FEUERBACH S THEOREM ON RIGHT TRIANGLE WITH AN EXTENSION

Size: px
Start display at page:

Download "FEUERBACH S THEOREM ON RIGHT TRIANGLE WITH AN EXTENSION"

Transcription

1 TRTOL JOURL O GOTRY Vol. 6 (2017), o. 2, URH S THOR O RGHT TRGL WTH XTSO TR UG HUG bstract. Given a triangle, we shall construct a circle which is tangent to both the incircle and the circumcircle at a vertex of the triangle. This construction can be considered as the generalization of euerbach s Theorem on right triangle. 1. ntroduction euerbach s Theorem is known as one of the most important theorems with many applications in elementary geometry, see [1,2,3,4,5,6] Theorem 1.1 (euerbach, 1822). n a nonequilateral triangle, the ninepoint circle is internally tangent to the incircle. Recently, ichael J. G. Scheer has given a simple vector proof of this theorem [7]. or historical details of this theorem, please see [3]. n this article, we study a special case of euerbach s Theorem when our triangle is right. eywords and phrases: Right Triangle, euerbach, idline (2010)athematics Subject lassification: 5104, 5125 Received: n revised form: ccepted:

2 104 Tran uang Hung f triangle is right at a vertex, this vertex also is the feets of the altitudes from the rest vertexs, therefore the nine-point circle of this triangle passes through that vertex. We have the specical case of euerbach s Theorem on right triangle as following Theorem 1.2 (euerbach s Theorem on right triangle). Let be a right triangle at., respectively are midpoints of the segments,. Then circumcircle of the triangles is tangent to the incircle of triangle. n this article, we shall present a construction of the circle that is tangent to both the incircle and the circumcircle of triangle. This can be considered as the generalization of theorem 2. irst of all, we shall point out another way to construct the midline in a right triangle by the following theorem Theorem 1.3. Let be a right triangle inscribed circle (O) with diameter. ncirle () of triangle touches, at,, reps. intersects (O) again at. The circle () passes through, which intersects (O) at two points,. Then the line contains the -midline of triangle.

3 euerbach s theorem on right triangle with an extension 105 ow using this construction on right triangle. We establish the following interesting reuslt. Theorem 1.4. Let be a triangle inscribed circle (O). ncirle () of triangle touches, at,, reps. intersects (O) again at. The circle () passes through, which intersects (O) at two points,. The line interects sides, at,, resp. Then the circumcircle of triangle is tangent to () and (O). O Remark 1.1. n the theorem 1.4, if triangle is right at and we apply the construction of midline in the theorem 1.3, we get the theorem 1.2. So we see that the theorem 1.2 as a special case of the theorem The proof of the main theorem We fist present the proof of the theorem 1.4. roof. Let J be the -excenter of the triangle. oint H is the feet of altitude from on line. The segment L is diameter of circle (O). L intersects, at S,T, respectively. Denote by R the midpoint of. Using ythagorean theorem and the metric relations on right triangle, we have the following indenitites ST.L = T L S L = 2 2 = 2 2 = R 2 +R 2 2

4 106 Tran uang Hung = (R )(R+)+R R = R (R+J)+R R = R(RJ +R) = R J. This follows that L J = R ST (1). L R O T H S J all by R the radius of the circumcircle (O). ote that, two triangles and J are similar. We have the indentities H L = H 2R = 2[] 2 2R = 2R = = J. 4R Which implies L J = H (2). rom (1) and (2), we deduce that R ST = H. Hence,

5 euerbach s theorem on right triangle with an extension 107 R = ST H = =. Therefore, we have the equal ratios R = = = k. onsider the homothety center with the ratio k. This homothety transforms the circumcircle of triangle to the circumcircle (O) of triangle, the incircle () transforms to -mixtilinear incircle of. ecause of the touching of -mixtilinear incircle the circumcircle (O), the circumcircle of triangle and the incircle () of are tangent. retty obvious that is parallel to so the circumcircle of triangle is tangent to (O) at. We complete the proof. Remark 2.1. The proof of the theorem 1.4 also contains the proof of the theorem 3. ndeed, in the theorem 3, let the line intersect the sides, at,, respectively. Let the intersection of and be the point R. ecause triangle is right at, R is midpoint of. Using the last equal ratios in the proof of the theorem 1.4, we have = = R = 1 2. R Thus, are midpoints of,. This means the line contains the -midline of triangle. 3. onclusion n this article, we have reiterated the famous theorem of euerbach. Then we apply the euerbach s theorem on the right triangle. Using a new construction of midline in the right triangle, we extended euerbach s theorem on the right triangle and gave a purely geometric solution.

