Course 2BA1, Section 11: Periodic Functions and Fourier Series

Size: px
Start display at page:

Download "Course 2BA1, Section 11: Periodic Functions and Fourier Series"

Transcription

1 Course BA, 8 9 Section : Periodic Functions and Fourier Series David R. Wikins Copyright c David R. Wikins 9 Contents Periodic Functions and Fourier Series 74. Fourier Series of Even and Odd Functions Fourier Series for Genera Periodic Functions Sine Series Cosine Series i

2 Periodic Functions and Fourier Series Definition A function f: R R is said to be periodic if there exists some positive rea number such that f(x + = f(x for a rea numbers x. The smaest rea number with this property is the period of the periodic function f. A periodic function f with period satisfies f(x + m = f(x for a rea numbers x and integers m. The period of a periodic function f is said to divide some positive rea number K if K/ is an integer. If the period of the function f divides a positive rea number K then f(x + mk = f(x for a rea numbers x and integers m. Mathematicians have proved that if f: R R is any sufficienty webehaved function from R to R with the property that f(x + π = f(x for a rea numbers x then f may be represented as an infinite series of the form f(x = a + a n cos nx + b n sin nx. (33 In particuar it foows from theorems proved by Dirichet in 89 that a function f: R R which satisfies f(x + π = f(x for a rea numbers x can be represented as a trigonometrica series of this form if the function is bounded, with at most finitey many points of discontinuity, oca maxima and oca minima in the interva [, π], and if ( f(x = im f(x + h + im f(x h h + h + at each vaue x at which the function is discontinuous ( im f(x + h h + f(x h denote the imits of f(x + h and f(x h respectivey as and im h + h tends to from above. Fourier in 87 had observed that if a sufficienty we-behaved function coud be expressed as the sum of a trigonometrica series of the above form, then a = π a n = π b n = π f(x dx, (34 f(x cos nx dx, (35 f(x sin nx dx (36 74

3 for each positive integer n. These expressions for the coefficients a n and b n may readiy be verified on substituting the trigonometic series for the function f (equation (33 into the integras on the right hand side of the equation, provided that one is permitted to interchange the operations of integration and summation in the resuting expressions. Now it is not generay true that the integra of an infinite sum of functions is necessariy equa to the sum of the integras of those functions. However if the function f is sufficienty we-behaved then the trigonometric series for the function f wi converge sufficienty rapidy for this interchange of integration and summation to be vaid, so that ( π a m cos mx dx = a m cos mx dx etc. If we interchange summations and integrations in this fashion and make use of the trigonometric integras provided by Theorem., we find that ( π ( π f(x dx = a π + a m cos mx dx + b m sin mx dx = a π + = a π, a m cos mx dx + b m sin mx dx Aso f(x cos nx dx = a = cos nx dx + ( a m cos mx cos nx dx ( π + b m sin mx cos nx dx a m cos mx cos nx dx + b m = a n π, f(x sin nx dx = a sin nx dx + sin mx cos nx dx ( a m cos mx sin nx dx 75

4 = ( π + b m sin mx sin nx dx a m cos mx sin nx dx + b m = b n π. sin mx sin nx dx A trigonometric series of the form (33 with coefficients a n and b n given by the integras (34, (35 and (36 is referred to the Fourier series for the function f. The coefficients defined by the integras (34, (35 and (36 are referred to as the Fourier coefficients of the function f. Exampe Consider the function f: R R defined by if x = mπ for some integer m; f(x = if mπ < x < (m + π for some integer m; if (m π < x < mπ for some integer m. This function f has the property that f(x = f(x + mπ for a rea numbers x and integers m, and can be represented by a Fourier series. The coefficients a n and b n of the Fourier series are given by the formuae a = π a n = π b n = π f(x dx, f(x cos nx dx (n >, f(x sin nx dx (n >, Now f(x = if < x <, and f(x = if < x < π. Therefore a =, and a n = cos nx dx = π nπ [sin nx]π = (n >, b n = sin nx dx = π nπ [ cos nx]π = ( cos nπ = nπ nπ ( ( n { if n is odd and n >, = nπ if n is even and n >, 76

