Math 216 Calculus 3 Directional derivatives. Math 216 Calculus 3 Directional derivatives 1 / 6

Size: px
Start display at page:

Download "Math 216 Calculus 3 Directional derivatives. Math 216 Calculus 3 Directional derivatives 1 / 6"

Transcription

1 Math 216 Calculus 3 Directional derivatives Math 216 Calculus 3 Directional derivatives 1 / 6

2 How fast does f (x, y) change if you change (x, y) in the direction v The partial derivatives f x and f y measure how much a function f (x, y) changes if you start moving the input in the x-direction or the y-direction. What if you don t want to move in the x or y direction? What if instead you want to move in the direction of 2 v = 2, 2? 2 Math 216 Calculus 3 Directional derivatives 2 / 6

3 How fast does f (x, y) change if you change (x, y) in the direction v The partial derivatives f x and f y measure how much a function f (x, y) changes if you start moving the input in the x-direction or the y-direction. What if you don t want to move in the x or y direction? What if instead you want to move in the direction of 2 v = 2, 2? 2 Definition Let f (x, y) be a multivariable function. Let v = v 1, v 2 be a unit vector. The directional derivative of f (x, y) at (x 0, y 0 ) in the direction of v is D v (f ) ] f (x 0 + hv 1, y 0 + hv 2 ) f (x 0, y 0 ) (x 0, y 0 ) = lim h 0 h provided that the limit exists. Example: Let f (x, y, z) = x y z. Let v = Compute D v (f ) ] (x, y, z) 66, 6 3, 66. Math 216 Calculus 3 Directional derivatives 2 / 6

4 Directional derivatives via the chain rule Definition The directional derivative of f (x, y) in the direction of v is D v (f ) ] f (x 0 + hv 1, y 0 + hv 2 ) f (x 0, y 0 ) (x 0, y 0 ) = lim h 0 h provided that the limit exists. Notice that this can be re-expressed as a derivative with respect to h at 0. D v (f ) ] (x, y) = d dh f (x + hv 1, y + hv 2 )] h=0 Math 216 Calculus 3 Directional derivatives 3 / 6

5 Directional derivatives via the chain rule Definition The directional derivative of f (x, y) in the direction of v is D v (f ) ] f (x 0 + hv 1, y 0 + hv 2 ) f (x 0, y 0 ) (x 0, y 0 ) = lim h 0 h provided that the limit exists. Notice that this can be re-expressed as a derivative with respect to h at 0. D v (f ) ] (x, y) = d dh f (x + hv 1, y + hv 2 )] h=0 This is a composition! Math 216 Calculus 3 Directional derivatives 3 / 6

6 Directional derivatives via the chain rule Definition The directional derivative of f (x, y) in the direction of v is D v (f ) ] f (x 0 + hv 1, y 0 + hv 2 ) f (x 0, y 0 ) (x 0, y 0 ) = lim h 0 h provided that the limit exists. Notice that this can be re-expressed as a derivative with respect to h at 0. D v (f ) ] (x, y) = d dh f (x + hv 1, y + hv 2 )] h=0 This is a composition! f (x 0 + hv 1, y 0 + hv 2 ) = f (x(h), y(h)) where Math 216 Calculus 3 Directional derivatives 3 / 6

7 Directional derivatives via the chain rule Definition The directional derivative of f (x, y) in the direction of v is D v (f ) ] f (x 0 + hv 1, y 0 + hv 2 ) f (x 0, y 0 ) (x 0, y 0 ) = lim h 0 h provided that the limit exists. Notice that this can be re-expressed as a derivative with respect to h at 0. D v (f ) ] (x, y) = d dh f (x + hv 1, y + hv 2 )] h=0 This is a composition! f (x 0 + hv 1, y 0 + hv 2 ) = f (x(h), y(h)) where x(h) = x 0 + hv 1 and y(h) = y 0 + hv 2 Math 216 Calculus 3 Directional derivatives 3 / 6

8 Directional derivatives via the chain rule Definition The directional derivative of f (x, y) in the direction of v is D v (f ) ] f (x 0 + hv 1, y 0 + hv 2 ) f (x 0, y 0 ) (x 0, y 0 ) = lim h 0 h provided that the limit exists. Notice that this can be re-expressed as a derivative with respect to h at 0. D v (f ) ] (x, y) = d dh f (x + hv 1, y + hv 2 )] h=0 This is a composition! f (x 0 + hv 1, y 0 + hv 2 ) = f (x(h), y(h)) where x(h) = x 0 + hv 1 and y(h) = y 0 + hv 2 So df dh = f x x (h) + f y y (h) x (h) and y (h) are easy to compute! Math 216 Calculus 3 Directional derivatives 3 / 6

9 Directional derivatives via the chain rule Definition The directional derivative of f (x, y) in the direction of v is D v (f ) ] f (x 0 + hv 1, y 0 + hv 2 ) f (x 0, y 0 ) (x 0, y 0 ) = lim h 0 h provided that the limit exists. Notice that this can be re-expressed as a derivative with respect to h at 0. D v (f ) ] (x, y) = d dh f (x + hv 1, y + hv 2 )] h=0 This is a composition! f (x 0 + hv 1, y 0 + hv 2 ) = f (x(h), y(h)) where x(h) = x 0 + hv 1 and y(h) = y 0 + hv 2 So df dh = f x x (h) + f y y (h) x (h) and y (h) are easy to compute! df dh = f x v 1 + f y v 2. We ve proven a more user friendly formula for the directional derivative! Math 216 Calculus 3 Directional derivatives 3 / 6