6 108 Tran uang Hung References [1] oxeter, H.S.., ntroduction to Geometry, 2nd edition, John Wiley & Sons, Hoboken,.J., [2] oxeter, H.S.. and Greitzer, S. L., Geometry Revisited, The ath. ssoc. of merica, [3] Yiu,., ntroduction to the Geometry of the Triangle, lorida tlantic University Lecture otes, 2001; with corrections, 2013, available at [4] acay, J. S., History of the nine point circle, roc. dinb. ath. Soc., 11 (1892) [5] arbu,.., undamental theorems of triangle geometry (Romanian), ditura Unique, acău, [6] ogomolny,., euerbach s Theorem, nteractive athematics iscellany and uzzles, [7] Scheer,. J. G., simple vector proof of euerbachs theorem, orum Geometricorum, 11 (2011) HGH SHOOL OR GTD STUDTS, HO UVRSTY O S, HO TOL UVRSTY, HO, VT. -mail address: analgeomatica@gmail.com

Simple Proofs of Feuerbach s Theorem and Emelyanov s Theorem

Simple Proofs of Feuerbach s Theorem and Emelyanov s Theorem Forum Geometricorum Volume 18 (2018) 353 359. FORUM GEOM ISSN 1534-1178 Simple Proofs of Feuerbach s Theorem and Emelyanov s Theorem Nikolaos Dergiades and Tran Quang Hung Abstract. We give simple proofs

More information

The Arbelos and Nine-Point Circles

The Arbelos and Nine-Point Circles Forum Geometricorum Volume 7 (2007) 115 120. FORU GEO ISSN 1534-1178 The rbelos and Nine-Point Circles uang Tuan ui bstract. We construct some new rchimedean circles in an arbelos in connection with the

More information

A Construction of the Golden Ratio in an Arbitrary Triangle

A Construction of the Golden Ratio in an Arbitrary Triangle Forum Geometricorum Volume 18 (2018) 239 244. FORUM GEOM ISSN 1534-1178 onstruction of the Golden Ratio in an rbitrary Triangle Tran Quang Hung bstract. We have known quite a lot about the construction

More information

22 SAMPLE PROBLEMS WITH SOLUTIONS FROM 555 GEOMETRY PROBLEMS

22 SAMPLE PROBLEMS WITH SOLUTIONS FROM 555 GEOMETRY PROBLEMS 22 SPL PROLS WITH SOLUTIOS FRO 555 GOTRY PROLS SOLUTIOS S O GOTRY I FIGURS Y. V. KOPY Stanislav hobanov Stanislav imitrov Lyuben Lichev 1 Problem 3.9. Let be a quadrilateral. Let J and I be the midpoints

More information

Construction of Ajima Circles via Centers of Similitude

Construction of Ajima Circles via Centers of Similitude Forum Geometricorum Volume 15 (2015) 203 209. FORU GEO SS 1534-1178 onstruction of jima ircles via enters of Similitude ikolaos Dergiades bstract. We use the notion of the centers of similitude of two

More information

Singapore International Mathematical Olympiad Training Problems

Singapore International Mathematical Olympiad Training Problems Singapore International athematical Olympiad Training Problems 18 January 2003 1 Let be a point on the segment Squares D and EF are erected on the same side of with F lying on The circumcircles of D and

More information

BMC Intermediate II: Triangle Centers

BMC Intermediate II: Triangle Centers M Intermediate II: Triangle enters Evan hen January 20, 2015 1 The Eyeballing Game Game 0. Given a point, the locus of points P such that the length of P is 5. Game 3. Given a triangle, the locus of points

More information

Heptagonal Triangles and Their Companions

Heptagonal Triangles and Their Companions Forum Geometricorum Volume 9 (009) 15 148. FRUM GEM ISSN 1534-1178 Heptagonal Triangles and Their ompanions Paul Yiu bstract. heptagonal triangle is a non-isosceles triangle formed by three vertices of

More information

Three Natural Homoteties of The Nine-Point Circle

Three Natural Homoteties of The Nine-Point Circle Forum Geometricorum Volume 13 (2013) 209 218. FRUM GEM ISS 1534-1178 Three atural omoteties of The ine-point ircle Mehmet Efe kengin, Zeyd Yusuf Köroğlu, and Yiğit Yargiç bstract. Given a triangle with

More information

The circumcircle and the incircle

The circumcircle and the incircle hapter 4 The circumcircle and the incircle 4.1 The Euler line 4.1.1 nferior and superior triangles G F E G D The inferior triangle of is the triangle DEF whose vertices are the midpoints of the sides,,.

More information

Geometry. Class Examples (July 8) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 8) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 8) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 1 The incircle The internal angle bisectors of a triangle are concurrent at the incenter

More information

Generalized Archimedean Arbelos Twins

Generalized Archimedean Arbelos Twins Forum Geometricorum Volume 4 (204) 409 48 FORUM GEOM ISSN 534-78 Generalized rchimedean rbelos Twins Nikolaos Dergiades bstract We generalize the well known rchimedean arbelos twins by extending the notion

More information

PORISTIC TRIANGLES OF THE ARBELOS

PORISTIC TRIANGLES OF THE ARBELOS INTERNTINL JURNL F EMETRY Vol. 6 (2017), No. 1, 27-35 PRISTIC TRINLES F THE RELS ntonio utierrez, Hiroshi kumura and Hussein Tahir bstract. The arbelos is associated with poristic triangles whose circumcircle

More information

arxiv: v1 [math.ho] 10 Feb 2018

arxiv: v1 [math.ho] 10 Feb 2018 RETIVE GEOMETRY LEXNDER SKUTIN arxiv:1802.03543v1 [math.ho] 10 Feb 2018 1. Introduction This work is a continuation of [1]. s in the previous article, here we will describe some interesting ideas and a

