Finite Difference Methods for

Size: px
Start display at page:

Download "Finite Difference Methods for"

Transcription

1 CE 601: Numerical Methods Lecture 33 Finite Difference Methods for PDEs Course Coordinator: Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

2 We have discussed the following finitedifference methods to solve Parabolic PDEs. o Forward time Centered Space (FTCS) o Backward time Centered Space (BTCS) 2 o Crank Nicholson method (where O ( t ) and O 2 ( x ) for derivatives are used).

3 The next important method is: Alternating Direction Implicit Method (ADI) for Multi spatial dimension Problems If you have multi spatial dimension problems say f f f = + α t x y If you use FTCS, then the FDE will be: n n n ( n) ( n) ( n) f ( 1) ( ) 1, 2., 1, 1, 2. n n i j fi j + fi+ j fi j fi, j + f + i+ 1, j fi, j = fi, j + α t. + (1) x y

4 Similarly, you can frame fully implicit FDE using BTCS, i.e. α t ( n+ 1) α t ( n+ 1) 2α t 2α t ( n+ 1) f 2 i 1, j + f 2 i, j f i, j x y x y α t + α t + + f f f = y x ( n 1) ( n 1) ( n) i, j 1 i 1, j i, j (2) On applying eq.(2) at each grid node (i,j), we will get a system of linear equation. This system will be here banded dand pentadiagonal. You can use appropriate solvers to solve each banded matrix system.

5 However the implicit technique is computationally tedious. We can go for Alternate Direction Implicit Method (ADI). This method involves two steps: Recall earlier we said 1 n+ ( n+ 1) ( n) 2 1 f f f + t 2 t t i, j i, j i, j That is this quantity consist of half of implicit quantity and half of explicit quantity.

6 Since For = α + t x y f f f f 1 f f = + t 2 t t n + 12 ( n + 1) ( n ) i, j i, j i, j f = α + x i j ( n + 1) ( n ) f y, i, j

7 i.e. Step 1 f f f 2. f + f f 2. f + f = α. + t x y ( n+ 1) ( n) ( n+ 1) ( n+ 1) ( n+ 1) ( n) ( n) ( n) i, j i, j i 1, j i, j i+ 1, j i 1, j i, j i+ 1, j Step 2 ( n ) ( n ) ( n ) ( n+ 1) ( n+ 1) f 1 f f f f = + = α + t i, j 2 t i, j t i, j x y i, j i, j f f f 2. f + f f 2. f + f i.e.. t x y ( n+ 2) ( n+ 1) ( n+ 1) ( n+ 1) ( n+ 1) ( n+ 2) ( n+ 2) ( n+ 2) i, j i, j i 1, j i, j i+ 1, j i 1, j i, j i+ 1, j = α + So using these two steps ADI is implemented in the numerical scheme.

8 Hyperbolic PDE We have seen before that hyperbolic PDEs are also Propagation problems We have to use marching methods to solve hyperbolic PDEs. It has definite (finite) propagation speed for the physical information propagation. You have distinct t domain of dependence d and range of influence. Some examples of hyperbolic PDE: f f + u = 0 (The Convection Equation) t x f 2 f = c (The Wave Equation) t x

9 The convection equation is usually used in o Fluid mechanics o Heat transfer Wave equation is used for o Vibrating systems (strings, acousticfields) As usual we can have o Dirichlet B.C. o Neumann B.C. o Mixed B.C. for various hyperbolic PDEs.

10 Recall as hyperbolic PDE has finite range of influence as well as domain of dependence. The finite physical propagation speed is approximated as x cn = t dx Actual is. dt f f dx For + u = 0; we have = u t x dt f 2 f dx For = c, we have =± c t x dt

11 Convection Equation df dt The derivative in the convection equation can be approximated using > Forward Time or > Backward Time or > Centered Time while using FDM. f f In + u = 0; t x f xx suggest something on physical convection. The physical information propagation speed is dx u dt =

12 The solution at a point depends only on the information in the domain of dependence d specified by upstream characteristic paths. f The first derivative (spatial) should be x approximated dby one sided d approximations in the direction from which physical information is propagated. Theyareupwind approximations.