10 Directional derivatives via the chain rule. Theorem Let f be a differentiable function (so that the chain rule holds). Let v be a unit vector, then D v (f ) ] (x, y) = f x (x 0, y 0 ) v 1 + f y (x 0, y 0 ) v 2 Example: Let f (x, y, z) = x y. Let 2 v = 2, 2. 2 Compute D v (f ) ] (x, y) Math 216 Calculus 3 Directional derivatives 4 / 6

11 Translating directional derivatives using the dot product: The Gradient D v (f ) ] (x, y) = f x (x 0, y 0 ) v 1 + f y (x 0, y 0 ) v 2 Notice that we can realize this as a dot product. D v (f ) ] (x, y) = Math 216 Calculus 3 Directional derivatives 5 / 6

12 Translating directional derivatives using the dot product: The Gradient D v (f ) ] (x, y) = f x (x 0, y 0 ) v 1 + f y (x 0, y 0 ) v 2 Notice that we can realize this as a dot product. D v (f ) ] (x, y) = f x (x 0, y 0 ), f y (x 0, y 0 ) v 1, v 2. Math 216 Calculus 3 Directional derivatives 5 / 6

13 Translating directional derivatives using the dot product: The Gradient D v (f ) ] (x, y) = f x (x 0, y 0 ) v 1 + f y (x 0, y 0 ) v 2 Notice that we can realize this as a dot product. D v (f ) ] (x, y) = f x (x 0, y 0 ), f y (x 0, y 0 ) v 1, v 2. In order to condense our notation, will use say gradf ] or f for the blue term in the above expression. f = gradf ] = Math 216 Calculus 3 Directional derivatives 5 / 6

14 Translating directional derivatives using the dot product: The Gradient D v (f ) ] (x, y) = f x (x 0, y 0 ) v 1 + f y (x 0, y 0 ) v 2 Notice that we can realize this as a dot product. D v (f ) ] (x, y) = f x (x 0, y 0 ), f y (x 0, y 0 ) v 1, v 2. In order to condense our notation, will use say gradf ] or f for the blue term in the above expression. f = gradf ] = f x, f y Math 216 Calculus 3 Directional derivatives 5 / 6

15 Translating directional derivatives using the dot product: The Gradient D v (f ) ] (x, y) = f x (x 0, y 0 ) v 1 + f y (x 0, y 0 ) v 2 Notice that we can realize this as a dot product. D v (f ) ] (x, y) = f x (x 0, y 0 ), f y (x 0, y 0 ) v 1, v 2. In order to condense our notation, will use say gradf ] or f for the blue term in the above expression. f = gradf ] = f x, f y We now have a prettier formula for the directional derivative. Theorem Let f be a differentiable function (so that the chain rule holds). Let v be a unit vector, then D v (f ) ] (x, y) = f v Math 216 Calculus 3 Directional derivatives 5 / 6

16 In higher dimensions Theorem Let f be a differentiable function (so that the chain rule holds). Let v be a unit vector, then D v (f ) ] (x, y) = f v Let f (x, y, z, w) = 2xyz + 2wyx + 2wxz + 2wyz. be the surface area (boundary volume?) of a 4-dimensional box. Compute f. Compute the directional derivative of f at the point (1, 1, 1, 1) in the direction v = 1/2, 1/2, 1/2, 1/2. Is f increasing or decreasing as (x, y, z, w) changes in the direction of v? Math 216 Calculus 3 Directional derivatives 6 / 6

Leaving Cert Differentiation

Leaving Cert Differentiation Leaving Cert Differentiation Types of Differentiation 1. From First Principles 2. Using the Rules From First Principles You will be told when to use this, the question will say differentiate with respect

More information

Differential calculus. Background mathematics review

Differential calculus. Background mathematics review Differential calculus Background mathematics review David Miller Differential calculus First derivative Background mathematics review David Miller First derivative For some function y The (first) derivative

More information

25. Chain Rule. Now, f is a function of t only. Expand by multiplication:

25. Chain Rule. Now, f is a function of t only. Expand by multiplication: 25. Chain Rule The Chain Rule is present in all differentiation. If z = f(x, y) represents a two-variable function, then it is plausible to consider the cases when x and y may be functions of other variable(s).