5 (We have here made use of the fact that sin nπ = and cos nπ = ( n for a integers n. Thus f(x = + n odd n> = + k= sin nx nπ sin ((k x (k π. Fourier Series of Even and Odd Functions Definition A function f: R R is said to be even if f(x = f( x for a rea numbers x. A function f: R R is said to be odd if f(x = f( x for a rea numbers x. Let f: R R be an integrabe function. Then f(x dx = f(x cos nx dx = f(x sin nx dx = f( x dx, (37 f( x cos nx dx, (38 f( x sin nx dx (39 (The first of these identities may be verified by making the substitution x x and then interchanging the two imits of integration. The second and the third foow from the first on repacing f(x by f(x cos nx and f(x sin nx and noting that cos( nx = cos nx and sin( nx = sin nx. It foows that the Fourier coefficients of f are given by the foowing formuae: a = π a n = π b n = π f(x dx = π f(x cos nx dx = π f(x sin nx dx = π (f(x + f( x dx, (4 (f(x + f( x cos nx dx, (4 (f(x f( x sin nx dx (4 for a positive integers n. Of course f(x + f( x = f(x and f(x f( x = for a rea numbers x if the function f: R R is even, and f(x + f( x = and f(x f( x = f(x if the function f: R R is odd. The foowing resuts foow immediatey, 77

6 Theorem. Let f: R R be an even periodic function whose period divides π. Suppose that the function f may be represented by a Fourier series. Then the Fourier series of f is of the form and for a positive integers n. f(x = a + a = π a n = π a n cos nx, f(x dx f(x cos nx dx Theorem. Let f: R R be an odd periodic function whose period divides π. Suppose that the function f may be represented by a Fourier series. Then the Fourier series of f is of the form for a positive integers n. f(x = b n = π b n sin nx, f(x sin nx dx. Fourier Series for Genera Periodic Functions Let f: R R be a periodic function whose period divides, is some positive rea number. Then f(x + = f(x for a rea numbers x. Let ( ( x πx g(x = f so that f(x = g. π Then g: R R is a periodic function, and g(x + π = g(x for a rea numbers x. If the function f is sufficienty we-behaved (and, in particuar, if the function f is bounded, with ony finitey many oca maxima and minima and points of discontinuity in any finite interva, and if f(x at each point of discontinuity is the average of the imits of f(x + h and f(x h 78

7 as h tends to zero from above then the function g may be represented by a Fourier series of the form g(x = a + a n cos nx + b n sin nx. The coefficients of this Fourier series are then given by the formuae a = π a n = π b n = π g(u du, g(u cos nu du, g(u sin nu du for each positive integer n. If we make the substitution u = πx in these integras, we find that f(x = a + ( nπx a n cos + ( nπx b n sin, (43 a = = a n = = b n = = g ( πx dx f(x dx, ( ( πx nπx g cos dx ( nπx f(x cos dx, ( ( πx nπx g sin dx ( nπx f(x sin dx for a positive integers n. Note that these integras are taken over a singe period of the function, from to +. It foows from the periodicity of 79

8 the integrand that these integras may be repaced by integras from c to c+ for any rea number c, and thus a = a n = b n = c+ c c+ c c+ c f(x dx, (44 ( nπx f(x cos dx, (45 ( nπx f(x sin dx (46 for a positive integers n. (Indeed, if h: R R is any integrabe function with the property that h(x + = h(x for a rea numbers x, and if p and q are rea numbers with p q p + then p+ p h(x dx = = q p q+ p+ h(x dx + h(x dx + p+ q p+ q h(x dx Repeated appications of this identity show that p+ for a rea numbers p and q. p h(x dx = q+ q h(x dx = h(x dx q+ q h(x dx. Exampe Let k be a positive rea number. Consider the function f: R R defined by { e k(x m if m < x < m + for some integer m; f(x = (ek + if x is an integer. This function is periodic, with period, and may be expanded as a Fourier series f(x = a + a n cos nπx + b n sin nπx, a = a n = b n = f(x dx, f(x cos nπx dx (n >, f(x sin nπx dx (n >. 8

9 Note that f(x = e kx if < x <. We see therefore that a = e kx dx = k [ e kx ] = k (ek. Now if k and ω a positive rea numbers then e kx k ω cos ωx dx = k + ω ekx cos ωx + k + ω ekx sin ωx + C, e kx k ω sin ωx dx = k + ω ekx sin ωx k + ω ekx cos ωx + C, C is a constant of integration. (These identities may be verified by differentiating the expressions on the right hand side. We find therefore that a n = e kx cos nπx dx = [ ] k 4nπ k + 4n π ekx cos nπx + k + 4n π ekx sin nπx = k k + 4n π (ek b n = e kx sin nπx dx, [ ] k 4nπ = k + 4n π ekx sin nπx k + 4n π ekx cos nπx 4nπ = k + 4n π (ek, for each positive integer n, since cos nπ = and sin nπ = when n is an integer. Thus e kx = k (ek + k k + 4n π (ek cos nπx 4nπ k + 4n π (ek sin nπx for a rea numbers x satisfying < x <..3 Sine Series Let f: [, ] R be a function defined on the interva [, ], [, ] = {x R : x }. Suppose that f( = f( =. Let f: R R be the 8