13 x f fi fi 1 i x We can also use centered space approximations with acceptable results. i.e. f fi f x i 2 x Upwind Methods For the convection equation f t f + u = x 0 dx dt = u Information propagates with If u > 0, information propagates from left to right. If u < 0, information propagates from right to left. + 1 i 1

14 First order upwind scheme: For u > 0, i.e. f t ( n ) ( n ) i f + u. = 0; x i ( n+ 1) ( n) ( n) ( n) fi fi fi fi 1 i.e. + u = 0 t x ( ) 1 or, o, f = f c. f f ( n+ 1) ( n) ( n) ( n) i i i i u t where c = Convection Number x From the stability point of view, you require c 1.0.

15 This is because the actual speed Numerical speed C n x =. tt u = dx. dt The convection number suggest that you require atleast a certain computational speed c n that is not less than the actual convection speed. Or, if the actual speed exceeds numerical speed, results fluctuates. This again boils down to the criteria that you cannot have large values of Δt. If Δt is large, then computational convection speed reduces.

Finite Difference Methods (FDMs) 2

Finite Difference Methods (FDMs) 2 Finite Difference Methods (FDMs) 2 Time- dependent PDEs A partial differential equation of the form (15.1) where A, B, and C are constants, is called quasilinear. There are three types of quasilinear equations:

More information

Basic Aspects of Discretization

Basic Aspects of Discretization Basic Aspects of Discretization Solution Methods Singularity Methods Panel method and VLM Simple, very powerful, can be used on PC Nonlinear flow effects were excluded Direct numerical Methods (Field Methods)

More information

Lecture 4.5 Schemes for Parabolic Type Equations

Lecture 4.5 Schemes for Parabolic Type Equations Lecture 4.5 Schemes for Parabolic Type Equations 1 Difference Schemes for Parabolic Equations One-dimensional problems: Consider the unsteady diffusion problem (parabolic in nature) in a thin wire governed

More information

5. FVM discretization and Solution Procedure

5. FVM discretization and Solution Procedure 5. FVM discretization and Solution Procedure 1. The fluid domain is divided into a finite number of control volumes (cells of a computational grid). 2. Integral form of the conservation equations are discretized

More information

Finite Difference Method for PDE. Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36

Finite Difference Method for PDE. Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36 Finite Difference Method for PDE Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36 1 Classification of the Partial Differential Equations Consider a scalar second order partial

More information

FDM for parabolic equations

FDM for parabolic equations FDM for parabolic equations Consider the heat equation where Well-posed problem Existence & Uniqueness Mass & Energy decreasing FDM for parabolic equations CNFD Crank-Nicolson + 2 nd order finite difference

More information

ME Computational Fluid Mechanics Lecture 5

ME Computational Fluid Mechanics Lecture 5 ME - 733 Computational Fluid Mechanics Lecture 5 Dr./ Ahmed Nagib Elmekawy Dec. 20, 2018 Elliptic PDEs: Finite Difference Formulation Using central difference formulation, the so called five-point formula

More information

Lecture 42 Determining Internal Node Values

Lecture 42 Determining Internal Node Values Lecture 42 Determining Internal Node Values As seen in the previous section, a finite element solution of a boundary value problem boils down to finding the best values of the constants {C j } n, which

More information

Chapter 3. Finite Difference Methods for Hyperbolic Equations Introduction Linear convection 1-D wave equation

Chapter 3. Finite Difference Methods for Hyperbolic Equations Introduction Linear convection 1-D wave equation Chapter 3. Finite Difference Methods for Hyperbolic Equations 3.1. Introduction Most hyperbolic problems involve the transport of fluid properties. In the equations of motion, the term describing the transport

More information

Introduction to numerical schemes

Introduction to numerical schemes 236861 Numerical Geometry of Images Tutorial 2 Introduction to numerical schemes Heat equation The simple parabolic PDE with the initial values u t = K 2 u 2 x u(0, x) = u 0 (x) and some boundary conditions

More information

CE 601: Numerical Methods Lecture 7. Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

CE 601: Numerical Methods Lecture 7. Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati. CE 60: Numerical Methods Lecture 7 Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati. Drawback in Elimination Methods There are various drawbacks