More information

Classical Theorems in Plane Geometry 1

Classical Theorems in Plane Geometry 1 BERKELEY MATH CIRCLE 1999 2000 Classical Theorems in Plane Geometry 1 Zvezdelina Stankova-Frenkel UC Berkeley and Mills College Note: All objects in this handout are planar - i.e. they lie in the usual

More information

The Menelaus and Ceva Theorems

The Menelaus and Ceva Theorems hapter 7 The Menelaus and eva Theorems 7.1 7.1.1 Sign convention Let and be two distinct points. point on the line is said to divide the segment in the ratio :, positive if is between and, and negative

More information

Distances Among the Feuerbach Points

Distances Among the Feuerbach Points Forum Geometricorum Volume 16 016) 373 379 FORUM GEOM ISSN 153-1178 Distances mong the Feuerbach Points Sándor Nagydobai Kiss bstract We find simple formulas for the distances from the Feuerbach points

More information

Chapter 1. Some Basic Theorems. 1.1 The Pythagorean Theorem

Chapter 1. Some Basic Theorems. 1.1 The Pythagorean Theorem hapter 1 Some asic Theorems 1.1 The ythagorean Theorem Theorem 1.1 (ythagoras). The lengths a b < c of the sides of a right triangle satisfy the relation a 2 + b 2 = c 2. roof. b a a 3 2 b 2 b 4 b a b

More information

ON CIRCLES TOUCHING THE INCIRCLE

ON CIRCLES TOUCHING THE INCIRCLE ON CIRCLES TOUCHING THE INCIRCLE ILYA I. BOGDANOV, FEDOR A. IVLEV, AND PAVEL A. KOZHEVNIKOV Abstract. For a given triangle, we deal with the circles tangent to the incircle and passing through two its

More information

A Note on Reflections

A Note on Reflections Forum Geometricorum Volume 14 (2014) 155 161. FORUM GEOM SSN 1534-1178 Note on Reflections Emmanuel ntonio José García bstract. We prove some simple results associated with the triangle formed by the reflections

More information

Chapter 8. Feuerbach s theorem. 8.1 Distance between the circumcenter and orthocenter

Chapter 8. Feuerbach s theorem. 8.1 Distance between the circumcenter and orthocenter hapter 8 Feuerbach s theorem 8.1 Distance between the circumcenter and orthocenter Y F E Z H N X D Proposition 8.1. H = R 1 8 cosαcos β cosγ). Proof. n triangle H, = R, H = R cosα, and H = β γ. y the law

More information

ISOTOMIC SIMILARITY LEV A. EMELYANOV AND PAVEL A. KOZHEVNIKOV. of a triangle ABC, respectively. The circumcircles of triangles AB 1 C 1, BC 1 A 1,

ISOTOMIC SIMILARITY LEV A. EMELYANOV AND PAVEL A. KOZHEVNIKOV. of a triangle ABC, respectively. The circumcircles of triangles AB 1 C 1, BC 1 A 1, ISOTOMI SIMILRITY LEV. EMELYNOV ND VEL. KOZHEVNIKOV bstract. Let 1, 1, 1 be points chosen on the sidelines,, of a triangle, respectively. The circumcircles of triangles 1 1, 1 1, 1 1 intersect the circumcircle

More information

The Apollonius Circle and Related Triangle Centers

The Apollonius Circle and Related Triangle Centers Forum Geometricorum Qolume 3 (2003) 187 195. FORUM GEOM ISSN 1534-1178 The Apollonius Circle and Related Triangle Centers Milorad R. Stevanović Abstract. We give a simple construction of the Apollonius

More information

Forum Geometricorum Volume 13 (2013) 1 6. FORUM GEOM ISSN Soddyian Triangles. Frank M. Jackson

Forum Geometricorum Volume 13 (2013) 1 6. FORUM GEOM ISSN Soddyian Triangles. Frank M. Jackson Forum Geometricorum Volume 3 (203) 6. FORUM GEOM ISSN 534-78 Soddyian Triangles Frank M. Jackson bstract. Soddyian triangle is a triangle whose outer Soddy circle has degenerated into a straight line.

More information

GEOMETRY PROBLEM FROM LATVIA

GEOMETRY PROBLEM FROM LATVIA GEOMETRY PROBLEM FROM LTVI ZVONKO ČERIN bstract. We describe three solutions of a geometry problem from the latvian mathematical competitions in 1994. The first elementary solution uses homotheties. The

More information

GEOMETRY OF KIEPERT AND GRINBERG MYAKISHEV HYPERBOLAS

GEOMETRY OF KIEPERT AND GRINBERG MYAKISHEV HYPERBOLAS GEOMETRY OF KIEPERT ND GRINERG MYKISHEV HYPEROLS LEXEY. ZSLVSKY bstract. new synthetic proof of the following fact is given: if three points,, are the apices of isosceles directly-similar triangles,, erected

More information

Chapter-wise questions

Chapter-wise questions hapter-wise questions ircles 1. In the given figure, is circumscribing a circle. ind the length of. 3 15cm 5 2. In the given figure, is the center and. ind the radius of the circle if = 18 cm and = 3cm