10 function defined such that and f(x = f(x n if n x (n + for some integer n f(x = f((n + x if (n + x (n + for some integer n. The function f: R R is an odd function with the property that f(x+ = f(x for a rea numbers x. Indeed it is easiy seen that f: R R is the unique odd function with this property which agrees with the function f on the interva [, ]. If the function f is sufficienty we-behaved (and, in particuar, if the function f is bounded, with at most finitey many oca maxima and minima and points of discontinuity, and has the property that f(x at each point of discontinuity is the average of the imits of f(x + h and f(x h as h tends to zero from above then the function f may be represented as a Fourier series. This Fourier series is of the form f(x = ( nπx b n sin, b n = = ( nπx f(x sin dx ( nπx f(x sin dx for a positive integers n. (This foows from equations (43 and (46 on repacing by, and then using the fact that f( x = f(x for a rea numbers x. Therefore every sufficienty we-behaved function f: [, ] R which satisfies f( = f( = may be represented in the form f(x = ( nπx b n sin, (47 b n = for each positive integer n. ( nπx f(x sin dx (48 8

11 Exampe Let be a positive rea numbers, and et f: [, ] R be the function defined by f(x = x( x ( x. This function can be expanded in a sine series of the form f(x = b n = ( nπx b n sin, f(x sin nπx Using the method of integration by parts, and the resut that sin nπ = and cos nπ = ( n for a integers n, we find then Thus b n = x( x sin nπx dx = nπ = [ x( x cos nπx ] + nπ nπ = ( x cos nπx dx nπ = ( x d ( sin nπx dx n π dx = [ ( x sin nπx ] n π = 4 sin nπx [ dx = 4 n π n 3 π 3 dx. ( n π cos nπx = 4 ( cos nπ = 4 n 3 π3 n 3 π ( 3 ( n { 8 = if n is odd; n 3 π 3 if n is even. f(x = n odd n> 8 n 3 π x( x d ( cos nπx dx ( x cos nπx dx sin nπx dx ] nπx sin. 3 or (setting n = k for each positive integer k, dx x( x = k= 8 (k πx sin (k 3 π3 ( x. 83

12 .4 Cosine Series Let f: [, ] R be a function defined on the interva [, ], [, ] = {x R : x }. Let g: R R be the function defined by and g(x = f(x n if n x (n + for some integer n g(x = f((n + x if (n + x (n + for some integer n. The function g: R R is an even function with the property that g(x+ = g(x for a rea numbers x. Indeed it is easiy seen that g: R R is the unique even function with this property which agrees with the function f on the interva [, ]. If the function f is sufficienty we-behaved then the function g may be represented as a Fourier series. This Fourier series is of the form g(x = a + ( nπx a n cos, a n = = ( nπx g(x cos dx ( nπx g(x cos dx for a non-negative integers n. (This foows from equations (43, (44 and (45 on repacing by, and then using the fact that g( x = g(x for a rea numbers x. Therefore every sufficienty we-behaved function f: [, ] R may be represented in the form f(x = a + ( nπx a n cos (49 a n = for each positive integer n. ( nπx f(x cos dx (5 84

13 Exampe Consider the function f: [, ] R defined by f(x = x if x. This function may be represented as a cosine series of the form and a = f(x = a + a n = a n cos nπx f(x dx = f(x cos nπx dx x dx =, for a positive integers n. Using the method of integation by parts, and making use of the fact that sin nπ = and cos nπ = ( n for a integers n, we find that Thus a n = x cos nπx dx = x d (sin nπx dx nπ dx = nπ [x sin nπx] sin nπx dx = nπ nπ = n π [cos nπx] = n π ( ( n { = 4 if n is odd; n π if n is even. x = n odd n> Remark The function g defined by 4 cos nπx when x. n π g(x = n odd n> 4 cos nπx n π sin nπx dx for a rea numbers x is an even periodic function, with period equa to, which coincides with the function f: [, ] R on the interva [, ], f(x = x for a rea numbers x satisfying x. It foows that g(x = x m whenever m is an integer and m x m +. 85

