Chapter 6: Incompressible Inviscid Flow


 Georgina Porter
 3 years ago
 Views:
Transcription
1 Chapter 6: Incompressible Inviscid Flow 61 Introduction 62 Nondimensionalization of the NSE 63 Creeping Flow 64 Inviscid Regions of Flow 65 Irrotational Flow Approximation 66 Elementary Planar Irrotational Flows 67 Examples of Irrotational Flows Formed by Superposition Chapter 6 Incompressible Inviscid Flow
2 61 Introduction In Chap. 5, we derived the NSE and developed several exact solutions. In this Chapter, we will study several methods for simplifying the NSE, which permit use of mathematical analysis and solution These approximations often hold for certain regions of the flow field.
3 62 Nondimensionalization of the NSE (1) Purpose: Orderofmagnitude analysis of the terms in the NSE, which is necessary for simplification and approximate solutions. We begin with the incompressible NSE Each term is dimensional, and each variable or property (ρ, V, t, μ, etc.) is also dimensional. What are the primary dimensions of each term in the NSE equation?
4 62 Nondimensionalization of the NSE (2) To nondimensionalize, we choose scaling parameters as follows
5 62 Nondimensionalization of the NSE (3) Next, we define nondimensional variables, using the scaling parameters in Table 101 To plug the nondimensional variables into the NSE, we need to first rearrange the equations in terms of the dimensional variables
6 62 Nondimensionalization of the NSE (4) Now we substitute into the NSE to obtain Every additive term has primary dimensions {m 1 L 2 t  2 }. To nondimensionalize, we multiply every term by L/(ρV 2 ), which has primary dimensions {m 1 L 2 t 2 }, so that the dimensions cancel. After rearrangement,
7 62 Nondimensionalization of the NSE (5) Terms in [ ] are nondimensional parameters Strouhal number Euler number Inverse of Froude number squared Inverse of Reynolds number NavierStokes equation in nondimensional form
8 62 Nondimensionalization of the NSE (6) Nondimensionalization vs. Normalization NSE are now nondimensional, but not necessarily normalized. What is the difference? Nondimensionalization concerns only the dimensions of the equation  we can use any value of scaling parameters L, V, etc. Normalization is more restrictive than nondimensionalization. To normalize the equation, we must choose scaling parameters L,V, etc. that are appropriate for the flow being analyzed, such that all nondimensional variables are of order of magnitude unity, i.e., their minimum and maximum values are close to 1.0. If we have properly normalized the NSE, we can compare the relative importance of the terms in the equation by comparing the relative magnitudes of the nondimensional parameters St, Eu, Fr, and Re.
9 63 Creeping Flow (1) Also known as Stokes Flow or Low Reynolds number flow Occurs when Re << 1 ρ, V, or L are very small, e.g., microorganisms, MEMS, nanotech, particles, bubbles μ is very large, e.g., honey, lava
10 63 Creeping Flow (2) To simplify NSE, assume St ~ 1, Fr ~ 1 Pressure forces Viscous forces Since
11 63 Creeping Flow (3) This is important Very different from inertia dominated flows where Density has completely dropped out of NSE. To demonstrate this, convert back to dimensional form. This is now a LINEAR EQUATION which can be solved for simple geometries.
12 63 Creeping Flow (4) Solution of Stokes flow is beyond the scope of this course. Analytical solution for flow over a sphere gives a drag coefficient which is a linear function of velocity V and viscosity m.
