ME Computational Fluid Mechanics Lecture 5

Size: px
Start display at page:

Download "ME Computational Fluid Mechanics Lecture 5"

Transcription

1 ME Computational Fluid Mechanics Lecture 5 Dr./ Ahmed Nagib Elmekawy Dec. 20, 2018

2 Elliptic PDEs: Finite Difference Formulation Using central difference formulation, the so called five-point formula for the Laplace's equation: A higher order formula using nine-point formula

3 Elliptic PDEs: Finite Difference Formulation Using five-point formula for Laplace's equation: where The boundary conditions:

4 Elliptic PDEs: Finite Difference Formulation The corresponding linear set of equations:

5 Elliptic PDEs: Finite Difference Formulation The set of equations in a matrix form:

6 Elliptic PDEs: Solution Algorithms Solving simultaneous linear algebraic equations are classified as Direct method: Gaussian elimination Cramer s rule Enormous amount of athematic operations (N x N) Large memory usage Some advanced techniques can be used for small problems Iterative method: It is based on guess and correct philosophy By an initial guessed solution, a new solution will be obtained. A newer solution will be obtained from the new solution. The procedure will be repeated until convergence is reached

7 Elliptic PDEs: Iterative Methods Iterative method: It is classified based on the formulation of the iterative scheme Point iterative method: similar to explicit methods of parabolic equations, where there is only one unknown at the next time/iteration step Line iterative method: similar to implicit schemes, where the formulation contains more than one unknowns

8 Elliptic PDEs: Point Iterative Methods 1- Jacobi Iteration Method Jacobi Iteration Method: Dependent variable is computed at each grid point as a function of initial guessed or previously computed values Therefore the discrete equation can be written as: This method is rarely used Analogy between Jacobi method and Explicit time dependent equation: Consider the parabolic equation: Using FTCS and using Δx = Δy, where D x =D y =D has to be 0.25 for stable solution of two-dimensional problems.

9 Elliptic PDEs: Point Iterative Methods 1- Jacobi Iteration Method Using D = 0.25, the discrete formulation becomes Applying the Jacobi method as Δx = Δy β=1, the iterative equation for the elliptic equation becomes: Although, the two equations are representing completely different phenomenon, but mathematically they are identical. This notice suggests that many techniques used in parabolic equations can be extended to obtain efficient algorithms for the solution of elliptic equations.

10 Elliptic PDEs: Point Iterative Methods 2- Point Gauss-Seidel Iteration Method In the Jacobi method, the new dependent variable at k+1 is computed from the dependent variable at k level. In the current method, the the new dependent variable at k+1 is computed from its neighbors once they are updated. This method is 100% faster in convergence than Jacobi method.

11 Elliptic PDEs: Line Iterative Methods 1- Line Gauss-Seidel Iteration Method In this formulation, the discrete equation is written with three unknowns at (i-1,j), (i,j), and (i+1,j): This method converges faster than Point Gauss-Seidel method by 50% in number of iterations. But it requires more time per iteration to be computed. Solution advances over iterations at the line direction much faster than the other direction as the boundary directly used with implicit scheme to get all line points.

12 Elliptic PDEs: Over-Relaxation Method 1- Point Successive Over-Relaxation The concept assumes that there is a trend where the initial state approaches steady state, the direction of the change can be used to extrapolate for the next iteration step Starting with Gauss-Seidel iteration method Adding to the right hand side, and collecting terms: As the solution advances, approaches, to accelerate the solution, the term in brackets is multiplied by ω, the relaxation parameter: For convergence, 0<ω<2, and if 0<ω<1 --> it is called under relaxation In general, optimum ω cannot be determined easily and needs numerical experimentations

13 Elliptic PDEs: Over-Relaxation Method 2- Line Successive Over-Relaxation Solution can also be accelerated using similar relaxation parameter used for PSOR Starting with Line Gauss-Seidel iteration method adding new terms and rearrange: In practice, trial and error is used to determine the optimum ω

14 Elliptic PDEs: Over-Relaxation Method 3- Alternating Direction Implicit (ADI) Method An iteration is considered when the tridiagonal system is solved for rows and then for columns or vice versa: For rows: For columns:

15 Programing Assignment 2 Consider an incompressible and inviscid fluid flow moving around an infinite cylinder.

16 Elliptic Equations in Polar Coordinates Consider an incompressible and inviscid fluid flow moving around an infinite cylinder. The inlet velocity is 1 m/s. The cylinder radius is 1 m. Consider a mesh starting from r = 1 m with r = 0.1 and a final radius of 10 m and θ=360/100=3.6. For polar coordinates