14 Remark Setting x = in the identity we find that and thus But n odd n> x = n odd n> n = = n odd n> n 4 cos nπx when x, n π 4 n π cos nπ = + n odd n> n odd n> n = π 8. ( (n = 4 4 n π n = 3 4 n. Therefore n = π 6. Probems. Let f: R R be the periodic function with period π given for rea numbers x satisfying x π by the formua x if f(x = π π x π; if x π or π x π. (Here x, the absoute vaue of x, is defined by x = x if x, and x = x if x <. The function f can be expanded as a Fourier series of the form f(x = a + a n cos nx. (The terms invoving sin nx are zero since the given function is even. Find the coefficients a n of this series, and hence write down the Fourier series for the function f. 86

15 . Cacuate the Fourier series of the function f: R R which is periodic, with period π, and which is defined on the interva x π by the foowing formuae: + x π if x π; f(x = if π x π; x π if π x π. 3. Let f: R R be defined such that f(x = 4(x m if m x m + for some integer m; f(x = 4(m + x if m + x m + for some integer m. Express the function f as a Fourier series of the form f(x = a + a n cos πnx. 87

Week 6 Lectures, Math 6451, Tanveer

Week 6 Lectures, Math 6451, Tanveer Fourier Series Week 6 Lectures, Math 645, Tanveer In the context of separation of variabe to find soutions of PDEs, we encountered or and in other cases f(x = f(x = a 0 + f(x = a 0 + b n sin nπx { a n

More information

2M2. Fourier Series Prof Bill Lionheart

2M2. Fourier Series Prof Bill Lionheart M. Fourier Series Prof Bi Lionheart 1. The Fourier series of the periodic function f(x) with period has the form f(x) = a 0 + ( a n cos πnx + b n sin πnx ). Here the rea numbers a n, b n are caed the Fourier

More information

b n n=1 a n cos nx (3) n=1

b n n=1 a n cos nx (3) n=1 Fourier Anaysis The Fourier series First some terminoogy: a function f(x) is periodic if f(x ) = f(x) for a x for some, if is the smaest such number, it is caed the period of f(x). It is even if f( x)

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 32: 10.2 Fourier Series

Lecture Notes for Math 251: ODE and PDE. Lecture 32: 10.2 Fourier Series Lecture Notes for Math 251: ODE and PDE. Lecture 32: 1.2 Fourier Series Shawn D. Ryan Spring 212 Last Time: We studied the heat equation and the method of Separation of Variabes. We then used Separation

More information

Math 124B January 17, 2012

Math 124B January 17, 2012 Math 124B January 17, 212 Viktor Grigoryan 3 Fu Fourier series We saw in previous ectures how the Dirichet and Neumann boundary conditions ead to respectivey sine and cosine Fourier series of the initia

More information

Math 124B January 31, 2012

Math 124B January 31, 2012 Math 124B January 31, 212 Viktor Grigoryan 7 Inhomogeneous boundary vaue probems Having studied the theory of Fourier series, with which we successfuy soved boundary vaue probems for the homogeneous heat

More information

Assignment 7 Due Tuessday, March 29, 2016

Assignment 7 Due Tuessday, March 29, 2016 Math 45 / AMCS 55 Dr. DeTurck Assignment 7 Due Tuessday, March 9, 6 Topics for this week Convergence of Fourier series; Lapace s equation and harmonic functions: basic properties, compuations on rectanges

More information

14 Separation of Variables Method

14 Separation of Variables Method 14 Separation of Variabes Method Consider, for exampe, the Dirichet probem u t = Du xx < x u(x, ) = f(x) < x < u(, t) = = u(, t) t > Let u(x, t) = T (t)φ(x); now substitute into the equation: dt

More information

Wave Equation Dirichlet Boundary Conditions

Wave Equation Dirichlet Boundary Conditions Wave Equation Dirichet Boundary Conditions u tt x, t = c u xx x, t, < x 1 u, t =, u, t = ux, = fx u t x, = gx Look for simpe soutions in the form ux, t = XxT t Substituting into 13 and dividing

More information

Lecture Notes 4: Fourier Series and PDE s

Lecture Notes 4: Fourier Series and PDE s Lecture Notes 4: Fourier Series and PDE s 1. Periodic Functions A function fx defined on R is caed a periodic function if there exists a number T > such that fx + T = fx, x R. 1.1 The smaest number T for