More information

Trn Quang Hng - High school for gifted students at Science 1. On Casey Inequality. Tran Quang Hung, High school for gifted students at Science

Trn Quang Hng - High school for gifted students at Science 1. On Casey Inequality. Tran Quang Hung, High school for gifted students at Science Trn Quang Hng - High school for gifted students at Science 1 n asey nequality Tran Quang Hung, High school for gifted students at Science asey s theorem is one of famous theorem of geometry, we can see

More information

Minimal Chords in Angular Regions

Minimal Chords in Angular Regions Forum Geometricorum Volume 4 (2004) 111 115. FRU GE ISS 1534-1178 inimal Chords in ngular Regions icolae nghel bstract. We use synthetic geometry to show that in an angular region minimal chords having

More information

SOME NEW THEOREMS IN PLANE GEOMETRY. In this article we will represent some ideas and a lot of new theorems in plane geometry.

SOME NEW THEOREMS IN PLANE GEOMETRY. In this article we will represent some ideas and a lot of new theorems in plane geometry. SOME NEW THEOREMS IN PLNE GEOMETRY LEXNDER SKUTIN 1. Introduction arxiv:1704.04923v3 [math.mg] 30 May 2017 In this article we will represent some ideas and a lot of new theorems in plane geometry. 2. Deformation

More information

Theorem 1.2 (Converse of Pythagoras theorem). If the lengths of the sides of ABC satisfy a 2 + b 2 = c 2, then the triangle has a right angle at C.

Theorem 1.2 (Converse of Pythagoras theorem). If the lengths of the sides of ABC satisfy a 2 + b 2 = c 2, then the triangle has a right angle at C. hapter 1 Some asic Theorems 1.1 The ythagorean Theorem Theorem 1.1 (ythagoras). The lengths a b < c of the sides of a right triangle satisfy the relation a + b = c. roof. b a a 3 b b 4 b a b 4 1 a a 3

More information

Geometry of Regular Heptagons

Geometry of Regular Heptagons Journal for eometry and raphics olume 9 (005) No. 119 1. eometry of Regular Heptagons vonko Čerin Kopernikova 7 10010 agreb roatia urope email: cerin@math.hr bstract. his paper explores some new geometric

More information

Conic Construction of a Triangle from the Feet of Its Angle Bisectors

Conic Construction of a Triangle from the Feet of Its Angle Bisectors onic onstruction of a Triangle from the Feet of Its ngle isectors Paul Yiu bstract. We study an extension of the problem of construction of a triangle from the feet of its internal angle bisectors. Given

More information

Circle Chains Inside a Circular Segment

Circle Chains Inside a Circular Segment Forum eometricorum Volume 9 (009) 73 79. FRUM EM ISSN 534-78 ircle hains Inside a ircular Segment iovanni Lucca bstract. We consider a generic circles chain that can be drawn inside a circular segment

More information

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 1) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 1 Example 1(a). Given a triangle, the intersection P of the perpendicular bisector of and

More information

A Note on the Barycentric Square Roots of Kiepert Perspectors

A Note on the Barycentric Square Roots of Kiepert Perspectors Forum Geometricorum Volume 6 (2006) 263 268. FORUM GEOM ISSN 1534-1178 Note on the arycentric Square Roots of Kiepert erspectors Khoa Lu Nguyen bstract. Let be an interior point of a given triangle. We

More information

Chapter 6. Basic triangle centers. 6.1 The Euler line The centroid

Chapter 6. Basic triangle centers. 6.1 The Euler line The centroid hapter 6 asic triangle centers 6.1 The Euler line 6.1.1 The centroid Let E and F be the midpoints of and respectively, and G the intersection of the medians E and F. onstruct the parallel through to E,

More information

On a Porism Associated with the Euler and Droz-Farny Lines

On a Porism Associated with the Euler and Droz-Farny Lines Forum Geometricorum Volume 7 (2007) 11 17. FRUM GEM ISS 1534-1178 n a Porism ssociated with the Euler and Droz-Farny Lines hristopher J. radley, David Monk, and Geoff. Smith bstract. The envelope of the

More information

Example 1: Finding angle measures: I ll do one: We ll do one together: You try one: ML and MN are tangent to circle O. Find the value of x

Example 1: Finding angle measures: I ll do one: We ll do one together: You try one: ML and MN are tangent to circle O. Find the value of x Ch 1: Circles 1 1 Tangent Lines 1 Chords and Arcs 1 3 Inscribed Angles 1 4 Angle Measures and Segment Lengths 1 5 Circles in the coordinate plane 1 1 Tangent Lines Focused Learning Target: I will be able

More information

On Feuerbach s Theorem and a Pencil of Circles in the Isotropic Plane

On Feuerbach s Theorem and a Pencil of Circles in the Isotropic Plane Journal for Geometry and Graphics Volume 10 (2006), No. 2, 125 12. On Feuerbach s Theorem and a Pencil of Circles in the Isotropic Plane J. Beban-Brkić 1, R. Kolar Šuper 2, Z. Kolar Begović, V. Volenec