More information

Vector Multiplication. Directional Derivatives and the Gradient

Vector Multiplication. Directional Derivatives and the Gradient Vector Multiplication - 1 Unit # : Goals: Directional Derivatives and the Gradient To learn about dot and scalar products of vectors. To introduce the directional derivative and the gradient vector. To

More information

Directional Derivatives in the Plane

Directional Derivatives in the Plane Directional Derivatives in the Plane P. Sam Johnson April 10, 2017 P. Sam Johnson (NIT Karnataka) Directional Derivatives in the Plane April 10, 2017 1 / 30 Directional Derivatives in the Plane Let z =

More information

Directional Derivatives and the Gradient

Directional Derivatives and the Gradient Unit #20 : Directional Derivatives and the Gradient Goals: To learn about dot and scalar products of vectors. To introduce the directional derivative and the gradient vector. To learn how to compute the

More information

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 Math 127 Introduction and Review (1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 MATH 127 Introduction to Calculus III

More information

Differentiable Functions

Differentiable Functions Differentiable Functions Let S R n be open and let f : R n R. We recall that, for x o = (x o 1, x o,, x o n S the partial derivative of f at the point x o with respect to the component x j is defined as

More information

Partial Derivatives for Math 229. Our puropose here is to explain how one computes partial derivatives. We will not attempt

Partial Derivatives for Math 229. Our puropose here is to explain how one computes partial derivatives. We will not attempt Partial Derivatives for Math 229 Our puropose here is to explain how one computes partial derivatives. We will not attempt to explain how they arise or why one would use them; that is left to other courses

More information

PARTIAL DIFFERENTIATION

PARTIAL DIFFERENTIATION PARTIAL DIFFERENTIATION CALCULUS 13 INU0115/515 (MATHS 2) Dr Adrian Jannetta MIMA CMath FRAS Partial Differentiation 1/ 15 Adrian Jannetta Functions of many variables The functions and derivatives which

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

Mathematical Economics: Lecture 9

Mathematical Economics: Lecture 9 Mathematical Economics: Lecture 9 Yu Ren WISE, Xiamen University October 17, 2011 Outline 1 Chapter 14: Calculus of Several Variables New Section Chapter 14: Calculus of Several Variables Partial Derivatives

More information

MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005

MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005 MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005 1. True or False (22 points, 2 each) T or F Every set in R n is either open or closed

More information

Sec. 14.3: Partial Derivatives. All of the following are ways of representing the derivative. y dx

Sec. 14.3: Partial Derivatives. All of the following are ways of representing the derivative. y dx Math 2204 Multivariable Calc Chapter 14: Partial Derivatives I. Review from math 1225 A. First Derivative Sec. 14.3: Partial Derivatives 1. Def n : The derivative of the function f with respect to the

More information

Chapter -1: Di erential Calculus and Regular Surfaces

Chapter -1: Di erential Calculus and Regular Surfaces Chapter -1: Di erential Calculus and Regular Surfaces Peter Perry August 2008 Contents 1 Introduction 1 2 The Derivative as a Linear Map 2 3 The Big Theorems of Di erential Calculus 4 3.1 The Chain Rule............................

More information

MATH 19520/51 Class 5

MATH 19520/51 Class 5 MATH 19520/51 Class 5 Minh-Tam Trinh University of Chicago 2017-10-04 1 Definition of partial derivatives. 2 Geometry of partial derivatives. 3 Higher derivatives. 4 Definition of a partial differential

More information

AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES

AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES Overview Throughout the first few weeks of the semester, we have studied vector calculus using almost exclusively the familiar Cartesian x,y,z coordinate

More information

4 Partial Differentiation

4 Partial Differentiation 4 Partial Differentiation Many equations in engineering, physics and mathematics tie together more than two variables. For example Ohm s Law (V = IR) and the equation for an ideal gas, PV = nrt, which

More information

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x . Define f n, g n : [, ] R by f n (x) = Advanced Calculus Math 27B, Winter 25 Solutions: Final nx2 + n 2 x, g n(x) = n2 x 2 + n 2 x. 2 Show that the sequences (f n ), (g n ) converge pointwise on [, ],

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Unit 2: Multivariable optimization problems Che-Rung Lee Scribe: February 28, 2011 (UNIT 2) Numerical Optimization February 28, 2011 1 / 17 Partial derivative of a two variable function

More information

MATH The Derivative as a Function - Section 3.2. The derivative of f is the function. f x h f x. f x lim

MATH The Derivative as a Function - Section 3.2. The derivative of f is the function. f x h f x. f x lim MATH 90 - The Derivative as a Function - Section 3.2 The derivative of f is the function f x lim h 0 f x h f x h for all x for which the limit exists. The notation f x is read "f prime of x". Note that

More information

User Equilibrium CE 392C. September 1, User Equilibrium

User Equilibrium CE 392C. September 1, User Equilibrium CE 392C September 1, 2016 REVIEW 1 Network definitions 2 How to calculate path travel times from path flows? 3 Principle of user equilibrium 4 Pigou-Knight Downs paradox 5 Smith paradox Review OUTLINE

More information

Math 207 Honors Calculus III Final Exam Solutions

Math 207 Honors Calculus III Final Exam Solutions Math 207 Honors Calculus III Final Exam Solutions PART I. Problem 1. A particle moves in the 3-dimensional space so that its velocity v(t) and acceleration a(t) satisfy v(0) = 3j and v(t) a(t) = t 3 for

More information

Caculus 221. Possible questions for Exam II. March 19, 2002

Caculus 221. Possible questions for Exam II. March 19, 2002 Caculus 221 Possible questions for Exam II March 19, 2002 These notes cover the recent material in a style more like the lecture than the book. The proofs in the book are in section 1-11. At the end there