More information

4 Separation of Variables

4 Separation of Variables 4 Separation of Variabes In this chapter we describe a cassica technique for constructing forma soutions to inear boundary vaue probems. The soution of three cassica (paraboic, hyperboic and eiptic) PDE

More information

4 1-D Boundary Value Problems Heat Equation

4 1-D Boundary Value Problems Heat Equation 4 -D Boundary Vaue Probems Heat Equation The main purpose of this chapter is to study boundary vaue probems for the heat equation on a finite rod a x b. u t (x, t = ku xx (x, t, a < x < b, t > u(x, = ϕ(x

More information

6 Wave Equation on an Interval: Separation of Variables

6 Wave Equation on an Interval: Separation of Variables 6 Wave Equation on an Interva: Separation of Variabes 6.1 Dirichet Boundary Conditions Ref: Strauss, Chapter 4 We now use the separation of variabes technique to study the wave equation on a finite interva.

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Mathematics II (Materials) Section A. Find the general solution of the equation

SCHOOL OF MATHEMATICS AND STATISTICS. Mathematics II (Materials) Section A. Find the general solution of the equation Data provided: Formua Sheet MAS250 SCHOOL OF MATHEMATICS AND STATISTICS Mathematics II (Materias Autumn Semester 204 5 2 hours Marks wi be awarded for answers to a questions in Section A, and for your

More information

FOURIER SERIES ON ANY INTERVAL

FOURIER SERIES ON ANY INTERVAL FOURIER SERIES ON ANY INTERVAL Overview We have spent considerabe time earning how to compute Fourier series for functions that have a period of 2p on the interva (-p,p). We have aso seen how Fourier series

More information

22. Periodic Functions and Fourier Series

22. Periodic Functions and Fourier Series November 29, 2010 22-1 22. Periodic Functions and Fourier Series 1 Periodic Functions A real-valued function f(x) of a real variable is called periodic of period T > 0 if f(x + T ) = f(x) for all x R.

More information

C. Fourier Sine Series Overview

C. Fourier Sine Series Overview 12 PHILIP D. LOEWEN C. Fourier Sine Series Overview Let some constant > be given. The symboic form of the FSS Eigenvaue probem combines an ordinary differentia equation (ODE) on the interva (, ) with a

More information

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES Separation of variabes is a method to sove certain PDEs which have a warped product structure. First, on R n, a inear PDE of order m is

More information

MA 201: Partial Differential Equations Lecture - 10

MA 201: Partial Differential Equations Lecture - 10 MA 201: Partia Differentia Equations Lecture - 10 Separation of Variabes, One dimensiona Wave Equation Initia Boundary Vaue Probem (IBVP) Reca: A physica probem governed by a PDE may contain both boundary

More information

Fourier series. Part - A

Fourier series. Part - A Fourier series Part - A 1.Define Dirichet s conditions Ans: A function defined in c x c + can be expanded as an infinite trigonometric series of the form a + a n cos nx n 1 + b n sin nx, provided i) f

More information

Haar Decomposition and Reconstruction Algorithms

Haar Decomposition and Reconstruction Algorithms Jim Lambers MAT 773 Fa Semester 018-19 Lecture 15 and 16 Notes These notes correspond to Sections 4.3 and 4.4 in the text. Haar Decomposition and Reconstruction Agorithms Decomposition Suppose we approximate

More information

A Two-Parameter Trigonometric Series

A Two-Parameter Trigonometric Series A Two-Parameter Trigonometric Series Xiang-Qian Chang Xiang.Chang@bos.mcphs.edu Massachusetts Coege of Pharmacy and Heath Sciences Boston MA 25 Let us consider the foowing dua questions. A. Givenafunction

More information

MA 201: Partial Differential Equations Lecture - 11

MA 201: Partial Differential Equations Lecture - 11 MA 201: Partia Differentia Equations Lecture - 11 Heat Equation Heat conduction in a thin rod The IBVP under consideration consists of: The governing equation: u t = αu xx, (1) where α is the therma diffusivity.