More information

Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction

Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction Page of 8 Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction FILE:Chap 3 Partial Differential Equations-V6. Original: May 7, 05 Revised: Dec 9, 06, Feb 0, 07,

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 13

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 13 REVIEW Lecture 12: Spring 2015 Lecture 13 Grid-Refinement and Error estimation Estimation of the order of convergence and of the discretization error Richardson s extrapolation and Iterative improvements

More information

FUNDAMENTALS OF FINITE DIFFERENCE METHODS

FUNDAMENTALS OF FINITE DIFFERENCE METHODS FUNDAMENTALS OF FINITE DIFFERENCE METHODS By Deep Gupta 3 rd Year undergraduate, Mechanical Engg. Deptt., IIT Bombay Supervised by: Prof. Gautam Biswas, IIT Kanpur Acknowledgements It has been a pleasure

More information

Characteristic finite-difference solution Stability of C C (CDS in time/space, explicit): Example: Effective numerical wave numbers and dispersion

Characteristic finite-difference solution Stability of C C (CDS in time/space, explicit): Example: Effective numerical wave numbers and dispersion Spring 015 Lecture 14 REVIEW Lecture 13: Stability: Von Neumann Ex.: 1st order linear convection/wave eqn., F-B scheme Hyperbolic PDEs and Stability nd order wave equation and waves on a string Characteristic

More information

Tutorial 2. Introduction to numerical schemes

Tutorial 2. Introduction to numerical schemes 236861 Numerical Geometry of Images Tutorial 2 Introduction to numerical schemes c 2012 Classifying PDEs Looking at the PDE Au xx + 2Bu xy + Cu yy + Du x + Eu y + Fu +.. = 0, and its discriminant, B 2

More information

Numerical Solution of One-dimensional Advection-diffusion Equation Using Simultaneously Temporal and Spatial Weighted Parameters

Numerical Solution of One-dimensional Advection-diffusion Equation Using Simultaneously Temporal and Spatial Weighted Parameters Australian Journal of Basic and Applied Sciences, 5(6): 536-543, 0 ISSN 99-878 Numerical Solution of One-dimensional Advection-diffusion Equation Using Simultaneously Temporal and Spatial Weighted Parameters

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Introduction Deng Li Discretization Methods Chunfang Chen, Danny Thorne, Adam Zornes CS521 Feb.,7, 2006 What do You Stand For? A PDE is a Partial Differential Equation This

More information

Problem Set 4 Issued: Wednesday, March 18, 2015 Due: Wednesday, April 8, 2015

Problem Set 4 Issued: Wednesday, March 18, 2015 Due: Wednesday, April 8, 2015 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0139.9 NUMERICAL FLUID MECHANICS SPRING 015 Problem Set 4 Issued: Wednesday, March 18, 015 Due: Wednesday,

More information

Solution of Differential Equation by Finite Difference Method

Solution of Differential Equation by Finite Difference Method NUMERICAL ANALYSIS University of Babylon/ College of Engineering/ Mechanical Engineering Dep. Lecturer : Dr. Rafel Hekmat Class : 3 rd B.Sc Solution of Differential Equation by Finite Difference Method

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

Basics of Discretization Methods

Basics of Discretization Methods Basics of Discretization Methods In the finite difference approach, the continuous problem domain is discretized, so that the dependent variables are considered to exist only at discrete points. Derivatives

More information

Evolution equations with spectral methods: the case of the wave equation

Evolution equations with spectral methods: the case of the wave equation Evolution equations with spectral methods: the case of the wave equation Jerome.Novak@obspm.fr Laboratoire de l Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris, France in collaboration with

More information

Applied Mathematics 205. Unit III: Numerical Calculus. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit III: Numerical Calculus. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit III: Numerical Calculus Lecturer: Dr. David Knezevic Unit III: Numerical Calculus Chapter III.3: Boundary Value Problems and PDEs 2 / 96 ODE Boundary Value Problems 3 / 96

More information

Numerical Algorithms for Visual Computing II 2010/11 Example Solutions for Assignment 6