More information

CHAPTER 4 DIFFERENTIAL VECTOR CALCULUS

CHAPTER 4 DIFFERENTIAL VECTOR CALCULUS CHAPTER 4 DIFFERENTIAL VECTOR CALCULUS 4.1 Vector Functions 4.2 Calculus of Vector Functions 4.3 Tangents REVIEW: Vectors Scalar a quantity only with its magnitude Example: temperature, speed, mass, volume

More information

E 600 Chapter 3: Multivariate Calculus

E 600 Chapter 3: Multivariate Calculus E 600 Chapter 3: Multivariate Calculus Simona Helmsmueller August 21, 2017 Goals of this lecture: Know when an inverse to a function exists, be able to graphically and analytically determine whether a

More information

Chapter 3 Differentiation Rules

Chapter 3 Differentiation Rules Chapter 3 Differentiation Rules Derivative constant function if c is any real number, then Example: The Power Rule: If n is a positive integer, then Example: Extended Power Rule: If r is any real number,

More information

Second Order ODEs. Second Order ODEs. In general second order ODEs contain terms involving y, dy But here only consider equations of the form

Second Order ODEs. Second Order ODEs. In general second order ODEs contain terms involving y, dy But here only consider equations of the form Second Order ODEs Second Order ODEs In general second order ODEs contain terms involving y, dy But here only consider equations of the form A d2 y dx 2 + B dy dx + Cy = 0 dx, d2 y dx 2 and F(x). where

More information

Physics 217, Fall September 2002

Physics 217, Fall September 2002 Toda in Phsics 217: vector derivatives First derivatives: Gradient ( ) Divergence ( ) Curl ( ) Second derivatives: the Laplacian ( 2 ) and its relatives Vector-derivative identities: relatives of the chain

More information

B553 Lecture 1: Calculus Review

B553 Lecture 1: Calculus Review B553 Lecture 1: Calculus Review Kris Hauser January 10, 2012 This course requires a familiarity with basic calculus, some multivariate calculus, linear algebra, and some basic notions of metric topology.

More information

Successful completion of the core function transformations unit. Algebra manipulation skills with squares and square roots.

Successful completion of the core function transformations unit. Algebra manipulation skills with squares and square roots. Extension A: Circles and Ellipses Algebra ; Pre-Calculus Time required: 35 50 min. Learning Objectives Math Objectives Students will write the general forms of Cartesian equations for circles and ellipses,

More information

Math 3c Solutions: Exam 2 Fall 2017

Math 3c Solutions: Exam 2 Fall 2017 Math 3c Solutions: Exam Fall 07. 0 points) The graph of a smooth vector-valued function is shown below except that your irresponsible teacher forgot to include the orientation!) Several points are indicated

More information

STOKES THEOREM ON MANIFOLDS

STOKES THEOREM ON MANIFOLDS STOKES THEOREM ON MANIFOLDS GIDEON DRESDNER Abstract. The generalization of the Fundamental Theorem of Calculus to higher dimensions requires fairly sophisticated geometric and algebraic machinery. In

More information

We are already familiar with the concept of a scalar and vector. are unit vectors in the x and y directions respectively with

We are already familiar with the concept of a scalar and vector. are unit vectors in the x and y directions respectively with Math Review We are already familiar with the concept of a scalar and vector. Example: Position (x, y) in two dimensions 1 2 2 2 s ( x y ) where s is the length of x ( xy, ) xi yj And i, j ii 1 j j 1 i

More information

Overview of vector calculus. Coordinate systems in space. Distance formula. (Sec. 12.1)

Overview of vector calculus. Coordinate systems in space. Distance formula. (Sec. 12.1) Math 20C Multivariable Calculus Lecture 1 1 Coordinates in space Slide 1 Overview of vector calculus. Coordinate systems in space. Distance formula. (Sec. 12.1) Vector calculus studies derivatives and

More information

Chapter 5 Integrals. 5.1 Areas and Distances

Chapter 5 Integrals. 5.1 Areas and Distances Chapter 5 Integrals 5.1 Areas and Distances We start with a problem how can we calculate the area under a given function ie, the area between the function and the x-axis? If the curve happens to be something

More information

ENERGY IN ELECTROSTATICS

ENERGY IN ELECTROSTATICS ENERGY IN ELECTROSTATICS We now turn to the question of energy in electrostatics. The first question to consider is whether or not the force is conservative. You will recall from last semester that a conservative

More information

MATH 31BH Homework 5 Solutions

MATH 31BH Homework 5 Solutions MATH 3BH Homework 5 Solutions February 4, 204 Problem.8.2 (a) Let x t f y = x 2 + y 2 + 2z 2 and g(t) = t 2. z t 3 Then by the chain rule a a a D(g f) b = Dg f b Df b c c c = [Dg(a 2 + b 2 + 2c 2 )] [

More information

Worksheet 4.2: Introduction to Vector Fields and Line Integrals

Worksheet 4.2: Introduction to Vector Fields and Line Integrals Boise State Math 275 (Ultman) Worksheet 4.2: Introduction to Vector Fields and Line Integrals From the Toolbox (what you need from previous classes) Know what a vector is. Be able to sketch vectors. Be