More information

1D Heat Propagation Problems

1D Heat Propagation Problems Chapter 1 1D Heat Propagation Probems If the ambient space of the heat conduction has ony one dimension, the Fourier equation reduces to the foowing for an homogeneous body cρ T t = T λ 2 + Q, 1.1) x2

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String ecture Notes for Math 251: ODE and PDE. ecture 3: 1.7 Wave Equation and Vibrations of an Eastic String Shawn D. Ryan Spring 212 ast Time: We studied other Heat Equation probems with various other boundary

More information

1 Heat Equation Dirichlet Boundary Conditions

1 Heat Equation Dirichlet Boundary Conditions Chapter 3 Heat Exampes in Rectanges Heat Equation Dirichet Boundary Conditions u t (x, t) = ku xx (x, t), < x (.) u(, t) =, u(, t) = u(x, ) = f(x). Separate Variabes Look for simpe soutions in the

More information

Mathematical Methods: Fourier Series. Fourier Series: The Basics

Mathematical Methods: Fourier Series. Fourier Series: The Basics 1 Mathematical Methods: Fourier Series Fourier Series: The Basics Fourier series are a method of representing periodic functions. It is a very useful and powerful tool in many situations. It is sufficiently

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

Overview of Fourier Series (Sect. 6.2). Origins of the Fourier Series.

Overview of Fourier Series (Sect. 6.2). Origins of the Fourier Series. Overview of Fourier Series (Sect. 6.2. Origins of the Fourier Series. Periodic functions. Orthogonality of Sines and Cosines. Main result on Fourier Series. Origins of the Fourier Series. Summary: Daniel

More information

Strauss PDEs 2e: Section Exercise 2 Page 1 of 12. For problem (1), complete the calculation of the series in case j(t) = 0 and h(t) = e t.

Strauss PDEs 2e: Section Exercise 2 Page 1 of 12. For problem (1), complete the calculation of the series in case j(t) = 0 and h(t) = e t. Strauss PDEs e: Section 5.6 - Exercise Page 1 of 1 Exercise For probem (1, compete the cacuation of the series in case j(t = and h(t = e t. Soution With j(t = and h(t = e t, probem (1 on page 147 becomes

More information

Research Article On the Lower Bound for the Number of Real Roots of a Random Algebraic Equation

Research Article On the Lower Bound for the Number of Real Roots of a Random Algebraic Equation Appied Mathematics and Stochastic Anaysis Voume 007, Artice ID 74191, 8 pages doi:10.1155/007/74191 Research Artice On the Lower Bound for the Number of Rea Roots of a Random Agebraic Equation Takashi

More information

CS229 Lecture notes. Andrew Ng

CS229 Lecture notes. Andrew Ng CS229 Lecture notes Andrew Ng Part IX The EM agorithm In the previous set of notes, we taked about the EM agorithm as appied to fitting a mixture of Gaussians. In this set of notes, we give a broader view

More information

MAS 315 Waves 1 of 8 Answers to Examples Sheet 1. To solve the three problems, we use the methods of 1.3 (with necessary changes in notation).

MAS 315 Waves 1 of 8 Answers to Examples Sheet 1. To solve the three problems, we use the methods of 1.3 (with necessary changes in notation). MAS 35 Waves of 8 Answers to Exampes Sheet. From.) and.5), the genera soution of φ xx = c φ yy is φ = fx cy) + gx + cy). Put c = : the genera soution of φ xx = φ yy is therefore φ = fx y) + gx + y) ) To

More information

Fourier Series. 10 (D3.9) Find the Cesàro sum of the series. 11 (D3.9) Let a and b be real numbers. Under what conditions does a series of the form

Fourier Series. 10 (D3.9) Find the Cesàro sum of the series. 11 (D3.9) Let a and b be real numbers. Under what conditions does a series of the form Exercises Fourier Anaysis MMG70, Autumn 007 The exercises are taken from: Version: Monday October, 007 DXY Section XY of H F Davis, Fourier Series and orthogona functions EÖ Some exercises from earier

More information

arxiv: v1 [math.fa] 23 Aug 2018

arxiv: v1 [math.fa] 23 Aug 2018 An Exact Upper Bound on the L p Lebesgue Constant and The -Rényi Entropy Power Inequaity for Integer Vaued Random Variabes arxiv:808.0773v [math.fa] 3 Aug 08 Peng Xu, Mokshay Madiman, James Mebourne Abstract

More information

More on Fourier Series

More on Fourier Series More on Fourier Series R. C. Trinity University Partial Differential Equations Lecture 6.1 New Fourier series from old Recall: Given a function f (x, we can dilate/translate its graph via multiplication/addition,

More information

Time-Frequency Analysis

Time-Frequency Analysis Time-Frequency Analysis Basics of Fourier Series Philippe B. aval KSU Fall 015 Philippe B. aval (KSU) Fourier Series Fall 015 1 / 0 Introduction We first review how to derive the Fourier series of a function.