17 For polar coordinates Elliptic Equations in Polar Coordinates v r = 1 ψ r θ, v θ = ψ (1) r The continuity equation in cartesian coordinates for an incompressible flow is u x + v y + w z = 0 The continuity equation in polar coordinates is 1 r rv r r + 1 r v θ θ = 0 (2)

18 By substitution of eq(1) in eq(2), we get 1 r 1 ψ r θ + 1 ψ r r r r θ 2 ψ ψ θ r = 1 r 2 ψ θ r = 0 = 1 r r θ 1 r So, the continuity is satisfied. Assume the following boundary conditions: ψ = r = 1 sin θ ψ = r sin θ Γ r 2π 1 r ψ r θ ln farfield, r = 10 m

19 Consider the rotation vector in cartesian coordinates: e x e y e z ω = x y z u v w the rotation vector in polar coordinates: ω = 1 r v z θ v θ z ω = e r + e r e θ e z 1 1 r r r θ z v r v θ v z 1 v z r r v r e z θ + 1 r v θ r 1 r v r θ e z

20 For 2d irrotational flow v θ r 1 r v r θ = 0 ω z = 1 r Substitute 1 r ψ r 1 1 ψ r θ = 0 r r r θ 1 ψ r r r r ψ r 2 θ 2 = 0 The Laplace equation for polar coordinates is: 1 ψ r r r r ψ r 2 θ 2 = 0

21

22

23

24

25

26

27

28 Sequence of Programs For all following methods we will use the following

29 Apply the following schemes: Point Jacobbi Method Point Gauss Seidal Point Successive Over Relaxation (PSOR) Line Successive Over Relaxation (LSOR) Plot the streamlines by using Matlab by using the following: Γ = 0, 2π, 4π and 8π.

30 Hyperbolic PDEs: Introduction Several governing equations in fluid mechanics are ruled by hyperbolic equations: First order wave equation Second order wave equation

31 Hyperbolic PDEs: Explicit Formulations Euler s FTFS Unconditionally unstable Euler s FTCS Unconditionally unstable The Upwind differencing scheme (FTBC) Stable when C 1, where C=a Δt/Δx

32 Hyperbolic PDEs: Explicit Formulations The Lax method Stable when C 1 Midpoint Leapfrog method Stable when C 1 The Lax-Wendroff method Stable when C 1

33 Hyperbolic PDEs: Implicit Formulations Euler s BTCS O(Δt, Δx 2 ) Unconditionally stable Implicit Upwind differencing method O(Δt, Δx) Unconditionally stable Crank-Nicolson method O(Δt 2, Δx 2 )

34 Hyperbolic PDEs: Mutli-Step Formulations The method uses finite difference method at split time level. The method is being referred to as predictor corrector method, where in the first step, a temporary value for the dependent variable is predicted and in the second step, a corrected value is computed providing the final value of the dependent variable. Richtmyer/Lax-Wendroff Multi-Step Method O(Δt 2, Δx 2 ) Stable when C 2

35 Hyperbolic PDEs: Mutli-Step Formulations The MacCormack Method O(Δt 2, Δx 2 ) It uses forward differencing in the predictor step While the corrector step is backward differencing Stable when C 1 Note: multi-step is called splitting method when applies to multidimensional problems and reduces finite difference equation to two sets of tri-diagonal systems. Multi-step is called predictor-corrector when it solves the problem in a sequence of time.

36 Hyperbolic PDEs: Application to Linear Problems Consider the model problem: where a, the wave speed and equal to 250 m/s The boundary conditions:

37 Hyperbolic PDEs: Application to Linear Problems Using FTBS (upwind difference): For stable solution Courant number c 1 If c=1 solution: Investigating solution for various time steps

38 Hyperbolic PDEs: Application to Linear Problems Solution using c=1 Best results at c=1. Why?

39 Hyperbolic PDEs: Application to Linear Problems Using Lax-Wendroff: For stable solution Courant number c 1 If c=1 solution: Investigating solution for various time steps

40 Hyperbolic PDEs: Application to Linear Problems Solution using c=1 Best results at c=1. Why?

41 Programing Assignment 3 A shock wave moving within 300 m starting with 2 m/s for 50 m and the rest space is shocked with 1 m/s speed. And the wave is moving with 300 m/s speed. We are going to study the behavior of that wave within different times and different stability conditions. Consider the following wave equation:-

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 3 Solvers of linear algebraic equations 3.1. Outline of Lecture Finite-difference method for a 2D elliptic PDE

More information

NUMERICAL METHODS FOR ENGINEERING APPLICATION

NUMERICAL METHODS FOR ENGINEERING APPLICATION NUMERICAL METHODS FOR ENGINEERING APPLICATION Second Edition JOEL H. FERZIGER A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