More information

Week 4: Differentiation for Functions of Several Variables

Week 4: Differentiation for Functions of Several Variables Week 4: Differentiation for Functions of Several Variables Introduction A functions of several variables f : U R n R is a rule that assigns a real number to each point in U, a subset of R n, For the next

More information

(Make-Up) Test 1: Multivariable Calculus

(Make-Up) Test 1: Multivariable Calculus (Make-Up) Test 1: Multivariable Calculus Assigned: Fri Mar 6 Due: Wed Mar 22 Ron Buckmire Math 212 Spring 2006 Name: Directions: Read all problems first before answering any of them. There are 6 pages

More information

Mathematical modelling Chapter 2 Nonlinear models and geometric models

Mathematical modelling Chapter 2 Nonlinear models and geometric models Mathematical modelling Chapter 2 Nonlinear models and geometric models Faculty of Computer and Information Science University of Ljubljana 2018/2019 3. Nonlinear models Given is a sample of points {(x

More information

Vector calculus. Appendix A. A.1 Definitions. We shall only consider the case of three-dimensional spaces.

Vector calculus. Appendix A. A.1 Definitions. We shall only consider the case of three-dimensional spaces. Appendix A Vector calculus We shall only consider the case of three-dimensional spaces A Definitions A physical quantity is a scalar when it is only determined by its magnitude and a vector when it is

More information

There are additional problems on WeBWorK, under the name Study Guide Still need to know from before last exam: many things.

There are additional problems on WeBWorK, under the name Study Guide Still need to know from before last exam: many things. Math 236 Suggestions for Studying for Midterm 2 1 Time: 5:30-8:30, Thursday 4/10 Location: SC 1313, SC 1314 What It Covers: Mainly Sections 11.2, 11.3, 10.6, 12.1-12.6, and the beginning of 12.7. (Through

More information

0, such that. all. for all. 0, there exists. Name: Continuity. Limits and. calculus. the definitionn. satisfying. limit. However, is the limit of its

0, such that. all. for all. 0, there exists. Name: Continuity. Limits and. calculus. the definitionn. satisfying. limit. However, is the limit of its L Marizzaa A Bailey Multivariable andd Vector Calculus Name: Limits and Continuity Limits and Continuity We have previously defined limit in for single variable functions, but how do we generalize this

More information

Answer Key. Calculus I Math 141 Fall 2003 Professor Ben Richert. Exam 2

Answer Key. Calculus I Math 141 Fall 2003 Professor Ben Richert. Exam 2 Answer Key Calculus I Math 141 Fall 2003 Professor Ben Richert Exam 2 November 18, 2003 Please do all your work in this booklet and show all the steps. Calculators and note-cards are not allowed. Problem

More information

Math 128: Lecture 4. March 31, 2014

Math 128: Lecture 4. March 31, 2014 Math 128: Lecture 4 March 31, 2014 Recall if g is a Lie algebra with modules M and N, then x g acts on m n M N by x(m n) = xm n + m xn. So (x) = x 1 + 1 x Ug Ug. Recall if g is a Lie algebra with modules

More information

Math 114: Course Summary

Math 114: Course Summary Math 114: Course Summary Rich Schwartz September 25, 2009 General Information: Math 114 is a course in real analysis. It is the second half of the undergraduate series in real analysis, M113-4. In M113,

More information

MA261-A Calculus III 2006 Fall Midterm 2 Solutions 11/8/2006 8:00AM ~9:15AM

MA261-A Calculus III 2006 Fall Midterm 2 Solutions 11/8/2006 8:00AM ~9:15AM MA6-A Calculus III 6 Fall Midterm Solutions /8/6 8:AM ~9:5AM. Find the it xy cos y (x;y)(;) 3x + y, if it exists, or show that the it does not exist. Assume that x. The it becomes (;y)(;) y cos y 3 + y

More information

MA2AA1 (ODE s): The inverse and implicit function theorem

MA2AA1 (ODE s): The inverse and implicit function theorem MA2AA1 (ODE s): The inverse and implicit function theorem Sebastian van Strien (Imperial College) February 3, 2013 Differential Equations MA2AA1 Sebastian van Strien (Imperial College) 0 Some of you did

More information

How to Use Calculus Like a Physicist

How to Use Calculus Like a Physicist How to Use Calculus Like a Physicist Physics A300 Fall 2004 The purpose of these notes is to make contact between the abstract descriptions you may have seen in your calculus classes and the applications

More information

Directional Derivatives and Gradient Vectors. Suppose we want to find the rate of change of a function z = f x, y at the point in the

Directional Derivatives and Gradient Vectors. Suppose we want to find the rate of change of a function z = f x, y at the point in the 14.6 Directional Derivatives and Gradient Vectors 1. Partial Derivates are nice, but they only tell us the rate of change of a function z = f x, y in the i and j direction. What if we are interested in

More information

This format is the result of tinkering with a mixed lecture format for 3 terms. As such, it is still a work in progress and we will discuss

This format is the result of tinkering with a mixed lecture format for 3 terms. As such, it is still a work in progress and we will discuss Version 1, August 2016 1 This format is the result of tinkering with a mixed lecture format for 3 terms. As such, it is still a work in progress and we will discuss adaptations both to the general format