More information

A NOTE ON QUASI-STATIONARY DISTRIBUTIONS OF BIRTH-DEATH PROCESSES AND THE SIS LOGISTIC EPIDEMIC

A NOTE ON QUASI-STATIONARY DISTRIBUTIONS OF BIRTH-DEATH PROCESSES AND THE SIS LOGISTIC EPIDEMIC (January 8, 2003) A NOTE ON QUASI-STATIONARY DISTRIBUTIONS OF BIRTH-DEATH PROCESSES AND THE SIS LOGISTIC EPIDEMIC DAMIAN CLANCY, University of Liverpoo PHILIP K. POLLETT, University of Queensand Abstract

More information

Homework #04 Answers and Hints (MATH4052 Partial Differential Equations)

Homework #04 Answers and Hints (MATH4052 Partial Differential Equations) Homework #4 Answers and Hints (MATH452 Partia Differentia Equations) Probem 1 (Page 89, Q2) Consider a meta rod ( < x < ), insuated aong its sides but not at its ends, which is initiay at temperature =

More information

10.2-3: Fourier Series.

10.2-3: Fourier Series. 10.2-3: Fourier Series. 10.2-3: Fourier Series. O. Costin: Fourier Series, 10.2-3 1 Fourier series are very useful in representing periodic functions. Examples of periodic functions. A function is periodic

More information

Periodic functions: simple harmonic oscillator

Periodic functions: simple harmonic oscillator Periodic functions: simple harmonic oscillator Recall the simple harmonic oscillator (e.g. mass-spring system) d 2 y dt 2 + ω2 0y = 0 Solution can be written in various ways: y(t) = Ae iω 0t y(t) = A cos

More information

14 Fourier analysis. Read: Boas Ch. 7.

14 Fourier analysis. Read: Boas Ch. 7. 14 Fourier analysis Read: Boas Ch. 7. 14.1 Function spaces A function can be thought of as an element of a kind of vector space. After all, a function f(x) is merely a set of numbers, one for each point

More information

Fourier Series and the Discrete Fourier Expansion

Fourier Series and the Discrete Fourier Expansion 2 2.5.5 Fourier Series and the Discrete Fourier Expansion Matthew Lincoln Adrienne Carter sillyajc@yahoo.com December 5, 2 Abstract This article is intended to introduce the Fourier series and the Discrete

More information

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l Probem 7. Simpe Penduum SEMINAR. PENDULUMS A simpe penduum means a mass m suspended by a string weightess rigid rod of ength so that it can swing in a pane. The y-axis is directed down, x-axis is directed

More information

AST 418/518 Instrumentation and Statistics

AST 418/518 Instrumentation and Statistics AST 418/518 Instrumentation and Statistics Cass Website: http://ircamera.as.arizona.edu/astr_518 Cass Texts: Practica Statistics for Astronomers, J.V. Wa, and C.R. Jenkins, Second Edition. Measuring the

More information

Lemma 1. Suppose K S is a compact subset and I α is a covering of K. There is a finite subcollection {I j } such that

Lemma 1. Suppose K S is a compact subset and I α is a covering of K. There is a finite subcollection {I j } such that 2 Singuar Integras We start with a very usefu covering emma. Lemma. Suppose K S is a compact subset and I α is a covering of K. There is a finite subcoection {I j } such that. {I j } are disjoint. 2. The

More information

Physics 250 Green s functions for ordinary differential equations

Physics 250 Green s functions for ordinary differential equations Physics 25 Green s functions for ordinary differential equations Peter Young November 25, 27 Homogeneous Equations We have already discussed second order linear homogeneous differential equations, which

More information

THINKING IN PYRAMIDS

THINKING IN PYRAMIDS ECS 178 Course Notes THINKING IN PYRAMIDS Kenneth I. Joy Institute for Data Anaysis and Visuaization Department of Computer Science University of Caifornia, Davis Overview It is frequenty usefu to think

More information

NOISE-INDUCED STABILIZATION OF STOCHASTIC DIFFERENTIAL EQUATIONS

NOISE-INDUCED STABILIZATION OF STOCHASTIC DIFFERENTIAL EQUATIONS NOISE-INDUCED STABILIZATION OF STOCHASTIC DIFFERENTIAL EQUATIONS TONY ALLEN, EMILY GEBHARDT, AND ADAM KLUBALL 3 ADVISOR: DR. TIFFANY KOLBA 4 Abstract. The phenomenon of noise-induced stabiization occurs

More information

Restricted weak type on maximal linear and multilinear integral maps.