13 64 Inviscid Regions of Flow (1) Definition: Regions where net viscous forces are negligible compared to pressure and/or inertia forces ~0 if Re large Euler Equation
14 64 Inviscid Regions of Flow (2) Euler equation often used in aerodynamics Elimination of viscous term changes PDE from mixed elliptichyperbolic to hyperbolic. This affects the type of analytical and computational tools used to solve the equations. Must relax wall boundary condition from noslip to slip Noslip BC u = v = w = 0 Slip BC τ w = 0, V n = 0 V n = normal velocity
15 65 Irrotational Flow Approximation (1) Irrotational approximation: vorticity is negligibly small In general, inviscid regions are also irrotational, but there are situations where inviscid flow are rotational, e.g., solid body rotation
16 65 Irrotational Flow Approximation (2) What are the implications of irrotational approximation. Look at continuity and momentum equations. Continuity equation Use the vector identity Since the flow is irrotational φ is a scalar potential function
17 65 Irrotational Flow Approximation (2) Therefore, regions of irrotational flow are also called regions of potential flow. From the definition of the gradient operator Cartesian Cylindrical Substituting into the continuity equation gives
18 65 Irrotational Flow Approximation (3) This means we only need to solve 1 linear scalar equation to determine all 3 components of velocity! Laplace Equation Luckily, the Laplace equation appears in numerous fields of science, engineering, and mathematics. This means there are well developed tools for solving this equation.
19 65 Irrotational Flow Approximation (4) Momentum equation If we can compute φ from the Laplace equation (which came from continuity) and velocity from the definition, why do we need the NSE? To compute Pressure. To begin analysis, apply irrotational approximation to viscous term of the NSE = 0
20 65 Irrotational Flow Approximation (5) Therefore, the NSE reduces to the Euler equation for irrotational flow nondimensional dimensional Instead of integrating to find P, use vector identity to derive Bernoulli equation
21 65 Irrotational Flow Approximation (6) This allows the steady Euler equation to be written as This form of Bernoulli equation is valid for inviscid and irrotational flow since we ve shown that NSE reduces to the Euler equation.
22 65 Irrotational Flow Approximation (7) However, Inviscid Irrotational (ζ = 0)
23 65 Irrotational Flow Approximation (8) Therefore, the process for irrotational flow 1. Calculate φ from Laplace equation (from continuity) 2. Calculate velocity from definition 3. Calculate pressure from Bernoulli equation (derived from momentum equation) Valid for 3D or 2D
24 65 Irrotational Flow Approximation (9) For 2D flows, we can also use the streamfunction Recall the definition of streamfunction for planar (xy) flows Since vorticity is zero, This proves that the Laplace equation holds for the streamfunction and the velocity potential
25 65 Irrotational Flow Approximation (10) 2D Flow: Constant values of ψ: streamlines Constant values of φ: equipotential lines ψ and φ are mutually orthogonal ψ and φ are harmonic functions ψ is defined by continuity; 2 ψ results from irrotationality φ is defined by irrotationality; 2 φ results from continuity Flow solution can be achieved by solving either 2 φ or 2 ψ, however, BC are easier to formulate for ψ.
26 65 Irrotational Flow Approximation (11) 2D Flow: Similar derivation can be performed for cylindrical coordinates (except for 2 ψ for axisymmetric flow) Planar, cylindrical coordinates : flow is in (r,θ) plane Axisymmetric, cylindrical coordinates : flow is in (r,z) plane Planar Axisymmetric
27 65 Irrotational Flow Approximation (12) 2D Flow:
28 65 Irrotational Flow Approximation (13) 2D Flow: Method of Superposition 1. Since 2 φ=0 is linear, a linear combination of two or more solutions is also a solution, e.g., if φ 1 and φ 2 are solutions, then (Aφ 1 ), (A+φ 1 ), (φ 1 +φ 2 ), (Aφ 1 +Bφ 2 ) are also solutions 2. Also true for y in 2D flows ( 2 ψ =0) 3. Velocity components are also additive