Numerical Algorithms for Visual Computing II 2010/11 Example Solutions for Assignment 6 Numerical Algorithms for Visual Computing II 00/ Example Solutions for Assignment 6 Problem (Matrix Stability Infusion). The matrix A of the arising matrix notation U n+ = AU n takes the following form,

More information

Finite difference methods for the diffusion equation

Finite difference methods for the diffusion equation Finite difference methods for the diffusion equation D150, Tillämpade numeriska metoder II Olof Runborg May 0, 003 These notes summarize a part of the material in Chapter 13 of Iserles. They are based

More information

Module 3: BASICS OF CFD. Part A: Finite Difference Methods

Module 3: BASICS OF CFD. Part A: Finite Difference Methods Module 3: BASICS OF CFD Part A: Finite Difference Methods THE CFD APPROACH Assembling the governing equations Identifying flow domain and boundary conditions Geometrical discretization of flow domain Discretization

More information

Numerical Methods of Applied Mathematics -- II Spring 2009

Numerical Methods of Applied Mathematics -- II Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 18.336 Numerical Methods of Applied Mathematics -- II Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Lecture Notes on Numerical Schemes for Flow and Transport Problems

Lecture Notes on Numerical Schemes for Flow and Transport Problems Lecture Notes on Numerical Schemes for Flow and Transport Problems by Sri Redeki Pudaprasetya sr pudap@math.itb.ac.id Department of Mathematics Faculty of Mathematics and Natural Sciences Bandung Institute

More information

arxiv: v1 [physics.comp-ph] 22 Feb 2013

arxiv: v1 [physics.comp-ph] 22 Feb 2013 Numerical Methods and Causality in Physics Muhammad Adeel Ajaib 1 University of Delaware, Newark, DE 19716, USA arxiv:1302.5601v1 [physics.comp-ph] 22 Feb 2013 Abstract We discuss physical implications

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 11 Partial Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002.

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

Classification of partial differential equations and their solution characteristics

Classification of partial differential equations and their solution characteristics 9 TH INDO GERMAN WINTER ACADEMY 2010 Classification of partial differential equations and their solution characteristics By Ankita Bhutani IIT Roorkee Tutors: Prof. V. Buwa Prof. S. V. R. Rao Prof. U.

More information

Additive Manufacturing Module 8

Additive Manufacturing Module 8 Additive Manufacturing Module 8 Spring 2015 Wenchao Zhou zhouw@uark.edu (479) 575-7250 The Department of Mechanical Engineering University of Arkansas, Fayetteville 1 Evaluating design https://www.youtube.com/watch?v=p

More information

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics Diffusion / Parabolic Equations Summary of PDEs (so far...) Hyperbolic Think: advection Real, finite speed(s) at which information propagates carries changes in the solution Second-order explicit methods

More information

Numerical Methods for Engineers and Scientists

Numerical Methods for Engineers and Scientists Numerical Methods for Engineers and Scientists Second Edition Revised and Expanded Joe D. Hoffman Department of Mechanical Engineering Purdue University West Lafayette, Indiana m MARCEL D E К К E R MARCEL

More information

Finite difference method for heat equation

Finite difference method for heat equation Finite difference method for heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

More information

1 Finite difference example: 1D implicit heat equation

1 Finite difference example: 1D implicit heat equation 1 Finite difference example: 1D implicit heat equation 1.1 Boundary conditions Neumann and Dirichlet We solve the transient heat equation ρc p t = ( k ) (1) on the domain L/2 x L/2 subject to the following

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Numerical Methods for Partial Differential Equations Finite Difference Methods

More information

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs AM 205: lecture 14 Last time: Boundary value problems Today: Numerical solution of PDEs ODE BVPs A more general approach is to formulate a coupled system of equations for the BVP based on a finite difference

More information

Lecture Notes on Numerical Schemes for Flow and Transport Problems

Lecture Notes on Numerical Schemes for Flow and Transport Problems Lecture Notes on Numerical Schemes for Flow and Transport Problems by Sri Redeki Pudaprasetya sr pudap@math.itb.ac.id Department of Mathematics Faculty of Mathematics and Natural Sciences Bandung Institute

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University A Model Problem and Its Difference Approximations 1-D Initial Boundary Value

More information

Approximations of diffusions. Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine

Approximations of diffusions. Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine Lecture 3b Approximations of diffusions Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine V1.1 04/10/2018 1 Learning objectives Become aware of the existence of stability conditions for the

More information

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 3 Solvers of linear algebraic equations 3.1. Outline of Lecture Finite-difference method for a 2D elliptic PDE

More information

Introduction to PDEs and Numerical Methods Tutorial 5. Finite difference methods equilibrium equation and iterative solvers

Introduction to PDEs and Numerical Methods Tutorial 5. Finite difference methods equilibrium equation and iterative solvers Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Introduction to PDEs and Numerical Methods Tutorial 5. Finite difference methods equilibrium equation and iterative solvers Dr. Noemi

More information

Computational Fluid Dynamics

Computational Fluid Dynamics Computational Fluid Dynamics Dr.Eng. Reima Iwatsu Phone: 0355 69 4875 e-mail: iwatsu@las.tu-cottbus.de NACO Building Room 53-107 Time Summer Term Lecture: Tuesday 7:30-9:00 (every two weeks) LG4/310 Exercise:

More information

Chapter 5 Types of Governing Equations. Chapter 5: Governing Equations

Chapter 5 Types of Governing Equations. Chapter 5: Governing Equations Chapter 5 Types of Governing Equations Types of Governing Equations (1) Physical Classification-1 Equilibrium problems: (1) They are problems in which a solution of a given PDE is desired in a closed domain

More information

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II Elliptic Problems / Multigrid Summary of Hyperbolic PDEs We looked at a simple linear and a nonlinear scalar hyperbolic PDE There is a speed associated with the change of the solution Explicit methods

More information

Solving One-Dimensional Advection-Dispersion with Reaction Using Some Finite-Difference Methods

Solving One-Dimensional Advection-Dispersion with Reaction Using Some Finite-Difference Methods Applied Mathematical Sciences, Vol., 008, no. 53, 6-68 Solving One-Dimensional Advection-Dispersion with Reaction Using Some Finite-Difference Methods H. Saberi Naafi Department of Mathematics, Faculty

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Key Concepts Current Semester 1 / 25 Introduction The purpose of this section is to define

More information

Introduction to PDEs and Numerical Methods: Exam 1

Introduction to PDEs and Numerical Methods: Exam 1 Prof Dr Thomas Sonar, Institute of Analysis Winter Semester 2003/4 17122003 Introduction to PDEs and Numerical Methods: Exam 1 To obtain full points explain your solutions thoroughly and self-consistently

More information

Review for Exam 2 Ben Wang and Mark Styczynski

Review for Exam 2 Ben Wang and Mark Styczynski Review for Exam Ben Wang and Mark Styczynski This is a rough approximation of what we went over in the review session. This is actually more detailed in portions than what we went over. Also, please note

More information

STABILITY FOR PARABOLIC SOLVERS

STABILITY FOR PARABOLIC SOLVERS Review STABILITY FOR PARABOLIC SOLVERS School of Mathematics Semester 1 2008 OUTLINE Review 1 REVIEW 2 STABILITY: EXPLICIT METHOD Explicit Method as a Matrix Equation Growing Errors Stability Constraint

More information

Intro to Research Computing with Python: Partial Differential Equations

Intro to Research Computing with Python: Partial Differential Equations Intro to Research Computing with Python: Partial Differential Equations Erik Spence SciNet HPC Consortium 28 November 2013 Erik Spence (SciNet HPC Consortium) PDEs 28 November 2013 1 / 23 Today s class

More information

Computation Fluid Dynamics

Computation Fluid Dynamics Computation Fluid Dynamics CFD I Jitesh Gajjar Maths Dept Manchester University Computation Fluid Dynamics p.1/189 Garbage In, Garbage Out We will begin with a discussion of errors. Useful to understand

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

Numerical Analysis of Differential Equations Numerical Solution of Parabolic Equations

Numerical Analysis of Differential Equations Numerical Solution of Parabolic Equations Numerical Analysis of Differential Equations 215 6 Numerical Solution of Parabolic Equations 6 Numerical Solution of Parabolic Equations TU Bergakademie Freiberg, SS 2012 Numerical Analysis of Differential

More information

Partial Differential Equations

Partial Differential Equations Chapter 14 Partial Differential Equations Our intuition for ordinary differential equations generally stems from the time evolution of physical systems. Equations like Newton s second law determining the

More information

7 Hyperbolic Differential Equations

7 Hyperbolic Differential Equations Numerical Analysis of Differential Equations 243 7 Hyperbolic Differential Equations While parabolic equations model diffusion processes, hyperbolic equations model wave propagation and transport phenomena.