More information

ECE539 - Advanced Theory of Semiconductors and Semiconductor Devices. Numerical Methods and Simulation / Umberto Ravaioli

ECE539 - Advanced Theory of Semiconductors and Semiconductor Devices. Numerical Methods and Simulation / Umberto Ravaioli ECE539 - Advanced Theory of Semiconductors and Semiconductor Devices 1 General concepts Numerical Methods and Simulation / Umberto Ravaioli Introduction to the Numerical Solution of Partial Differential

More information

Finite Difference Methods (FDMs) 2

Finite Difference Methods (FDMs) 2 Finite Difference Methods (FDMs) 2 Time- dependent PDEs A partial differential equation of the form (15.1) where A, B, and C are constants, is called quasilinear. There are three types of quasilinear equations:

More information

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems Index A-conjugate directions, 83 A-stability, 171 A( )-stability, 171 absolute error, 243 absolute stability, 149 for systems of equations, 154 absorbing boundary conditions, 228 Adams Bashforth methods,

More information

Numerical Methods for Engineers and Scientists

Numerical Methods for Engineers and Scientists Numerical Methods for Engineers and Scientists Second Edition Revised and Expanded Joe D. Hoffman Department of Mechanical Engineering Purdue University West Lafayette, Indiana m MARCEL D E К К E R MARCEL

More information

Numerical Solution of partial differential equations

Numerical Solution of partial differential equations G. D. SMITH Brunei University Numerical Solution of partial differential equations FINITE DIFFERENCE METHODS THIRD EDITION CLARENDON PRESS OXFORD Contents NOTATION 1. INTRODUCTION AND FINITE-DIFFERENCE

More information

Module 3: BASICS OF CFD. Part A: Finite Difference Methods

Module 3: BASICS OF CFD. Part A: Finite Difference Methods Module 3: BASICS OF CFD Part A: Finite Difference Methods THE CFD APPROACH Assembling the governing equations Identifying flow domain and boundary conditions Geometrical discretization of flow domain Discretization

More information

Multi-Factor Finite Differences

Multi-Factor Finite Differences February 17, 2017 Aims and outline Finite differences for more than one direction The θ-method, explicit, implicit, Crank-Nicolson Iterative solution of discretised equations Alternating directions implicit

More information

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015 Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in NUMERICAL ANALYSIS Spring 2015 Instructions: Do exactly two problems from Part A AND two

More information

Basic Aspects of Discretization

Basic Aspects of Discretization Basic Aspects of Discretization Solution Methods Singularity Methods Panel method and VLM Simple, very powerful, can be used on PC Nonlinear flow effects were excluded Direct numerical Methods (Field Methods)

More information

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics Diffusion / Parabolic Equations Summary of PDEs (so far...) Hyperbolic Think: advection Real, finite speed(s) at which information propagates carries changes in the solution Second-order explicit methods

More information

Finite Difference Method for PDE. Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36

Finite Difference Method for PDE. Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36 Finite Difference Method for PDE Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36 1 Classification of the Partial Differential Equations Consider a scalar second order partial

More information

Partial Differential Equations

Partial Differential Equations Next: Using Matlab Up: Numerical Analysis for Chemical Previous: Ordinary Differential Equations Subsections Finite Difference: Elliptic Equations The Laplace Equations Solution Techniques Boundary Conditions

More information

Finite Difference Methods for

Finite Difference Methods for CE 601: Numerical Methods Lecture 33 Finite Difference Methods for PDEs Course Coordinator: Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

More information

Partial differential equations

Partial differential equations Partial differential equations Many problems in science involve the evolution of quantities not only in time but also in space (this is the most common situation)! We will call partial differential equation

More information

Preface. 2 Linear Equations and Eigenvalue Problem 22

Preface. 2 Linear Equations and Eigenvalue Problem 22 Contents Preface xv 1 Errors in Computation 1 1.1 Introduction 1 1.2 Floating Point Representation of Number 1 1.3 Binary Numbers 2 1.3.1 Binary number representation in computer 3 1.4 Significant Digits

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

Computational Fluid Dynamics-1(CFDI)

Computational Fluid Dynamics-1(CFDI) بسمه تعالی درس دینامیک سیالات محاسباتی 1 دوره کارشناسی ارشد دانشکده مهندسی مکانیک دانشگاه صنعتی خواجه نصیر الدین طوسی Computational Fluid Dynamics-1(CFDI) Course outlines: Part I A brief introduction to

More information

Lecture 4.5 Schemes for Parabolic Type Equations

Lecture 4.5 Schemes for Parabolic Type Equations Lecture 4.5 Schemes for Parabolic Type Equations 1 Difference Schemes for Parabolic Equations One-dimensional problems: Consider the unsteady diffusion problem (parabolic in nature) in a thin wire governed