29 65 Irrotational Flow Approximation (14) Given the principal of superposition, there are several elementary planar irrotational flows which can be combined to create more complex flows. Uniform stream Line source/sink Line vortex Doublet
30 66 Elementary Planar Irrotational Flows (1) Uniform Stream In Cartesian coordinates Conversion to cylindrical coordinates can be achieved using the transformation
31 66 Elementary Planar Irrotational Flows (2) Line Source/Sink Potential and streamfunction are derived by observing that volume flow rate across any circle is This gives velocity components
32 66 Elementary Planar Irrotational Flows (3) Line Source/Sink Using definition of (U r, U θ ) These can be integrated to give φ and ψ Equations are for a source/sink at the origin
33 66 Elementary Planar Irrotational Flows (4) Line Source/Sink If source/sink is moved to (x,y) = (a,b)
34 66 Elementary Planar Irrotational Flows (5) Line Vortex Vortex at the origin. First look at velocity components These can be integrated to give φ and ψ Equations are for a source/sink at the origin
35 66 Elementary Planar Irrotational Flows (6) Line Vortex If vortex is moved to (x,y) = (a,b)
36 66 Elementary Planar Irrotational Flows (7) Doublet A doublet is a combination of a line sink and source of equal magnitude Source Sink
37 66 Elementary Planar Irrotational Flows (8) Doublet Adding ψ 1 and ψ 2 together, performing some algebra, and taking a 0 gives K is the doublet strength
38 67 Examples of Irrotational Flows Formed by Superposition (1) Superposition of sink and vortex : bathtub vortex Sink Vortex
39 67 Examples of Irrotational Flows Formed by Superposition (2) Flow over a circular cylinder: Free stream + doublet Assume body is ψ = 0 (r = a) K = Va 2
40 67 Examples of Irrotational Flows Formed by Superposition (3) Velocity field can be found by differentiating streamfunction On the cylinder surface (r=a) Normal velocity (U r ) is zero, Tangential velocity (U θ ) is nonzero slip condition.
41 67 Examples of Irrotational Flows Formed by Superposition (4) Turbulent separation Compute pressure using Bernoulli equation and velocity on cylinder surface Laminar separation Irrotational flow
42 67 Examples of Irrotational Flows Formed by Superposition (5) Integration of surface pressure (which is symmetric in x), reveals that the DRAG is ZERO. This is known as D Alembert s Paradox For the irrotational flow approximation, the drag force on any nonlifting body of any shape immersed in a uniform stream is ZERO Why? Viscous effects have been neglected. Viscosity and the noslip condition are responsible for Flow separation (which contributes to pressure drag) Wallshear stress (which contributes to friction drag)
V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)
IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common
More informationInviscid & Incompressible flow
< 3.1. Introduction and Road Map > Basic aspects of inviscid, incompressible flow Bernoulli s Equation Laplaces s Equation Some Elementary flows Some simple applications 1.Venturi 2. Lowspeed wind tunnel
More informationDetailed Outline, M E 521: Foundations of Fluid Mechanics I
Detailed Outline, M E 521: Foundations of Fluid Mechanics I I. Introduction and Review A. Notation 1. Vectors 2. Secondorder tensors 3. Volume vs. velocity 4. Del operator B. Chapter 1: Review of Basic
More informationFLUID MECHANICS. Chapter 9 Flow over Immersed Bodies
FLUID MECHANICS Chapter 9 Flow over Immersed Bodies CHAP 9. FLOW OVER IMMERSED BODIES CONTENTS 9.1 General External Flow Characteristics 9.3 Drag 9.4 Lift 9.1 General External Flow Characteristics 9.1.1
More informationDetailed Outline, M E 320 Fluid Flow, Spring Semester 2015
Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous
More information1. Introduction, tensors, kinematics
1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and
More informationSome Basic Plane Potential Flows