More information

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions For each question, there is a model solution (showing you the level of detail I expect on the exam) and then below

More information

Student name: MATH 350: Multivariate Calculus March 30, 2018 Test 2 - In class part

Student name: MATH 350: Multivariate Calculus March 30, 2018 Test 2 - In class part Student name: MATH 350: Multivariate Calculus March 30, 2018 Test 2 - In class part Instructions: Answer all questions on separate paper (not on this sheet!). The only reference materials allowed on this

More information

Partial Derivatives Formulas. KristaKingMath.com

Partial Derivatives Formulas. KristaKingMath.com Partial Derivatives Formulas KristaKingMath.com Domain and range of a multivariable function A function f of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D

More information

Comparative Statics. Autumn 2018

Comparative Statics. Autumn 2018 Comparative Statics Autumn 2018 What is comparative statics? Contents 1 What is comparative statics? 2 One variable functions Multiple variable functions Vector valued functions Differential and total

More information

Neural Networks (and Gradient Ascent Again)

Neural Networks (and Gradient Ascent Again) Neural Networks (and Gradient Ascent Again) Frank Wood April 27, 2010 Generalized Regression Until now we have focused on linear regression techniques. We generalized linear regression to include nonlinear

More information

Lecture Notes on Metric Spaces

Lecture Notes on Metric Spaces Lecture Notes on Metric Spaces Math 117: Summer 2007 John Douglas Moore Our goal of these notes is to explain a few facts regarding metric spaces not included in the first few chapters of the text [1],

More information

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know. Disclaimer: This is meant to help you start studying. It is not necessarily a complete list of everything you need to know. The MTH 132 final exam mainly consists of standard response questions where students

More information

MATH Calculus IV Spring 2014 Three Versions of the Divergence Theorem

MATH Calculus IV Spring 2014 Three Versions of the Divergence Theorem MATH 2443 008 Calculus IV pring 2014 Three Versions of the Divergence Theorem In this note we will establish versions of the Divergence Theorem which enable us to give it formulations of div, grad, and

More information

Math 480 The Vector Space of Differentiable Functions

Math 480 The Vector Space of Differentiable Functions Math 480 The Vector Space of Differentiable Functions The vector space of differentiable functions. Let C (R) denote the set of all infinitely differentiable functions f : R R. Then C (R) is a vector space,

More information

MATH 105: PRACTICE PROBLEMS FOR CHAPTER 3: SPRING 2010

MATH 105: PRACTICE PROBLEMS FOR CHAPTER 3: SPRING 2010 MATH 105: PRACTICE PROBLEMS FOR CHAPTER 3: SPRING 010 INSTRUCTOR: STEVEN MILLER (SJM1@WILLIAMS.EDU Question 1 : Compute the partial derivatives of order 1 order for: (1 f(x, y, z = e x+y cos(x sin(y. Solution:

More information

MATH 255 Applied Honors Calculus III Winter Homework 5 Solutions

MATH 255 Applied Honors Calculus III Winter Homework 5 Solutions MATH 255 Applied Honors Calculus III Winter 2011 Homework 5 Solutions Note: In what follows, numbers in parentheses indicate the problem numbers for users of the sixth edition. A * indicates that this

More information

PRE-CALCULUS FORM IV. Textbook: Precalculus with Limits, A Graphing Approach. 4 th Edition, 2005, Larson, Hostetler & Edwards, Cengage Learning.

PRE-CALCULUS FORM IV. Textbook: Precalculus with Limits, A Graphing Approach. 4 th Edition, 2005, Larson, Hostetler & Edwards, Cengage Learning. PRE-CALCULUS FORM IV Tetbook: Precalculus with Limits, A Graphing Approach. 4 th Edition, 2005, Larson, Hostetler & Edwards, Cengage Learning. Course Description: This course is designed to prepare students

More information

5.9 Representations of Functions as a Power Series

5.9 Representations of Functions as a Power Series 5.9 Representations of Functions as a Power Series Example 5.58. The following geometric series x n + x + x 2 + x 3 + x 4 +... will converge when < x

More information

CALCULUS: Math 21C, Fall 2010 Final Exam: Solutions. 1. [25 pts] Do the following series converge or diverge? State clearly which test you use.

CALCULUS: Math 21C, Fall 2010 Final Exam: Solutions. 1. [25 pts] Do the following series converge or diverge? State clearly which test you use. CALCULUS: Math 2C, Fall 200 Final Exam: Solutions. [25 pts] Do the following series converge or diverge? State clearly which test you use. (a) (d) n(n + ) ( ) cos n n= n= (e) (b) n= n= [ cos ( ) n n (c)

More information

CALCULUS REVIS ITED PART 2 A Self-study Course

CALCULUS REVIS ITED PART 2 A Self-study Course CALCULUS REVIS ITED PART 2 A Self-study Course STUDY GUIDE Block 3 Partial Derivatives Herbert I. Gross Senior Lecturer Center for Advanced Engineering Study Massachusetts Institute of Technology Copyright