More information

Time stepping methods

Time stepping methods Time stepping methods ATHENS course: Introduction into Finite Elements Delft Institute of Applied Mathematics, TU Delft Matthias Möller (m.moller@tudelft.nl) 19 November 2014 M. Möller (DIAM@TUDelft) Time

More information

Computation Fluid Dynamics

Computation Fluid Dynamics Computation Fluid Dynamics CFD I Jitesh Gajjar Maths Dept Manchester University Computation Fluid Dynamics p.1/189 Garbage In, Garbage Out We will begin with a discussion of errors. Useful to understand

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Introduction Deng Li Discretization Methods Chunfang Chen, Danny Thorne, Adam Zornes CS521 Feb.,7, 2006 What do You Stand For? A PDE is a Partial Differential Equation This

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University A Model Problem in a 2D Box Region Let us consider a model problem of parabolic

More information

FUNDAMENTALS OF FINITE DIFFERENCE METHODS

FUNDAMENTALS OF FINITE DIFFERENCE METHODS FUNDAMENTALS OF FINITE DIFFERENCE METHODS By Deep Gupta 3 rd Year undergraduate, Mechanical Engg. Deptt., IIT Bombay Supervised by: Prof. Gautam Biswas, IIT Kanpur Acknowledgements It has been a pleasure

More information

SOLUTION OF EQUATION AND EIGENVALUE PROBLEMS PART A( 2 MARKS)

SOLUTION OF EQUATION AND EIGENVALUE PROBLEMS PART A( 2 MARKS) CHENDU COLLEGE OF ENGINEERING AND TECHNOLOGY (Approved by AICTE New Delhi, Affiliated to Anna University Chennai. Zamin Endathur Village, Madurntakam Taluk, Kancheepuram Dist.-603311.) MA6459 - NUMERICAL

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

Lecture 18 Classical Iterative Methods

Lecture 18 Classical Iterative Methods Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 13

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 13 REVIEW Lecture 12: Spring 2015 Lecture 13 Grid-Refinement and Error estimation Estimation of the order of convergence and of the discretization error Richardson s extrapolation and Iterative improvements

More information

Appendix A Computer Programs on the Accompanying CD-ROM

Appendix A Computer Programs on the Accompanying CD-ROM Appendix A Computer Programs on the Accompanying CD-ROM The CD-ROM accompanying this book contains both source and executable computer programs and test cases. They are listed below. Prior to running the

More information

Applied Numerical Analysis

Applied Numerical Analysis Applied Numerical Analysis Using MATLAB Second Edition Laurene V. Fausett Texas A&M University-Commerce PEARSON Prentice Hall Upper Saddle River, NJ 07458 Contents Preface xi 1 Foundations 1 1.1 Introductory

More information

Lecture Notes on Numerical Schemes for Flow and Transport Problems

Lecture Notes on Numerical Schemes for Flow and Transport Problems Lecture Notes on Numerical Schemes for Flow and Transport Problems by Sri Redeki Pudaprasetya sr pudap@math.itb.ac.id Department of Mathematics Faculty of Mathematics and Natural Sciences Bandung Institute

More information

Lecture Notes on Numerical Schemes for Flow and Transport Problems

Lecture Notes on Numerical Schemes for Flow and Transport Problems Lecture Notes on Numerical Schemes for Flow and Transport Problems by Sri Redeki Pudaprasetya sr pudap@math.itb.ac.id Department of Mathematics Faculty of Mathematics and Natural Sciences Bandung Institute

More information

AIMS Exercise Set # 1

AIMS Exercise Set # 1 AIMS Exercise Set #. Determine the form of the single precision floating point arithmetic used in the computers at AIMS. What is the largest number that can be accurately represented? What is the smallest

More information

Additive Manufacturing Module 8

Additive Manufacturing Module 8 Additive Manufacturing Module 8 Spring 2015 Wenchao Zhou zhouw@uark.edu (479) 575-7250 The Department of Mechanical Engineering University of Arkansas, Fayetteville 1 Evaluating design https://www.youtube.com/watch?v=p

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 11 Partial Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002.