Some Basic Plane Potential Flows Uniform Stream in the x Direction A uniform stream V = iu, as in the Fig. (Solid lines are streamlines and dashed lines are potential lines), possesses both a stream function
More informationOffshore Hydromechanics Module 1
Offshore Hydromechanics Module 1 Dr. ir. Pepijn de Jong 4. Potential Flows part 2 Introduction Topics of Module 1 Problems of interest Chapter 1 Hydrostatics Chapter 2 Floating stability Chapter 2 Constant
More informationChapter 9: Differential Analysis
91 Introduction 92 Conservation of Mass 93 The Stream Function 94 Conservation of Linear Momentum 95 Navier Stokes Equation 96 Differential Analysis Problems Recall 91 Introduction (1) Chap 5: Control
More informationAerodynamics. Lecture 1: Introduction  Equations of Motion G. Dimitriadis
Aerodynamics Lecture 1: Introduction  Equations of Motion G. Dimitriadis Definition Aerodynamics is the science that analyses the flow of air around solid bodies The basis of aerodynamics is fluid dynamics
More informationAE301 Aerodynamics I UNIT B: Theory of Aerodynamics
AE301 Aerodynamics I UNIT B: Theory of Aerodynamics ROAD MAP... B1: Mathematics for Aerodynamics B: Flow Field Representations B3: Potential Flow Analysis B4: Applications of Potential Flow Analysis
More informationChapter 9: Differential Analysis of Fluid Flow
of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known
More information6.1 Momentum Equation for Frictionless Flow: Euler s Equation The equations of motion for frictionless flow, called Euler s
Chapter 6 INCOMPRESSIBLE INVISCID FLOW All real fluids possess viscosity. However in many flow cases it is reasonable to neglect the effects of viscosity. It is useful to investigate the dynamics of an
More informationPART II: 2D Potential Flow
AERO301:Spring2011 II(a):EulerEqn.& ω = 0 Page1 PART II: 2D Potential Flow II(a): Euler s Equation& Irrotational Flow We have now completed our tour through the fundamental conservation laws that apply
More informationChapter 5. The Differential Forms of the Fundamental Laws
Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations
More informationCHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION
CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIERSTOKES EQUATIONS Under the assumption of a Newtonian stressrateofstrain constitutive equation and a linear, thermally conductive medium,
More informationF11AE1 1. C = ρν r r. r u z r
F11AE1 1 Question 1 20 Marks) Consider an infinite horizontal pipe with circular crosssection of radius a, whose centre line is aligned along the zaxis; see Figure 1. Assume noslip boundary conditions
More informationPEMP ACD2505. M.S. Ramaiah School of Advanced Studies, Bengaluru
TwoDimensional Potential Flow Session delivered by: Prof. M. D. Deshpande 1 Session Objectives  At the end of this session the delegate would have understood PEMP The potential theory and its application
More informationGeneral Solution of the Incompressible, Potential Flow Equations
CHAPTER 3 General Solution of the Incompressible, Potential Flow Equations Developing the basic methodology for obtaining the elementary solutions to potential flow problem. Linear nature of the potential
More informationBasic Fluid Mechanics
Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible
More informationFluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition
Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow
More informationContents. I Introduction 1. Preface. xiii
Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................
More informationDifferential relations for fluid flow
Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow
More informationMAE 101A. Homework 7  Solutions 3/12/2018
MAE 101A Homework 7  Solutions 3/12/2018 Munson 6.31: The stream function for a twodimensional, nonviscous, incompressible flow field is given by the expression ψ = 2(x y) where the stream function has
More information3.5 Vorticity Equation