More information

XIII GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions

XIII GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions XIII GEOMETRIL OLYMPID IN HONOUR OF I.F.SHRYGIN The correspondence round. Solutions 1. (.Zaslavsky) (8) Mark on a cellular paper four nodes forming a convex quadrilateral with the sidelengths equal to

More information

Geometry. Class Examples (July 3) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 3) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 3) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 Example 11(a): Fermat point. Given triangle, construct externally similar isosceles triangles

More information

Chapter 3. The angle bisectors. 3.1 The angle bisector theorem

Chapter 3. The angle bisectors. 3.1 The angle bisector theorem hapter 3 The angle bisectors 3.1 The angle bisector theorem Theorem 3.1 (ngle bisector theorem). The bisectors of an angle of a triangle divide its opposite side in the ratio of the remaining sides. If

More information

The Lemoine Cubic and Its Generalizations

The Lemoine Cubic and Its Generalizations Forum Geometricorum Volume 2 (2002) 47 63. FRUM GEM ISSN 1534-1178 The Lemoine ubic and Its Generalizations ernard Gibert bstract. For a given triangle, the Lemoine cubic is the locus of points whose cevian

More information

Harmonic Division and its Applications

Harmonic Division and its Applications Harmonic ivision and its pplications osmin Pohoata Let d be a line and,,, and four points which lie in this order on it. he four-point () is called a harmonic division, or simply harmonic, if =. If is

More information

Triangles III. Stewart s Theorem (1746) Stewart s Theorem (1746) 9/26/2011. Stewart s Theorem, Orthocenter, Euler Line

Triangles III. Stewart s Theorem (1746) Stewart s Theorem (1746) 9/26/2011. Stewart s Theorem, Orthocenter, Euler Line Triangles III Stewart s Theorem, Orthocenter, uler Line 23-Sept-2011 M 341 001 1 Stewart s Theorem (1746) With the measurements given in the triangle below, the following relationship holds: a 2 n + b

More information

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 1) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 1) Paul Yiu Department of Mathematics Florida tlantic University c b a Summer 2014 21 Example 11: Three congruent circles in a circle. The three small circles are congruent.

More information

A Maximal Parallelogram Characterization of Ovals Having Circles as Orthoptic Curves

A Maximal Parallelogram Characterization of Ovals Having Circles as Orthoptic Curves Forum Geometricorum Volume 10 (010) 1-5. FRUM GEM ISSN 1534-1178 Maximal arallelogram haracterization of vals Having ircles as rthoptic urves Nicolae nghel bstract. It is shown that ovals admitting circles

More information

Geometry. Class Examples (July 29) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014

Geometry. Class Examples (July 29) Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2014 Geometry lass Examples (July 29) Paul Yiu Department of Mathematics Florida tlantic University c a Summer 2014 1 The Pythagorean Theorem Theorem (Pythagoras). The lengths a

More information

Some Collinearities in the Heptagonal Triangle

Some Collinearities in the Heptagonal Triangle Forum Geometricorum Volume 16 (2016) 249 256. FRUM GEM ISSN 1534-1178 Some ollinearities in the Heptagonal Triangle bdilkadir ltintaş bstract. With the methods of barycentric coordinates, we establish

More information

Solve problems involving tangents to a circle. Solve problems involving chords of a circle

Solve problems involving tangents to a circle. Solve problems involving chords of a circle 8UNIT ircle Geometry What You ll Learn How to Solve problems involving tangents to a circle Solve problems involving chords of a circle Solve problems involving the measures of angles in a circle Why Is

More information

Hagge circles revisited

Hagge circles revisited agge circles revisited Nguyen Van Linh 24/12/2011 bstract In 1907, Karl agge wrote an article on the construction of circles that always pass through the orthocenter of a given triangle. The purpose of

More information

History of Mathematics

History of Mathematics History of Mathematics Paul Yiu Department of Mathematics Florida tlantic University Spring 2014 4: rchimedes Quadrature of the Parabola onsider the parabola y = x 2. Let 1, 1 be two points on the x axis,

More information

P1 Chapter 6 :: Circles

P1 Chapter 6 :: Circles P1 Chapter 6 :: Circles jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 11 th August 2017 Use of DrFrostMaths for practice Register for free at: www.drfrostmaths.com/homework

More information

XIV GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions

XIV GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN The correspondence round. Solutions XIV GEOMETRIL OLYMPI IN HONOUR OF I.F.SHRYGIN The correspondence round. Solutions 1. (L.Shteingarts, grade 8) Three circles lie inside a square. Each of them touches externally two remaining circles. lso

More information

1/19 Warm Up Fast answers!