More information

Method of Lines. Received April 20, 2009; accepted July 9, 2009

Method of Lines. Received April 20, 2009; accepted July 9, 2009 Method of Lines Samir Hamdi, William E. Schiesser and Graham W. Griffiths * Ecole Polytechnique, France; Lehigh University, USA; City University,UK. Received April 20, 2009; accepted July 9, 2009 The method

More information

Finite difference method for elliptic problems: I

Finite difference method for elliptic problems: I Finite difference method for elliptic problems: I Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

More information

Finite Difference Methods (FDMs) 1

Finite Difference Methods (FDMs) 1 Finite Difference Methods (FDMs) 1 1 st - order Approxima9on Recall Taylor series expansion: Forward difference: Backward difference: Central difference: 2 nd - order Approxima9on Forward difference: Backward

More information

Introduction to Heat and Mass Transfer. Week 9

Introduction to Heat and Mass Transfer. Week 9 Introduction to Heat and Mass Transfer Week 9 補充! Multidimensional Effects Transient problems with heat transfer in two or three dimensions can be considered using the solutions obtained for one dimensional

More information

1D Heat equation and a finite-difference solver

1D Heat equation and a finite-difference solver 1D Heat equation and a finite-difference solver Guillaume Riflet MARETEC IST 1 The advection-diffusion equation The original concept applied to a property within a control volume from which is derived

More information

Advection / Hyperbolic PDEs. PHY 604: Computational Methods in Physics and Astrophysics II

Advection / Hyperbolic PDEs. PHY 604: Computational Methods in Physics and Astrophysics II Advection / Hyperbolic PDEs Notes In addition to the slides and code examples, my notes on PDEs with the finite-volume method are up online: https://github.com/open-astrophysics-bookshelf/numerical_exercises

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives with respect to those variables. Most (but

More information

Galerkin Finite Element Model for Heat Transfer

Galerkin Finite Element Model for Heat Transfer Galerkin Finite Element Model for Heat Transfer Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Table of Contents 1 Notation remarks 1 2 Local differential

More information

A CRANK NICHOLSON METHOD WITH FIVE POINTS TO SOLVE FISHER S EQUATION

A CRANK NICHOLSON METHOD WITH FIVE POINTS TO SOLVE FISHER S EQUATION International J. of Math. Sci. & Engg. Appls. (IJMSEA ISSN 097-9424, Vol. 10 No. I (April, 2016, pp. 177-189 A CRANK NICHOLSON METHOD WITH FIVE POINTS TO SOLVE FISHER S EQUATION MUSA ADAM AIGO Umm Al-Qura

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University A Model Problem in a 2D Box Region Let us consider a model problem of parabolic

More information

Time stepping methods

Time stepping methods Time stepping methods ATHENS course: Introduction into Finite Elements Delft Institute of Applied Mathematics, TU Delft Matthias Möller (m.moller@tudelft.nl) 19 November 2014 M. Möller (DIAM@TUDelft) Time

More information

Multi-Factor Finite Differences

Multi-Factor Finite Differences February 17, 2017 Aims and outline Finite differences for more than one direction The θ-method, explicit, implicit, Crank-Nicolson Iterative solution of discretised equations Alternating directions implicit

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Implicit Schemes for the Model Problem The Crank-Nicolson scheme and θ-scheme

More information

Open boundary conditions in numerical simulations of unsteady incompressible flow

Open boundary conditions in numerical simulations of unsteady incompressible flow Open boundary conditions in numerical simulations of unsteady incompressible flow M. P. Kirkpatrick S. W. Armfield Abstract In numerical simulations of unsteady incompressible flow, mass conservation can