.0  Marine Hydrodynamics, Spring 005 Lecture 9.0  Marine Hydrodynamics Lecture 9 Lecture 9 is structured as follows: In paragraph 3.5 we return to the full NavierStokes equations (unsteady, viscous
More informationVorticity Equation Marine Hydrodynamics Lecture 9. Return to viscous incompressible flow. NS equation: v. Now: v = v + = 0 incompressible
13.01 Marine Hydrodynamics, Fall 004 Lecture 9 Copyright c 004 MIT  Department of Ocean Engineering, All rights reserved. Vorticity Equation 13.01  Marine Hydrodynamics Lecture 9 Return to viscous incompressible
More information2.5 Stokes flow past a sphere
Lecture Notes on Fluid Dynamics.63J/.J) by Chiang C. Mei, MIT 007 Spring 5Stokes.tex.5 Stokes flow past a sphere Refs] Lamb: Hydrodynamics Acheson : Elementary Fluid Dynamics, p. 3 ff One of the fundamental
More informationFluid Dynamics Problems M.Sc MathematicsSecond Semester Dr. Dinesh KhattarK.M.College
Fluid Dynamics Problems M.Sc MathematicsSecond Semester Dr. Dinesh KhattarK.M.College 1. (Example, p.74, Chorlton) At the point in an incompressible fluid having spherical polar coordinates,,, the velocity
More informationAA210A Fundamentals of Compressible Flow. Chapter 1  Introduction to fluid flow
AA210A Fundamentals of Compressible Flow Chapter 1  Introduction to fluid flow 1 1.2 Conservation of mass Mass flux in the xdirection [ ρu ] = M L 3 L T = M L 2 T Momentum per unit volume Mass per unit
More information1. Fluid Dynamics Around Airfoils
1. Fluid Dynamics Around Airfoils Twodimensional flow around a streamlined shape Foces on an airfoil Distribution of pressue coefficient over an airfoil The variation of the lift coefficient with the
More informationUNIT IV BOUNDARY LAYER AND FLOW THROUGH PIPES Definition of boundary layer Thickness and classification Displacement and momentum thickness Development of laminar and turbulent flows in circular pipes
More informationFluid Dynamics Exercises and questions for the course
Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r
More information1. Introduction  Tutorials
1. Introduction  Tutorials 1.1 Physical properties of fluids Give the following fluid and physical properties(at 20 Celsius and standard pressure) with a 4digit accuracy. Air density : Water density
More informationLifting Airfoils in Incompressible Irrotational Flow. AA210b Lecture 3 January 13, AA210b  Fundamentals of Compressible Flow II 1
Lifting Airfoils in Incompressible Irrotational Flow AA21b Lecture 3 January 13, 28 AA21b  Fundamentals of Compressible Flow II 1 Governing Equations For an incompressible fluid, the continuity equation
More informationFundamentals of Fluid Mechanics
Sixth Edition Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department
More informationExercise 9, Ex. 6.3 ( submarine )
Exercise 9, Ex. 6.3 ( submarine The flow around a submarine moving at at velocity V can be described by the flow caused by a source and a sink with strength Q at a distance a from each other. V x Submarine
More informationFLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes
SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.) INL 1 (3 cr.) 3 sets of home work problems (for 10 p. on written exam) 1 laboration TEN1 (4.5 cr.) 1 written exam
More informationPage 1. Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.)
Page 1 Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (1 point if not circled, or circled incorrectly): Prof. Vlachos Prof. Ardekani
More informationAerodynamics. HighLift Devices
HighLift Devices Devices to increase the lift coefficient by geometry changes (camber and/or chord) and/or boundarylayer control (avoid flow separation  Flaps, trailing edge devices  Slats, leading
More informationWater is sloshing back and forth between two infinite vertical walls separated by a distance L: h(x,t) Water L
ME9a. SOLUTIONS. Nov., 29. Due Nov. 7 PROBLEM 2 Water is sloshing back and forth between two infinite vertical walls separated by a distance L: y Surface Water L h(x,t x Tank The flow is assumed to be
More informationInterpreting Differential Equations of Transport Phenomena
