrees Ahmad Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Computer Studies

More information

Faster Kinetics: Accelerate Your Finite-Rate Combustion Simulation with GPUs

Faster Kinetics: Accelerate Your Finite-Rate Combustion Simulation with GPUs Faster Kinetics: Accelerate Your Finite-Rate Combustion Simulation with GPUs Christopher P. Stone, Ph.D. Computational Science and Engineering, LLC Kyle Niemeyer, Ph.D. Oregon State University 2 Outline

More information

Francis X. Giraldo,

Francis X. Giraldo, 1 Time-Integrators Francis X. Giraldo, giraldo@nrlmry.navy.mil, www.nrlmry.navy.mil/~giraldo/projects/nseam.html 1.1 Introduction Roughly speaking, there are 2 classes of TIs: 1. EulerianMethods(fixed-frame-e.g.,arockatthebottomofaflowing

More information

2 GOVERNING EQUATIONS

2 GOVERNING EQUATIONS 2 GOVERNING EQUATIONS 9 2 GOVERNING EQUATIONS For completeness we will take a brief moment to review the governing equations for a turbulent uid. We will present them both in physical space coordinates

More information

7 Hyperbolic Differential Equations

7 Hyperbolic Differential Equations Numerical Analysis of Differential Equations 243 7 Hyperbolic Differential Equations While parabolic equations model diffusion processes, hyperbolic equations model wave propagation and transport phenomena.

More information

Coupled calculations in OpenFOAM -

Coupled calculations in OpenFOAM - Coupled calculations in OpenFOAM - Multiphysics handling, structures and solvers, Gothenburg Region OpenFOAM User Group Meeting Klas Jareteg Chalmers University of Technology November 14, 2012 Outline

More information

Modeling, Simulating and Rendering Fluids. Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan

Modeling, Simulating and Rendering Fluids. Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan Modeling, Simulating and Rendering Fluids Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan Applications Mostly Hollywood Shrek Antz Terminator 3 Many others Games Engineering Animating Fluids is

More information