More information

Dr. Allen Back. Sep. 8, 2014

Dr. Allen Back. Sep. 8, 2014 in R 3 Dr. Allen Back Sep. 8, 2014 in R 3 in R 3 Def: For f (x, y), the partial derivative with respect to x at p 0 = (x 0, y 0 ) is f x = lim f (x 0 + h, y 0 ) f (x 0, y 0 ) h 0 h or f x = lim f (p 0

More information

Math Advanced Calculus II

Math Advanced Calculus II Math 452 - Advanced Calculus II Manifolds and Lagrange Multipliers In this section, we will investigate the structure of critical points of differentiable functions. In practice, one often is trying to

More information

Introduction and Vectors Lecture 1

Introduction and Vectors Lecture 1 1 Introduction Introduction and Vectors Lecture 1 This is a course on classical Electromagnetism. It is the foundation for more advanced courses in modern physics. All physics of the modern era, from quantum

More information

Synthesis of 2-level Logic Exact and Heuristic Methods. Two Approaches

Synthesis of 2-level Logic Exact and Heuristic Methods. Two Approaches Synthesis of 2-level Logic Exact and Heuristic Methods Lecture 7: Branch & Bound Exact Two Approaches Find all primes Find a complete sum Find a minimum cover (covering problem) Heuristic Take an initial

More information

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION MATH 7 R MIDTERM EXAM SOLUTION FALL 6 - MOON Name: Write your answer neatly and show steps. Except calculators, any electronic devices including laptops and cell phones are not allowed. () (5 pts) Find

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

Solutions to Test #1 MATH 2421

Solutions to Test #1 MATH 2421 Solutions to Test # MATH Pulhalskii/Kawai (#) Decide whether the following properties are TRUE or FALSE for arbitrary vectors a; b; and c: Circle your answer. [Remember, TRUE means that the statement is

More information

2.8 Linear Approximations and Differentials

2.8 Linear Approximations and Differentials Arkansas Tech University MATH 294: Calculus I Dr. Marcel B. Finan 2.8 Linear Approximations and Differentials In this section we approximate graphs by tangent lines which we refer to as tangent line approximations.

More information

V11. Line Integrals in Space

V11. Line Integrals in Space V11. Line Integrals in Space 1. urves in space. In order to generalize to three-space our earlier work with line integrals in the plane, we begin by recalling the relevant facts about parametrized space

More information

MA102: Multivariable Calculus

MA102: Multivariable Calculus MA102: Multivariable Calculus Rupam Barman and Shreemayee Bora Department of Mathematics IIT Guwahati Differentiability of f : U R n R m Definition: Let U R n be open. Then f : U R n R m is differentiable

More information

MATH The Chain Rule Fall 2016 A vector function of a vector variable is a function F: R n R m. In practice, if x 1, x n is the input,

MATH The Chain Rule Fall 2016 A vector function of a vector variable is a function F: R n R m. In practice, if x 1, x n is the input, MATH 20550 The Chain Rule Fall 2016 A vector function of a vector variable is a function F: R n R m. In practice, if x 1, x n is the input, F(x 1,, x n ) F 1 (x 1,, x n ),, F m (x 1,, x n ) where each

More information

Lecture 2: Change of Basis

Lecture 2: Change of Basis Math 108 Lecture 2: Change of asis Professor: Padraic artlett Week 2 UCS 2014 On Friday of last week, we asked the following question: given the matrix A, 1 0 is there a quick way to calculate large powers

More information

3.3.1 Linear functions yet again and dot product In 2D, a homogenous linear scalar function takes the general form:

3.3.1 Linear functions yet again and dot product In 2D, a homogenous linear scalar function takes the general form: 3.3 Gradient Vector and Jacobian Matri 3 3.3 Gradient Vector and Jacobian Matri Overview: Differentiable functions have a local linear approimation. Near a given point, local changes are determined by

More information

g(2, 1) = cos(2π) + 1 = = 9

g(2, 1) = cos(2π) + 1 = = 9 1. Let gx, y 2x 2 cos2πy 2 + y 2. You can use the fact that Dg2, 1 [8 2]. a Find an equation for the tangent plane to the graph z gx, y at the point 2, 1. There are two key parts to this problem. The first,

More information

Math 361: Homework 1 Solutions

Math 361: Homework 1 Solutions January 3, 4 Math 36: Homework Solutions. We say that two norms and on a vector space V are equivalent or comparable if the topology they define on V are the same, i.e., for any sequence of vectors {x

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. V11. Line Integrals in Space

More information

Math 2260 Exam #2 Solutions. Answer: The plan is to use integration by parts with u = 2x and dv = cos(3x) dx: dv = cos(3x) dx

Math 2260 Exam #2 Solutions. Answer: The plan is to use integration by parts with u = 2x and dv = cos(3x) dx: dv = cos(3x) dx Math 6 Eam # Solutions. Evaluate the indefinite integral cos( d. Answer: The plan is to use integration by parts with u = and dv = cos( d: u = du = d dv = cos( d v = sin(. Then the above integral is equal

More information

McGill University December Intermediate Calculus. Tuesday December 17, 2014 Time: 14:00-17:00

McGill University December Intermediate Calculus. Tuesday December 17, 2014 Time: 14:00-17:00 McGill University December 214 Faculty of Science Final Examination Intermediate Calculus Math 262 Tuesday December 17, 214 Time: 14: - 17: Examiner: Dmitry Jakobson Associate Examiner: Neville Sancho

More information

Section 8.7. Taylor and MacLaurin Series. (1) Definitions, (2) Common Maclaurin Series, (3) Taylor Polynomials, (4) Applications.