Interpreting Differential Equations of Transport Phenomena There are a number of techniques generally useful in interpreting and simplifying the mathematical description of physical problems. Here we introduce
More informationMAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring Dr. Jason Roney Mechanical and Aerospace Engineering
MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring 2003 Dr. Jason Roney Mechanical and Aerospace Engineering Outline Introduction Kinematics Review Conservation of Mass Stream Function
More informationFigure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
More informationBLUFFBODY AERODYNAMICS
International Advanced School on WINDEXCITED AND AEROELASTIC VIBRATIONS OF STRUCTURES Genoa, Italy, June 1216, 2000 BLUFFBODY AERODYNAMICS Lecture Notes by Guido Buresti Department of Aerospace Engineering
More informationNumber of pages in the question paper : 05 Number of questions in the question paper : 48 Modeling Transport Phenomena of Microparticles Note: Follow the notations used in the lectures. Symbols have their
More informationOUTLINE FOR Chapter 3
013/4/ OUTLINE FOR Chapter 3 AERODYNAMICS (W11 BERNOULLI S EQUATION & integration BERNOULLI S EQUATION AERODYNAMICS (W11 013/4/ BERNOULLI S EQUATION FOR AN IRROTATION FLOW AERODYNAMICS (W1.1 VENTURI
More informationChapter 1: Basic Concepts
What is a fluid? A fluid is a substance in the gaseous or liquid form Distinction between solid and fluid? Solid: can resist an applied shear by deforming. Stress is proportional to strain Fluid: deforms
More informationCONVECTIVE HEAT TRANSFER
CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 3 LAMINAR BOUNDARY LAYER FLOW LAMINAR BOUNDARY LAYER FLOW Boundary
More information7 EQUATIONS OF MOTION FOR AN INVISCID FLUID
7 EQUATIONS OF MOTION FOR AN INISCID FLUID iscosity is a measure of the thickness of a fluid, and its resistance to shearing motions. Honey is difficult to stir because of its high viscosity, whereas water
More informationSPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30
SPC 307  Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 1. The maximum velocity at which an aircraft can cruise occurs when the thrust available with the engines operating with the
More informationApplications in Fluid Mechanics
CHAPTER 8 Applications in Fluid 8.1 INTRODUCTION The general topic of fluid mechanics encompasses a wide range of problems of interest in engineering applications. The most basic definition of a fluid
More informationFLUID MECHANICS. ! Atmosphere, Ocean. ! Aerodynamics. ! Energy conversion. ! Transport of heat/other. ! Numerous industrial processes
SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.)! INL 1 (3 cr.)! 3 sets of home work problems (for 10 p. on written exam)! 1 laboration! TEN1 (4.5 cr.)! 1 written
More informationPart A: 1 pts each, 10 pts total, no partial credit.
Part A: 1 pts each, 10 pts total, no partial credit. 1) (Correct: 1 pt/ Wrong: 3 pts). The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, irrotational, incompressible,
More informationWeek 2 Notes, Math 865, Tanveer
Week 2 Notes, Math 865, Tanveer 1. Incompressible constant density equations in different forms Recall we derived the NavierStokes equation for incompressible constant density, i.e. homogeneous flows:
More informationFundamentals of Aerodynamits
Fundamentals of Aerodynamits Fifth Edition in SI Units John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland
More informationFundamentals of Aerodynamics
Fundamentals of Aerodynamics Fourth Edition John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland Me Graw Hill
More informationTopics in Fluid Dynamics: Classical physics and recent mathematics
Topics in Fluid Dynamics: Classical physics and recent mathematics Toan T. Nguyen 1,2 Penn State University Graduate Student Seminar @ PSU Jan 18th, 2018 1 Homepage: http://math.psu.edu/nguyen 2 Math blog:
More informationCopyright 2007 N. Komerath. Other rights may be specified with individual items. All rights reserved.