More information

Computation of Incompressible Flows: SIMPLE and related Algorithms

Computation of Incompressible Flows: SIMPLE and related Algorithms Computation of Incompressible Flows: SIMPLE and related Algorithms Milovan Perić CoMeT Continuum Mechanics Technologies GmbH milovan@continuummechanicstechnologies.de SIMPLE-Algorithm I - - - Consider

More information

8. Introduction to Computational Fluid Dynamics

8. Introduction to Computational Fluid Dynamics 8. Introduction to Computational Fluid Dynamics We have been using the idea of distributions of singularities on surfaces to study the aerodynamics of airfoils and wings. This approach was very powerful,

More information

FDM for parabolic equations

FDM for parabolic equations FDM for parabolic equations Consider the heat equation where Well-posed problem Existence & Uniqueness Mass & Energy decreasing FDM for parabolic equations CNFD Crank-Nicolson + 2 nd order finite difference

More information

Chapter 5. Methods for Solving Elliptic Equations

Chapter 5. Methods for Solving Elliptic Equations Chapter 5. Methods for Solving Elliptic Equations References: Tannehill et al Section 4.3. Fulton et al (1986 MWR). Recommended reading: Chapter 7, Numerical Methods for Engineering Application. J. H.

More information

Basics of Discretization Methods

Basics of Discretization Methods Basics of Discretization Methods In the finite difference approach, the continuous problem domain is discretized, so that the dependent variables are considered to exist only at discrete points. Derivatives

More information

Some notes about PDEs. -Bill Green Nov. 2015

Some notes about PDEs. -Bill Green Nov. 2015 Some notes about PDEs -Bill Green Nov. 2015 Partial differential equations (PDEs) are all BVPs, with the same issues about specifying boundary conditions etc. Because they are multi-dimensional, they can

More information

Numerical methods Revised March 2001

Numerical methods Revised March 2001 Revised March 00 By R. W. Riddaway (revised by M. Hortal) Table of contents. Some introductory ideas. Introduction. Classification of PDE's.3 Existence and uniqueness.4 Discretization.5 Convergence, consistency

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK KINGS COLLEGE OF ENGINEERING MA5-NUMERICAL METHODS DEPARTMENT OF MATHEMATICS ACADEMIC YEAR 00-0 / EVEN SEMESTER QUESTION BANK SUBJECT NAME: NUMERICAL METHODS YEAR/SEM: II / IV UNIT - I SOLUTION OF EQUATIONS

More information

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications)

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications) Chapter 6 Finite Element Method Literature: (tiny selection from an enormous number of publications) K.J. Bathe, Finite Element procedures, 2nd edition, Pearson 2014 (1043 pages, comprehensive). Available

More information

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn Today s class Linear Algebraic Equations LU Decomposition 1 Linear Algebraic Equations Gaussian Elimination works well for solving linear systems of the form: AX = B What if you have to solve the linear

More information

Computational Fluid Dynamics

Computational Fluid Dynamics Computational Fluid Dynamics Dr.Eng. Reima Iwatsu Phone: 0355 69 4875 e-mail: iwatsu@las.tu-cottbus.de NACO Building Room 53-107 Time Summer Term Lecture: Tuesday 7:30-9:00 (every two weeks) LG4/310 Exercise:

More information

MA3232 Numerical Analysis Week 9. James Cooley (1926-)

MA3232 Numerical Analysis Week 9. James Cooley (1926-) MA umerical Analysis Week 9 James Cooley (96-) James Cooley is an American mathematician. His most significant contribution to the world of mathematics and digital signal processing is the Fast Fourier

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

JACOBI S ITERATION METHOD

JACOBI S ITERATION METHOD ITERATION METHODS These are methods which compute a sequence of progressively accurate iterates to approximate the solution of Ax = b. We need such methods for solving many large linear systems. Sometimes

More information

Computational Techniques Prof. Sreenivas Jayanthi. Department of Chemical Engineering Indian institute of Technology, Madras

Computational Techniques Prof. Sreenivas Jayanthi. Department of Chemical Engineering Indian institute of Technology, Madras Computational Techniques Prof. Sreenivas Jayanthi. Department of Chemical Engineering Indian institute of Technology, Madras Module No. # 05 Lecture No. # 24 Gauss-Jordan method L U decomposition method

More information

Numerical Analysis: Solutions of System of. Linear Equation. Natasha S. Sharma, PhD

Numerical Analysis: Solutions of System of. Linear Equation. Natasha S. Sharma, PhD Mathematical Question we are interested in answering numerically How to solve the following linear system for x Ax = b? where A is an n n invertible matrix and b is vector of length n. Notation: x denote

More information

Tutorial 2. Introduction to numerical schemes

Tutorial 2. Introduction to numerical schemes 236861 Numerical Geometry of Images Tutorial 2 Introduction to numerical schemes c 2012 Classifying PDEs Looking at the PDE Au xx + 2Bu xy + Cu yy + Du x + Eu y + Fu +.. = 0, and its discriminant, B 2

More information

Chapter 5 Types of Governing Equations. Chapter 5: Governing Equations

Chapter 5 Types of Governing Equations. Chapter 5: Governing Equations Chapter 5 Types of Governing Equations Types of Governing Equations (1) Physical Classification-1 Equilibrium problems: (1) They are problems in which a solution of a given PDE is desired in a closed domain