More information

2.2. Methods for Obtaining FD Expressions. There are several methods, and we will look at a few:

2.2. Methods for Obtaining FD Expressions. There are several methods, and we will look at a few: .. Methods for Obtaining FD Expressions There are several methods, and we will look at a few: ) Taylor series expansion the most common, but purely mathematical. ) Polynomial fitting or interpolation the

More information

Reading: P1-P20 of Durran, Chapter 1 of Lapidus and Pinder (Numerical solution of Partial Differential Equations in Science and Engineering)

Reading: P1-P20 of Durran, Chapter 1 of Lapidus and Pinder (Numerical solution of Partial Differential Equations in Science and Engineering) Chapter 1. Partial Differential Equations Reading: P1-P0 of Durran, Chapter 1 of Lapidus and Pinder (Numerical solution of Partial Differential Equations in Science and Engineering) Before even looking

More information

Chapter 5. Formulation of FEM for Unsteady Problems

Chapter 5. Formulation of FEM for Unsteady Problems Chapter 5 Formulation of FEM for Unsteady Problems Two alternatives for formulating time dependent problems are called coupled space-time formulation and semi-discrete formulation. The first one treats

More information

Partial Differential Equations II

Partial Differential Equations II Partial Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Partial Differential Equations II 1 / 28 Almost Done! Homework

More information

8. Introduction to Computational Fluid Dynamics

8. Introduction to Computational Fluid Dynamics 8. Introduction to Computational Fluid Dynamics We have been using the idea of distributions of singularities on surfaces to study the aerodynamics of airfoils and wings. This approach was very powerful,

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow 1.7, Groundwater Hydrology Prof. Carles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow Simulation: Te prediction of quantities of interest (dependent variables) based upon an equation

More information

Numerical Integration of Linear and Nonlinear Wave Equations

Numerical Integration of Linear and Nonlinear Wave Equations University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, and Student Research Papers in Mathematics Mathematics, Department of 12-2004 Numerical Integration

More information

INTRODUCTION TO PDEs

INTRODUCTION TO PDEs INTRODUCTION TO PDEs In this course we are interested in the numerical approximation of PDEs using finite difference methods (FDM). We will use some simple prototype boundary value problems (BVP) and initial

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations (MA102 Mathematics II) Shyamashree Upadhyay IIT Guwahati Shyamashree Upadhyay ( IIT Guwahati ) Ordinary Differential Equations 1 / 1 Books Shyamashree Upadhyay ( IIT Guwahati

More information

Dissipation and Dispersion

Dissipation and Dispersion Consider the problem with periodic boundary conditions Dissipation and Dispersion u t = au x 0 < x < 1, t > 0 u 0 = sin 40 πx u(0, t) = u(1, t) t > 0 If a > 0 then the wave is moving to the left and if

More information

Finite Differences: Consistency, Stability and Convergence

Finite Differences: Consistency, Stability and Convergence Finite Differences: Consistency, Stability and Convergence Varun Shankar March, 06 Introduction Now that we have tackled our first space-time PDE, we will take a quick detour from presenting new FD methods,

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9 Spring 2015 Lecture 9 REVIEW Lecture 8: Direct Methods for solving (linear) algebraic equations Gauss Elimination LU decomposition/factorization Error Analysis for Linear Systems and Condition Numbers

More information

FINITE VOLUME METHOD: BASIC PRINCIPLES AND EXAMPLES

FINITE VOLUME METHOD: BASIC PRINCIPLES AND EXAMPLES FINITE VOLUME METHOD: BASIC PRINCIPLES AND EXAMPLES SHRUTI JAIN B.Tech III Year, Electronics and Communication IIT Roorkee Tutors: Professor G. Biswas Professor S. Chakraborty ACKNOWLEDGMENTS I would like

More information

Preliminary Examination in Numerical Analysis

Preliminary Examination in Numerical Analysis Department of Applied Mathematics Preliminary Examination in Numerical Analysis August 7, 06, 0 am pm. Submit solutions to four (and no more) of the following six problems. Show all your work, and justify

More information

Finite Differences for Differential Equations 28 PART II. Finite Difference Methods for Differential Equations

Finite Differences for Differential Equations 28 PART II. Finite Difference Methods for Differential Equations Finite Differences for Differential Equations 28 PART II Finite Difference Methods for Differential Equations Finite Differences for Differential Equations 29 BOUNDARY VALUE PROBLEMS (I) Solving a TWO

More information

Before we look at numerical methods, it is important to understand the types of equations we will be dealing with.