Low Speed Aerodynamics Notes 5: Potential ti Flow Method Objective: Get a method to describe flow velocity fields and relate them to surface shapes consistently. Strategy: Describe the flow field as the
More informationSeveral forms of the equations of motion
Chapter 6 Several forms of the equations of motion 6.1 The NavierStokes equations Under the assumption of a Newtonian stressrateofstrain constitutive equation and a linear, thermally conductive medium,
More informationTurbulent Boundary Layers & Turbulence Models. Lecture 09
Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects
More informationVortex Induced Vibrations
Vortex Induced Vibrations By: Abhiroop Jayanthi Indian Institute of Technology, Delhi Some Questions! What is VIV? What are the details of a steady approach flow past a stationary cylinder? How and why
More informationSyllabus for AE3610, Aerodynamics I
Syllabus for AE3610, Aerodynamics I Current Catalog Data: AE 3610 Aerodynamics I Credit: 4 hours A study of incompressible aerodynamics of flight vehicles with emphasis on combined application of theory
More information2. FLUIDFLOW EQUATIONS SPRING 2019
2. FLUIDFLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Nonconservative differential equations 2.4 Nondimensionalisation Summary Examples 2.1 Introduction Fluid
More informationLecture 7 Boundary Layer
SPC 307 Introduction to Aerodynamics Lecture 7 Boundary Layer April 9, 2017 Sep. 18, 2016 1 Character of the steady, viscous flow past a flat plate parallel to the upstream velocity Inertia force = ma
More informationFundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics
Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/
More informationFluid Mechanics. Spring 2009
Instructor: Dr. YangCheng Shih Department of Energy and Refrigerating AirConditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 11 General Remarks 12 Scope
More informationCHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW
CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW 4.1 Introduction Boundary layer concept (Prandtl 1904): Eliminate selected terms in the governing equations Two key questions (1) What are the
More informationUNIT I FLUID PROPERTIES AND STATICS
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: IIB.Tech & ISem Course & Branch:
More informationTransport processes. 7. Semester Chemical Engineering Civil Engineering
Transport processes 7. Semester Chemical Engineering Civil Engineering 1. Elementary Fluid Dynamics 2. Fluid Kinematics 3. Finite Control Volume Analysis 4. Differential Analysis of Fluid Flow 5. Viscous
More informationEngineering Fluid Mechanics
Engineering Fluid Mechanics Eighth Edition Clayton T. Crowe WASHINGTON STATE UNIVERSITY, PULLMAN Donald F. Elger UNIVERSITY OF IDAHO, MOSCOW John A. Roberson WASHINGTON STATE UNIVERSITY, PULLMAN WILEY
More informationLab Reports Due on Monday, 11/24/2014
AE 3610 Aerodynamics I Wind Tunnel Laboratory: Lab 4  Pressure distribution on the surface of a rotating circular cylinder Lab Reports Due on Monday, 11/24/2014 Objective In this lab, students will be
More informationSimulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions
Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Johan Hoffman May 14, 2006 Abstract In this paper we use a General Galerkin (G2) method to simulate drag crisis for a sphere,
More informationPEMP ACD2505. M.S. Ramaiah School of Advanced Studies, Bengaluru
Governing Equations of Fluid Flow Session delivered by: M. Sivapragasam 1 Session Objectives  At the end of this session the delegate would have understood The principle of conservation laws Different
More informationViscous Fluids. Amanda Meier. December 14th, 2011
Viscous Fluids Amanda Meier December 14th, 2011 Abstract Fluids are represented by continuous media described by mass density, velocity and pressure. An Eulerian description of uids focuses on the transport
More informationContents. Microfluidics  Jens Ducrée Physics: Laminar and Turbulent Flow 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. InkJet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
More information150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces
Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with
More informationMasters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16
Masters in Mechanical Engineering Aerodynamics st Semester 05/6 Exam st season, 8 January 06 Name : Time : 8:30 Number: Duration : 3 hours st Part : No textbooks/notes allowed nd Part : Textbooks allowed
More informationTURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS
HEFAT2014 10 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 2014 Orlando, Florida TURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS Everts, M.,
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More informationPrinciples of Convection
Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid
More informationNumerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders
Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders A. Jugal M. Panchal, B. A M Lakdawala 2 A. M. Tech student, Mechanical Engineering Department, Institute
More informationLecture 2: Hydrodynamics at milli micrometer scale
1 at milli micrometer scale Introduction Flows at milli and micro meter scales are found in various fields, used for several processes and open up possibilities for new applications: Injection Engineering
More informationCompressible Potential Flow: The Full Potential Equation. Copyright 2009 Narayanan Komerath
Compressible Potential Flow: The Full Potential Equation 1 Introduction Recall that for incompressible flow conditions, velocity is not large enough to cause density changes, so density is known. Thus
More informationME 144: Heat Transfer Introduction to Convection. J. M. Meyers
ME 144: Heat Transfer Introduction to Convection Introductory Remarks Convection heat transfer differs from diffusion heat transfer in that a bulk fluid motion is present which augments the overall heat
More informationLecture 9 Laminar Diffusion Flame Configurations
Lecture 9 Laminar Diffusion Flame Configurations 9.1 Different Flame Geometries and Single Droplet Burning Solutions for the velocities and the mixture fraction fields for some typical laminar flame configurations.