More information

Computer Aided Design of Thermal Systems (ME648)

Computer Aided Design of Thermal Systems (ME648) Computer Aided Design of Thermal Systems (ME648) PG/Open Elective Credits: 3-0-0-9 Updated Syallabus: Introduction. Basic Considerations in Design. Modelling of Thermal Systems. Numerical Modelling and

More information

Name of the Student: Unit I (Solution of Equations and Eigenvalue Problems)

Name of the Student: Unit I (Solution of Equations and Eigenvalue Problems) Engineering Mathematics 8 SUBJECT NAME : Numerical Methods SUBJECT CODE : MA6459 MATERIAL NAME : University Questions REGULATION : R3 UPDATED ON : November 7 (Upto N/D 7 Q.P) (Scan the above Q.R code for

More information

Draft Notes ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer

Draft Notes ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer Draft Notes ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer Instructor: Jayathi Y. Murthy School of Mechanical Engineering Purdue University Spring 00 c 1998 J.Y. Murthy and S.R. Mathur.

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 1: Finite Difference Method

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 1: Finite Difference Method file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture1/1_1.htm 1 of 1 6/19/2012 4:29 PM The Lecture deals with: Classification of Partial Differential Equations Boundary and Initial Conditions Finite Differences

More information

Lecture 4.2 Finite Difference Approximation

Lecture 4.2 Finite Difference Approximation Lecture 4. Finite Difference Approimation 1 Discretization As stated in Lecture 1.0, there are three steps in numerically solving the differential equations. They are: 1. Discretization of the domain by

More information

NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING

NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING C. Pozrikidis University of California, San Diego New York Oxford OXFORD UNIVERSITY PRESS 1998 CONTENTS Preface ix Pseudocode Language Commands xi 1 Numerical

More information

2 Multidimensional Hyperbolic Problemss where A(u) =f u (u) B(u) =g u (u): (7.1.1c) Multidimensional nite dierence schemes can be simple extensions of

2 Multidimensional Hyperbolic Problemss where A(u) =f u (u) B(u) =g u (u): (7.1.1c) Multidimensional nite dierence schemes can be simple extensions of Chapter 7 Multidimensional Hyperbolic Problems 7.1 Split and Unsplit Dierence Methods Our study of multidimensional parabolic problems in Chapter 5 has laid most of the groundwork for our present task

More information

EXAMPLES OF CLASSICAL ITERATIVE METHODS

EXAMPLES OF CLASSICAL ITERATIVE METHODS EXAMPLES OF CLASSICAL ITERATIVE METHODS In these lecture notes we revisit a few classical fixpoint iterations for the solution of the linear systems of equations. We focus on the algebraic and algorithmic

More information

Advection / Hyperbolic PDEs. PHY 604: Computational Methods in Physics and Astrophysics II

Advection / Hyperbolic PDEs. PHY 604: Computational Methods in Physics and Astrophysics II Advection / Hyperbolic PDEs Notes In addition to the slides and code examples, my notes on PDEs with the finite-volume method are up online: https://github.com/open-astrophysics-bookshelf/numerical_exercises

More information

Iterative Solvers in the Finite Element Solution of Transient Heat Conduction

Iterative Solvers in the Finite Element Solution of Transient Heat Conduction Iterative Solvers in the Finite Element Solution of Transient Heat Conduction Mile R. Vuji~i} PhD student Steve G.R. Brown Senior Lecturer Materials Research Centre School of Engineering University of

More information

STABILITY FOR PARABOLIC SOLVERS

STABILITY FOR PARABOLIC SOLVERS Review STABILITY FOR PARABOLIC SOLVERS School of Mathematics Semester 1 2008 OUTLINE Review 1 REVIEW 2 STABILITY: EXPLICIT METHOD Explicit Method as a Matrix Equation Growing Errors Stability Constraint

More information

Characteristic finite-difference solution Stability of C C (CDS in time/space, explicit): Example: Effective numerical wave numbers and dispersion

Characteristic finite-difference solution Stability of C C (CDS in time/space, explicit): Example: Effective numerical wave numbers and dispersion Spring 015 Lecture 14 REVIEW Lecture 13: Stability: Von Neumann Ex.: 1st order linear convection/wave eqn., F-B scheme Hyperbolic PDEs and Stability nd order wave equation and waves on a string Characteristic

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 7

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 7 Numerical Fluid Mechanics Fall 2011 Lecture 7 REVIEW of Lecture 6 Material covered in class: Differential forms of conservation laws Material Derivative (substantial/total derivative) Conservation of Mass