1/19 Warm Up Fast answers! 1/19 Warm Up Fast answers! The altitudes are concurrent at the? Orthocenter The medians are concurrent at the? Centroid The perpendicular bisectors are concurrent at the? Circumcenter The angle bisectors

More information

Plane geometry Circles: Problems with some Solutions

Plane geometry Circles: Problems with some Solutions The University of Western ustralia SHL F MTHMTIS & STTISTIS UW MY FR YUNG MTHMTIINS Plane geometry ircles: Problems with some Solutions 1. Prove that for any triangle, the perpendicular bisectors of the

More information

Midcircles and the Arbelos

Midcircles and the Arbelos Forum Geometricorum Volume 7 (2007) 53 65. FORUM GEOM ISSN 1534-1178 Midcircles and the rbelos Eric Danneels and Floor van Lamoen bstract. We begin with a study of inversions mapping one given circle into

More information

A Distance Property of the Feuerbach Point and Its Extension

A Distance Property of the Feuerbach Point and Its Extension Forum Geometricorum Volume 16 (016) 83 90. FOUM GEOM ISSN 1534-1178 A Distance Property of the Feuerbach Point and Its Extension Sándor Nagydobai Kiss Abstract. We prove that among the distances from the

More information

SOME PROPERTIES OF INTERSECTION POINTS OF EULER LINE AND ORTHOTRIANGLE

SOME PROPERTIES OF INTERSECTION POINTS OF EULER LINE AND ORTHOTRIANGLE SOME PROPERTIES OF INTERSETION POINTS OF EULER LINE ND ORTHOTRINGLE DNYLO KHILKO bstract. We consider the points where the Euler line of a given triangle meets the sides of its orthotriangle, i.e. the

More information

Chapter 1. Theorems of Ceva and Menelaus

Chapter 1. Theorems of Ceva and Menelaus hapter 1 Theorems of eva and Menelaus We start these lectures by proving some of the most basic theorems in the geometry of a planar triangle. Let,, be the vertices of the triangle and,, be any points

More information

XI Geometrical Olympiad in honour of I.F.Sharygin Final round. Grade 8. First day. Solutions Ratmino, 2015, July 30.

XI Geometrical Olympiad in honour of I.F.Sharygin Final round. Grade 8. First day. Solutions Ratmino, 2015, July 30. XI Geometrical Olympiad in honour of I.F.Sharygin Final round. Grade 8. First day. Solutions Ratmino, 2015, July 30. 1. (V. Yasinsky) In trapezoid D angles and are right, = D, D = + D, < D. Prove that

More information

Problems First day. 8 grade. Problems First day. 8 grade

Problems First day. 8 grade. Problems First day. 8 grade First day. 8 grade 8.1. Let ABCD be a cyclic quadrilateral with AB = = BC and AD = CD. ApointM lies on the minor arc CD of its circumcircle. The lines BM and CD meet at point P, thelinesam and BD meet

More information

Construction of a Triangle from the Feet of Its Angle Bisectors

Construction of a Triangle from the Feet of Its Angle Bisectors onstruction of a Triangle from the Feet of Its ngle isectors Paul Yiu bstract. We study the problem of construction of a triangle from the feet of its internal angle bisectors. conic solution is possible.

More information

Steiner s porism and Feuerbach s theorem

Steiner s porism and Feuerbach s theorem hapter 10 Steiner s porism and Feuerbach s theorem 10.1 Euler s formula Lemma 10.1. f the bisector of angle intersects the circumcircle at M, then M is the center of the circle through,,, and a. M a Proof.

More information

The Kiepert Pencil of Kiepert Hyperbolas

The Kiepert Pencil of Kiepert Hyperbolas Forum Geometricorum Volume 1 (2001) 125 132. FORUM GEOM ISSN 1534-1178 The Kiepert Pencil of Kiepert Hyperbolas Floor van Lamoen and Paul Yiu bstract. We study Kiepert triangles K(φ) and their iterations

More information

XII Geometrical Olympiad in honour of I.F.Sharygin Final round. Solutions. First day. 8 grade

XII Geometrical Olympiad in honour of I.F.Sharygin Final round. Solutions. First day. 8 grade XII Geometrical Olympiad in honour of I.F.Sharygin Final round. Solutions. First day. 8 grade Ratmino, 2016, July 31 1. (Yu.linkov) n altitude H of triangle bisects a median M. Prove that the medians of

More information

The Napoleon Configuration

The Napoleon Configuration Forum eometricorum Volume 2 (2002) 39 46. FORUM EOM ISSN 1534-1178 The Napoleon onfiguration illes outte bstract. It is an elementary fact in triangle geometry that the two Napoleon triangles are equilateral

More information

LAMC Intermediate I & II March 1, Oleg Gleizer. A natural unit of measuring angles, a radian

LAMC Intermediate I & II March 1, Oleg Gleizer. A natural unit of measuring angles, a radian LAMC Intermediate I & II March 1, 2015 Oleg Gleizer prof1140g@math.ucla.edu A natural unit of measuring angles, a radian Consider an angle and a circle such that the vertex of the angle is the center of

More information

Geometry: A Complete Course

Geometry: A Complete Course eometry: omplete ourse with rigonometry) odule - tudent Worket Written by: homas. lark Larry. ollins 4/2010 or ercises 20 22, use the diagram below. 20. ssume is a rectangle. a) f is 6, find. b) f is,

More information

Isotomic Inscribed Triangles and Their Residuals

Isotomic Inscribed Triangles and Their Residuals Forum Geometricorum Volume 3 (2003) 125 134. FORUM GEOM ISSN 1534-1178 Isotomic Inscribed Triangles and Their Residuals Mario Dalcín bstract. We prove some interesting results on inscribed triangles which

More information

Chapter 2. The laws of sines and cosines. 2.1 The law of sines. Theorem 2.1 (The law of sines). Let R denote the circumradius of a triangle ABC.