Section 8.7. Taylor and MacLaurin Series. (1) Definitions, (2) Common Maclaurin Series, (3) Taylor Polynomials, (4) Applications. Section 8.7 Taylor and MacLaurin Series (1) Definitions, (2) Common Maclaurin Series, (3) Taylor Polynomials, (4) Applications. MATH 126 (Section 8.7) Taylor and MacLaurin Series The University of Kansas

More information

Differentiation - Quick Review From Calculus

Differentiation - Quick Review From Calculus Differentiation - Quick Review From Calculus Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Differentiation - Quick Review From Calculus Current Semester 1 / 13 Introduction In this section,

More information

1. FUNDAMENTAL CONCEPTS AND MATH REVIEW

1. FUNDAMENTAL CONCEPTS AND MATH REVIEW 1. FUNDAMENTAL CONCEPTS AND MATH REVIEW 1.1. Introduction Here we provide for your reading pleasure a review of some of the math concepts used in part of this course. Most of this falls under the heading

More information

Chain Rule. MATH 311, Calculus III. J. Robert Buchanan. Spring Department of Mathematics

Chain Rule. MATH 311, Calculus III. J. Robert Buchanan. Spring Department of Mathematics 3.33pt Chain Rule MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Spring 2019 Single Variable Chain Rule Suppose y = g(x) and z = f (y) then dz dx = d (f (g(x))) dx = f (g(x))g (x)

More information

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018 Lecture 10 Partial derivatives Dan Nichols nichols@math.umass.edu MATH 233, Spring 2018 University of Massachusetts February 27, 2018 Last time: functions of two variables f(x, y) x and y are the independent

More information

Exercise 2. Prove that [ 1, 1] is the set of all the limit points of ( 1, 1] = {x R : 1 <

Exercise 2. Prove that [ 1, 1] is the set of all the limit points of ( 1, 1] = {x R : 1 < Math 316, Intro to Analysis Limits of functions We are experts at taking limits of sequences as the indexing parameter gets close to infinity. What about limits of functions as the independent variable

More information

Math 240: Syllabus and Vector Functions

Math 240: Syllabus and Vector Functions Math 240: Syllabus and Vector Functions Ryan Blair University of Pennsylvania Wednesday January 11, 2012 Ryan Blair (U Penn) Math 240: Syllabus and Vector Functions Wednesday January 11, 2012 1 / 19 Outline

More information

CSC321 Lecture 4: Learning a Classifier

CSC321 Lecture 4: Learning a Classifier CSC321 Lecture 4: Learning a Classifier Roger Grosse Roger Grosse CSC321 Lecture 4: Learning a Classifier 1 / 28 Overview Last time: binary classification, perceptron algorithm Limitations of the perceptron

More information

Math 1241, Spring 2014 Section 3.3. Rates of Change Average vs. Instantaneous Rates

Math 1241, Spring 2014 Section 3.3. Rates of Change Average vs. Instantaneous Rates Math 1241, Spring 2014 Section 3.3 Rates of Change Average vs. Instantaneous Rates Average Speed The concept of speed (distance traveled divided by time traveled) is a familiar instance of a rate of change.

More information

Let s Do This Once. Folding Vector Calculus into Multivariable Calculus Using Geometry and Language. Aaron Wangberg

Let s Do This Once. Folding Vector Calculus into Multivariable Calculus Using Geometry and Language. Aaron Wangberg Folding Vector Calculus into Multivariable Calculus Using Geometry and Language Department of Mathematics Winona State University Annual Summer Meeting of the Mathematical Association of America, 2008

More information

26. Directional Derivatives & The Gradient

26. Directional Derivatives & The Gradient 26. Directional Derivatives & The Gradient Given a multivariable function z = f(x, y) and a point on the xy-plane P 0 = (x 0, y 0 ) at which f is differentiable (i.e. it is smooth with no discontinuities,

More information

CSC321 Lecture 6: Backpropagation

CSC321 Lecture 6: Backpropagation CSC321 Lecture 6: Backpropagation Roger Grosse Roger Grosse CSC321 Lecture 6: Backpropagation 1 / 21 Overview We ve seen that multilayer neural networks are powerful. But how can we actually learn them?

More information

Leplace s Equations. Analyzing the Analyticity of Analytic Analysis DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Engineering Math 16.

Leplace s Equations. Analyzing the Analyticity of Analytic Analysis DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Engineering Math 16. Leplace s Analyzing the Analyticity of Analytic Analysis Engineering Math 16.364 1 The Laplace equations are built on the Cauchy- Riemann equations. They are used in many branches of physics such as heat

More information

Math Refresher - Calculus

Math Refresher - Calculus Math Refresher - Calculus David Sovich Washington University in St. Louis TODAY S AGENDA Today we will refresh Calculus for FIN 451 I will focus less on rigor and more on application We will cover both

More information