More information

Solving PDEs with CUDA Jonathan Cohen

Solving PDEs with CUDA Jonathan Cohen Solving PDEs with CUDA Jonathan Cohen jocohen@nvidia.com NVIDIA Research PDEs (Partial Differential Equations) Big topic Some common strategies Focus on one type of PDE in this talk Poisson Equation Linear

More information

Numerical Methods. Scientists. Engineers

Numerical Methods. Scientists. Engineers Third Edition Numerical Methods for Scientists and Engineers K. Sankara Rao Numerical Methods for Scientists and Engineers Numerical Methods for Scientists and Engineers Third Edition K. SANKARA RAO Formerly,

More information

3.3. Phase and Amplitude Errors of 1-D Advection Equation

3.3. Phase and Amplitude Errors of 1-D Advection Equation 3.3. Phase and Amplitude Errors of 1-D Advection Equation Reading: Duran section 2.4.2. Tannehill et al section 4.1.2. The following example F.D. solutions of a 1D advection equation show errors in both

More information

Introduction to numerical schemes

Introduction to numerical schemes 236861 Numerical Geometry of Images Tutorial 2 Introduction to numerical schemes Heat equation The simple parabolic PDE with the initial values u t = K 2 u 2 x u(0, x) = u 0 (x) and some boundary conditions

More information

7 Hyperbolic Differential Equations

7 Hyperbolic Differential Equations Numerical Analysis of Differential Equations 243 7 Hyperbolic Differential Equations While parabolic equations model diffusion processes, hyperbolic equations model wave propagation and transport phenomena.

More information

Numerical Marine Hydrodynamics Summary

Numerical Marine Hydrodynamics Summary Numerical Marine Hydrodynamics Summary Fundamentals of Digital Computing Error Analysis Roots of Non-linear Equations Systems of Linear Equations Gaussian Elimination Iterative Methods Optimization, Curve

More information

Introduction to Computational Fluid Dynamics

Introduction to Computational Fluid Dynamics AML2506 Biomechanics and Flow Simulation Day Introduction to Computational Fluid Dynamics Session Speaker Dr. M. D. Deshpande M.S. Ramaiah School of Advanced Studies - Bangalore 1 Session Objectives At

More information

Notes on Numerical Analysis

Notes on Numerical Analysis Notes on Numerical Analysis Alejandro Cantarero This set of notes covers topics that most commonly show up on the Numerical Analysis qualifying exam in the Mathematics department at UCLA. Each section

More information

Lecture IV: Time Discretization

Lecture IV: Time Discretization Lecture IV: Time Discretization Motivation Kinematics: continuous motion in continuous time Computer simulation: Discrete time steps t Discrete Space (mesh particles) Updating Position Force induces acceleration.

More information

Finite Difference and Finite Element Methods for Solving Elliptic Partial Differential Equations

Finite Difference and Finite Element Methods for Solving Elliptic Partial Differential Equations An-Najah National University Faculty of Graduate Studies Finite Difference and Finite Element Methods for Solving Elliptic Partial Differential Equations By Malik Fehmi Ahmed Abu Al-Rob Supervisor Prof.

More information

Cache Oblivious Stencil Computations

Cache Oblivious Stencil Computations Cache Oblivious Stencil Computations S. HUNOLD J. L. TRÄFF F. VERSACI Lectures on High Performance Computing 13 April 2015 F. Versaci (TU Wien) Cache Oblivious Stencil Computations 13 April 2015 1 / 19

More information

Lecture 17: Initial value problems

Lecture 17: Initial value problems Lecture 17: Initial value problems Let s start with initial value problems, and consider numerical solution to the simplest PDE we can think of u/ t + c u/ x = 0 (with u a scalar) for which the solution

More information

Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework

Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework Jan Mandel University of Colorado Denver May 12, 2010 1/20/09: Sec. 1.1, 1.2. Hw 1 due 1/27: problems

More information

Beam Propagation Method Solution to the Seminar Tasks

Beam Propagation Method Solution to the Seminar Tasks Beam Propagation Method Solution to the Seminar Tasks Matthias Zilk The task was to implement a 1D beam propagation method (BPM) that solves the equation z v(xz) = i 2 [ 2k x 2 + (x) k 2 ik2 v(x, z) =

More information

Applied Mathematics 205. Unit III: Numerical Calculus. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit III: Numerical Calculus. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit III: Numerical Calculus Lecturer: Dr. David Knezevic Unit III: Numerical Calculus Chapter III.3: Boundary Value Problems and PDEs 2 / 96 ODE Boundary Value Problems 3 / 96

More information

9. Iterative Methods for Large Linear Systems

9. Iterative Methods for Large Linear Systems EE507 - Computational Techniques for EE Jitkomut Songsiri 9. Iterative Methods for Large Linear Systems introduction splitting method Jacobi method Gauss-Seidel method successive overrelaxation (SOR) 9-1