Chapter 2. The laws of sines and cosines. 2.1 The law of sines. Theorem 2.1 (The law of sines). Let R denote the circumradius of a triangle ABC. hapter 2 The laws of sines and cosines 2.1 The law of sines Theorem 2.1 (The law of sines). Let R denote the circumradius of a triangle. 2R = a sin α = b sin β = c sin γ. α O O α as Since the area of a

More information

The Lemniscate of Bernoulli, without Formulas

The Lemniscate of Bernoulli, without Formulas The Lemniscate of ernoulli, without Formulas rseniy V. kopyan ariv:1003.3078v [math.h] 4 May 014 bstract In this paper, we give purely geometrical proofs of the well-known properties of the lemniscate

More information

On the Circumcenters of Cevasix Configurations

On the Circumcenters of Cevasix Configurations Forum Geometricorum Volume 3 (2003) 57 63. FORUM GEOM ISSN 1534-1178 On the ircumcenters of evasix onfigurations lexei Myakishev and Peter Y. Woo bstract. We strengthen Floor van Lamoen s theorem that

More information

IX Geometrical Olympiad in honour of I.F.Sharygin Final round. Ratmino, 2013, August 1 = 90 ECD = 90 DBC = ABF,

IX Geometrical Olympiad in honour of I.F.Sharygin Final round. Ratmino, 2013, August 1 = 90 ECD = 90 DBC = ABF, IX Geometrical Olympiad in honour of I.F.Sharygin Final round. Ratmino, 013, ugust 1 Solutions First day. 8 grade 8.1. (N. Moskvitin) Let E be a pentagon with right angles at vertices and E and such that

More information

The Apollonian Circles and Isodynamic Points

The Apollonian Circles and Isodynamic Points The pollonian ircles and Isodynamic Points Tarik dnan oon bstract This paper is on the pollonian circles and isodynamic points of a triangle. Here we discuss some of the most intriguing properties of pollonian

More information

Vectors - Applications to Problem Solving

Vectors - Applications to Problem Solving BERKELEY MATH CIRCLE 00-003 Vectors - Applications to Problem Solving Zvezdelina Stankova Mills College& UC Berkeley 1. Well-known Facts (1) Let A 1 and B 1 be the midpoints of the sides BC and AC of ABC.

More information

Bicevian Tucker Circles

Bicevian Tucker Circles Forum Geometricorum Volume 7 (2007) 87 97. FORUM GEOM ISSN 1534-1178 icevian Tucker ircles ernard Gibert bstract. We prove that there are exactly ten bicevian Tucker circles and show several curves containing

More information

Recreational Mathematics

Recreational Mathematics Recreational Mathematics Paul Yiu Department of Mathematics Florida Atlantic University Summer 2003 Chapters 5 8 Version 030630 Chapter 5 Greatest common divisor 1 gcd(a, b) as an integer combination of

More information

Survey of Geometry. Paul Yiu. Department of Mathematics Florida Atlantic University. Spring 2007

Survey of Geometry. Paul Yiu. Department of Mathematics Florida Atlantic University. Spring 2007 Survey of Geometry Paul Yiu Department of Mathematics Florida tlantic University Spring 2007 ontents 1 The circumcircle and the incircle 1 1.1 The law of cosines and its applications.............. 1 1.2

More information

Objective Mathematics

Objective Mathematics . In BC, if angles, B, C are in geometric seq- uence with common ratio, then is : b c a (a) (c) 0 (d) 6. If the angles of a triangle are in the ratio 4 : :, then the ratio of the longest side to the perimeter

More information

Constructing a Triangle from Two Vertices and the Symmedian Point

Constructing a Triangle from Two Vertices and the Symmedian Point Forum Geometricorum Volume 18 (2018) 129 1. FORUM GEOM ISSN 154-1178 Constructing a Triangle from Two Vertices and the Symmedian Point Michel Bataille Abstract. Given three noncollinear points A, B, K,

More information

arxiv: v1 [math.ho] 29 Nov 2017

arxiv: v1 [math.ho] 29 Nov 2017 The Two Incenters of the Arbitrary Convex Quadrilateral Nikolaos Dergiades and Dimitris M. Christodoulou ABSTRACT arxiv:1712.02207v1 [math.ho] 29 Nov 2017 For an arbitrary convex quadrilateral ABCD with

More information

Equioptic Points of a Triangle

Equioptic Points of a Triangle Journal for Geometry and Graphics Volume 17 (2013), No. 1, 1 10. Equioptic Points of a Triangle oris Odehnal Ordinariat für Geometrie, Universität für ngewandte Kunst Oskar Kokoschkaplatz 2, -1010 Wien,

More information

Chapter 4. Feuerbach s Theorem

Chapter 4. Feuerbach s Theorem Chapter 4. Feuerbach s Theorem Let A be a point in the plane and k a positive number. Then in the previous chapter we proved that the inversion mapping with centre A and radius k is the mapping Inv : P\{A}

More information

Additional Mathematics Lines and circles

Additional Mathematics Lines and circles Additional Mathematics Lines and circles Topic assessment 1 The points A and B have coordinates ( ) and (4 respectively. Calculate (i) The gradient of the line AB [1] The length of the line AB [] (iii)

More information

IMO Training Camp Mock Olympiad #2

IMO Training Camp Mock Olympiad #2 IMO Training Camp Mock Olympiad #2 July 3, 2008 1. Given an isosceles triangle ABC with AB = AC. The midpoint of side BC is denoted by M. Let X be a variable point on the shorter arc MA of the circumcircle

More information

Calculators are NOT permitted.