Before we look at numerical methods, it is important to understand the types of equations we will be dealing with. Chapter 1. Partial Differential Equations (PDEs) Required Readings: Chapter of Tannehill et al (text book) Chapter 1 of Lapidus and Pinder (Numerical Solution of Partial Differential Equations in Science

More information

Numerical Methods for PDEs

Numerical Methods for PDEs Numerical Methods for PDEs Problems 1. Numerical Differentiation. Find the best approximation to the second drivative d 2 f(x)/dx 2 at x = x you can of a function f(x) using (a) the Taylor series approach

More information

Video 15: PDE Classification: Elliptic, Parabolic and Hyperbolic March Equations 11, / 20

Video 15: PDE Classification: Elliptic, Parabolic and Hyperbolic March Equations 11, / 20 Video 15: : Elliptic, Parabolic and Hyperbolic Equations March 11, 2015 Video 15: : Elliptic, Parabolic and Hyperbolic March Equations 11, 2015 1 / 20 Table of contents 1 Video 15: : Elliptic, Parabolic

More information

Discretization of Convection Diffusion type equation

Discretization of Convection Diffusion type equation Discretization of Convection Diffusion type equation 10 th Indo German Winter Academy 2011 By, Rajesh Sridhar, Indian Institute of Technology Madras Guides: Prof. Vivek V. Buwa Prof. Suman Chakraborty

More information

Numerical Methods for Partial Differential Equations: an Overview.

Numerical Methods for Partial Differential Equations: an Overview. Numerical Methods for Partial Differential Equations: an Overview math652_spring2009@colorstate PDEs are mathematical models of physical phenomena Heat conduction Wave motion PDEs are mathematical models

More information

u n 2 4 u n 36 u n 1, n 1.

u n 2 4 u n 36 u n 1, n 1. Exercise 1 Let (u n ) be the sequence defined by Set v n = u n 1 x+ u n and f (x) = 4 x. 1. Solve the equations f (x) = 1 and f (x) =. u 0 = 0, n Z +, u n+1 = u n + 4 u n.. Prove that if u n < 1, then

More information

10.34 Numerical Methods Applied to Chemical Engineering. Quiz 2

10.34 Numerical Methods Applied to Chemical Engineering. Quiz 2 10.34 Numerical Methods Applied to Chemical Engineering Quiz 2 This quiz consists of three problems worth 35, 35, and 30 points respectively. There are 4 pages in this quiz (including this cover page).

More information

16. Solution of elliptic partial differential equation

16. Solution of elliptic partial differential equation 16. Solution of elliptic partial differential equation Recall in the first lecture of this course. Assume you know how to use a computer to compute; but have not done any serious numerical computations

More information

Finite Difference Methods for Boundary Value Problems

Finite Difference Methods for Boundary Value Problems Finite Difference Methods for Boundary Value Problems October 2, 2013 () Finite Differences October 2, 2013 1 / 52 Goals Learn steps to approximate BVPs using the Finite Difference Method Start with two-point

More information

Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf**

Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf** Controlled CO 2 Diversified fuels Fuel-efficient vehicles Clean refining Extended reserves Local Time Step for a Finite Volume Scheme I.Faille F.Nataf*, F.Willien, S.Wolf** *: Laboratoire J.L.Lions **:Université

More information

Partial differential equations

Partial differential equations Partial differential equations Many problems in science involve the evolution of quantities not only in time but also in space (this is the most common situation)! We will call partial differential equation

More information

NUMERICAL SOLUTION OF THE 1- D DIFFUSION EQUATION (39)

NUMERICAL SOLUTION OF THE 1- D DIFFUSION EQUATION (39) 4/4/15 NUMERICAL SOLUTION OF THE 1- D DIFFUSION EQUATION (39) I Main Topics A MoCvaCon for using a numerical technique B Non- dimensionalizing the diffusion (heat flow) equacon C Finite- difference solucon

More information