More informationWhat we know about Fluid Mechanics. What we know about Fluid Mechanics
What we know about Fluid Mechanics 1. Survey says. 3. Image from: www.axs.com 4. 5. 6. 1 What we know about Fluid Mechanics 1. MEB (single input, single output, steady, incompressible, no rxn, no phase
More informationHow Do Wings Generate Lift?
How Do Wings Generate Lift? 1. Popular Myths, What They Mean and Why They Work M D Deshpande and M Sivapragasam How lift is generated by a moving wing is understood satisfactorily. But the rigorous explanation
More informationShell Balances in Fluid Mechanics
Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell
More informationNumerical Investigation of the Fluid Flow around and Past a Circular Cylinder by Ansys Simulation
, pp.4958 http://dx.doi.org/10.1457/ijast.016.9.06 Numerical Investigation of the Fluid Flow around and Past a Circular Cylinder by Ansys Simulation Mojtaba Daneshi Department of Mechanical Engineering,
More informationChapter 9 Flow over Immersed Bodies
57:00 Mechanics of Fluids and Transport Processes Chapter 9 Professor Fred Stern Fall 009 1 Chapter 9 Flow over Immersed Bodies Fluid flows are broadly categorized: 1. Internal flows such as ducts/pipes,
More informationContinuum Mechanics Lecture 7 Theory of 2D potential flows
Continuum Mechanics ecture 7 Theory of 2D potential flows Prof. http://www.itp.uzh.ch/~teyssier Outline  velocity potential and stream function  complex potential  elementary solutions  flow past a
More informationV. MODELING, SIMILARITY, AND DIMENSIONAL ANALYSIS To this point, we have concentrated on analytical methods of solution for fluids problems.
V. MODELING, SIMILARITY, AND DIMENSIONAL ANALYSIS To this point, we have concentrated on analytical methods of solution for fluids problems. However, analytical methods are not always satisfactory due
More information12.1 Viscous potential flow (VPF)
1 Energy equation for irrotational theories of gasliquid flow:: viscous potential flow (VPF), viscous potential flow with pressure correction (VCVPF), dissipation method (DM) 1.1 Viscous potential flow
More informationA fundamental study of the flow past a circular cylinder using Abaqus/CFD
A fundamental study of the flow past a circular cylinder using Abaqus/CFD Masami Sato, and Takaya Kobayashi Mechanical Design & Analysis Corporation Abstract: The latest release of Abaqus version 6.10
More informationINSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad  500 043 AERONAUTICAL ENGINEERING TUTORIAL QUESTION BANK Course Name : LOW SPEED AERODYNAMICS Course Code : AAE004 Regulation : IARE
More information3 Generation and diffusion of vorticity
Version date: March 22, 21 1 3 Generation and diffusion of vorticity 3.1 The vorticity equation We start from Navier Stokes: u t + u u = 1 ρ p + ν 2 u 1) where we have not included a term describing a
More informationThe Generalized Boundary Layer Equations
The Generalized Boundary Layer Equations Gareth H. McKinley (MITHML) November 004 We have seen that in general high Reynolds number flow past a slender body such as an airfoil can be considered as an
More informationMECHANICAL PROPERTIES OF FLUIDS
CHAPTER10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure
More informationME3560 Tentative Schedule Fall 2018
ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read
More informationBERNOULLI EQUATION. The motion of a fluid is usually extremely complex.
BERNOULLI EQUATION The motion of a fluid is usually extremely complex. The study of a fluid at rest, or in relative equilibrium, was simplified by the absence of shear stress, but when a fluid flows over
More information