Calculators are NOT permitted. THE 0-0 KEESW STTE UIVERSITY HIGH SHOOL THETIS OETITIO RT II In addition to scoring student responses based on whether a solution is correct and complete, consideration will be given to elegance, simplicity,

More information

ACTM Regional Geometry Exam 2009

ACTM Regional Geometry Exam 2009 TM Regional Geometry xam 009 In each of the following questions choose the best answer and bubble the corresponding letter on the answer sheet. Note: The geometric figures on this exam are not necessarily

More information

Geometric Inequalities in Pedal Quadrilaterals

Geometric Inequalities in Pedal Quadrilaterals Forum Geometricorum Volume 8 (08) 03 4. FORUM GEOM ISSN 534-78 Geometric Inequlities in edl Qudrilterls Şhlr Meherrem Gizem Günel çıksöz Sereny Şen Zeynep Sezer nd Güneş şkes bstrct. The im of this pper

More information

The Droz-Farny Circles of a Convex Quadrilateral

The Droz-Farny Circles of a Convex Quadrilateral Forum Geometricorum Volume 11 (2011) 109 119. FORUM GEOM ISSN 1534-1178 The Droz-Farny Circles of a Convex Quadrilateral Maria Flavia Mammana, Biagio Micale, and Mario Pennisi Abstract. The Droz-Farny

More information

UNC Charlotte Super Competition - Comprehensive test March 2, 2015

UNC Charlotte Super Competition - Comprehensive test March 2, 2015 March 2, 2015 1. triangle is inscribed in a semi-circle of radius r as shown in the figure: θ The area of the triangle is () r 2 sin 2θ () πr 2 sin θ () r sin θ cos θ () πr 2 /4 (E) πr 2 /2 2. triangle

More information

Generalized Mandart Conics

Generalized Mandart Conics Forum Geometricorum Volume 4 (2004) 177 198. FORUM GEOM ISSN 1534-1178 Generalized Mandart onics ernard Gibert bstract. We consider interesting conics associated with the configuration of three points

More information

Isogonal Conjugacy Through a Fixed Point Theorem

Isogonal Conjugacy Through a Fixed Point Theorem Forum Geometricorum Volume 16 (016 171 178. FORUM GEOM ISSN 1534-1178 Isogonal onjugacy Through a Fixed Point Theorem Sándor Nagydobai Kiss and Zoltán Kovács bstract. For an arbitrary point in the plane

More information

A Note on the Anticomplements of the Fermat Points

A Note on the Anticomplements of the Fermat Points Forum Geometricorum Volume 9 (2009) 119 123. FORUM GEOM ISSN 1534-1178 Note on the nticomplements of the Fermat Points osmin Pohoata bstract. We show that each of the anticomplements of the Fermat points

More information

THE EXTREMUM OF A FUNCTION DEFINED ON THE EUCLIDEAN PLANE

THE EXTREMUM OF A FUNCTION DEFINED ON THE EUCLIDEAN PLANE INTERNATIONAL JOURNAL OF GEOMETRY Vol. 3 (2014), No. 2, 20-24 THE EXTREMUM OF A FUNCTION DEFINED ON THE EUCLIDEAN PLANE DORIN ANDRICA Abstract. The main urose of the note is to resent three di erent solutions

More information

Using Complex Weighted Centroids to Create Homothetic Polygons. Harold Reiter. Department of Mathematics, University of North Carolina Charlotte,

Using Complex Weighted Centroids to Create Homothetic Polygons. Harold Reiter. Department of Mathematics, University of North Carolina Charlotte, Using Complex Weighted Centroids to Create Homothetic Polygons Harold Reiter Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA hbreiter@emailunccedu Arthur Holshouser

More information

Thebault circles of the triangle in an isotropic plane

Thebault circles of the triangle in an isotropic plane MATHEMATICAL COMMUNICATIONS 437 Math. Commun., Vol. 5, No. 2, pp. 437-442 (200) Thebault circles of the triangle in an isotropic plane Ružica Kolar Šuper, Zdenka Kolar Begović 2, and Vladimir Volenec 3

More information

The Inversion Transformation

The Inversion Transformation The Inversion Transformation A non-linear transformation The transformations of the Euclidean plane that we have studied so far have all had the property that lines have been mapped to lines. Transformations

More information

About the Japanese theorem

About the Japanese theorem 188/ ABOUT THE JAPANESE THEOREM About the Japanese theorem Nicuşor Minculete, Cătălin Barbu and Gheorghe Szöllősy Dedicated to the memory of the great professor, Laurenţiu Panaitopol Abstract The aim of

More information