More information

Available online: 19 Oct To link to this article:

Available online: 19 Oct To link to this article: This article was downloaded by: [Academy of Mathematics and System Sciences] On: 11 April 01, At: 00:11 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 107954

More information

Chapter 3. Finite Difference Methods for Hyperbolic Equations Introduction Linear convection 1-D wave equation

Chapter 3. Finite Difference Methods for Hyperbolic Equations Introduction Linear convection 1-D wave equation Chapter 3. Finite Difference Methods for Hyperbolic Equations 3.1. Introduction Most hyperbolic problems involve the transport of fluid properties. In the equations of motion, the term describing the transport

More information

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering.

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering. Lecture 16 Applications of Conformal Mapping MATH-GA 451.001 Complex Variables The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and

More information

TAU Solver Improvement [Implicit methods]

TAU Solver Improvement [Implicit methods] TAU Solver Improvement [Implicit methods] Richard Dwight Megadesign 23-24 May 2007 Folie 1 > Vortrag > Autor Outline Motivation (convergence acceleration to steady state, fast unsteady) Implicit methods

More information

Sparse Linear Systems. Iterative Methods for Sparse Linear Systems. Motivation for Studying Sparse Linear Systems. Partial Differential Equations

Sparse Linear Systems. Iterative Methods for Sparse Linear Systems. Motivation for Studying Sparse Linear Systems. Partial Differential Equations Sparse Linear Systems Iterative Methods for Sparse Linear Systems Matrix Computations and Applications, Lecture C11 Fredrik Bengzon, Robert Söderlund We consider the problem of solving the linear system

More information

Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction

Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction Page of 8 Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction FILE:Chap 3 Partial Differential Equations-V6. Original: May 7, 05 Revised: Dec 9, 06, Feb 0, 07,

More information

Chapter 6: Incompressible Inviscid Flow

Chapter 6: Incompressible Inviscid Flow Chapter 6: Incompressible Inviscid Flow 6-1 Introduction 6-2 Nondimensionalization of the NSE 6-3 Creeping Flow 6-4 Inviscid Regions of Flow 6-5 Irrotational Flow Approximation 6-6 Elementary Planar Irrotational

More information

Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler:

Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler: Lecture 7 18.086 Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler: U j,n+1 t U j,n = U j+1,n 2U j,n + U j 1,n x 2 Expected accuracy: O(Δt) in time,

More information

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II Elliptic Problems / Multigrid Summary of Hyperbolic PDEs We looked at a simple linear and a nonlinear scalar hyperbolic PDE There is a speed associated with the change of the solution Explicit methods

More information

Iterative Methods. Splitting Methods

Iterative Methods. Splitting Methods Iterative Methods Splitting Methods 1 Direct Methods Solving Ax = b using direct methods. Gaussian elimination (using LU decomposition) Variants of LU, including Crout and Doolittle Other decomposition

More information

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 5.1 Introduction When a physical system depends on more than one variable a general

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS NUMERICAL FLUID MECHANICS FALL 2011

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS NUMERICAL FLUID MECHANICS FALL 2011 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139 2.29 NUMERICAL FLUID MECHANICS FALL 2011 QUIZ 2 The goals of this quiz 2 are to: (i) ask some general

More information

Motivation: Sparse matrices and numerical PDE's

Motivation: Sparse matrices and numerical PDE's Lecture 20: Numerical Linear Algebra #4 Iterative methods and Eigenproblems Outline 1) Motivation: beyond LU for Ax=b A little PDE's and sparse matrices A) Temperature Equation B) Poisson Equation 2) Splitting

More information

The Solution of Linear Systems AX = B

The Solution of Linear Systems AX = B Chapter 2 The Solution of Linear Systems AX = B 21 Upper-triangular Linear Systems We will now develop the back-substitution algorithm, which is useful for solving a linear system of equations that has

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Exact and Approximate Numbers:

Exact and Approximate Numbers: Eact and Approimate Numbers: The numbers that arise in technical applications are better described as eact numbers because there is not the sort of uncertainty in their values that was described above.

More information

Numerical Solution of One-dimensional Advection-diffusion Equation Using Simultaneously Temporal and Spatial Weighted Parameters

Numerical Solution of One-dimensional Advection-diffusion Equation Using Simultaneously Temporal and Spatial Weighted Parameters Australian Journal of Basic and Applied Sciences, 5(6): 536-543, 0 ISSN 99-878 Numerical Solution of One-dimensional Advection-diffusion Equation Using Simultaneously Temporal and Spatial Weighted Parameters

More information