Restricted weak type on maximal linear and multilinear integral maps. Restricted weak type on maxima inear and mutiinear integra maps. Oscar Basco Abstract It is shown that mutiinear operators of the form T (f 1,..., f k )(x) = R K(x, y n 1,..., y k )f 1 (y 1 )...f k (y

More information

Math 124B January 24, 2012

Math 124B January 24, 2012 Mth 24B Jnury 24, 22 Viktor Grigoryn 5 Convergence of Fourier series Strting from the method of seprtion of vribes for the homogeneous Dirichet nd Neumnn boundry vue probems, we studied the eigenvue probem

More information

Math 220B - Summer 2003 Homework 1 Solutions

Math 220B - Summer 2003 Homework 1 Solutions Math 0B - Summer 003 Homework Soutions Consider the eigenvaue probem { X = λx 0 < x < X satisfies symmetric BCs x = 0, Suppose f(x)f (x) x=b x=a 0 for a rea-vaued functions f(x) which satisfy the boundary

More information

ALGORITHMIC SUMMATION OF RECIPROCALS OF PRODUCTS OF FIBONACCI NUMBERS. F. = I j. ^ = 1 ^ -, and K w = ^. 0) n=l r n «=1 -*/!

ALGORITHMIC SUMMATION OF RECIPROCALS OF PRODUCTS OF FIBONACCI NUMBERS. F. = I j. ^ = 1 ^ -, and K w = ^. 0) n=l r n «=1 -*/! ALGORITHMIC SUMMATIO OF RECIPROCALS OF PRODUCTS OF FIBOACCI UMBERS Staney Rabinowitz MathPro Press, 2 Vine Brook Road, Westford, MA 0886 staney@tiac.net (Submitted May 997). ITRODUCTIO There is no known

More information

Suggested Solution to Assignment 5

Suggested Solution to Assignment 5 MATH 4 (5-6) prti diferenti equtions Suggested Soution to Assignment 5 Exercise 5.. () (b) A m = A m = = ( )m+ mπ x sin mπx dx = x mπ cos mπx + + 4( )m 4 m π. 4x cos mπx dx mπ x cos mπxdx = x mπ sin mπx

More information

Absolute Extrema. Joseph Lee. Metropolitan Community College

Absolute Extrema. Joseph Lee. Metropolitan Community College Metropolitan Community College Let f be a function defined over some interval I. An absolute minimum occurs at c if f (c) f (x) for all x in I. An absolute maximum occurs at c if f (c) f (x) for all x

More information

Separation of Variables and a Spherical Shell with Surface Charge

Separation of Variables and a Spherical Shell with Surface Charge Separation of Variabes and a Spherica She with Surface Charge In cass we worked out the eectrostatic potentia due to a spherica she of radius R with a surface charge density σθ = σ cos θ. This cacuation

More information

BASIC NOTIONS AND RESULTS IN TOPOLOGY. 1. Metric spaces. Sets with finite diameter are called bounded sets. For x X and r > 0 the set

BASIC NOTIONS AND RESULTS IN TOPOLOGY. 1. Metric spaces. Sets with finite diameter are called bounded sets. For x X and r > 0 the set BASIC NOTIONS AND RESULTS IN TOPOLOGY 1. Metric spaces A metric on a set X is a map d : X X R + with the properties: d(x, y) 0 and d(x, y) = 0 x = y, d(x, y) = d(y, x), d(x, y) d(x, z) + d(z, y), for a

More information

Transforms and Boundary Value Problems

Transforms and Boundary Value Problems Transforms and Boundary Vaue Probems (For B.Tech Students (Third/Fourth/Fifth Semester Soved University Questions Papers Prepared by Dr. V. SUVITHA Department of Mathematics, SRMIST Kattankuathur 6. CONTENTS

More information

A Guided Tour of the Wave Equation

A Guided Tour of the Wave Equation A Guided Tour of the Wave Equation Background: In order to solve this problem we need to review some facts about ordinary differential equations: Some Common ODEs and their solutions: f (x) = 0 f(x) =

More information

Fourier Series. Fourier Transform

Fourier Series. Fourier Transform Math Methods I Lia Vas Fourier Series. Fourier ransform Fourier Series. Recall that a function differentiable any number of times at x = a can be represented as a power series n= a n (x a) n where the

More information

Chapter 2: Functions, Limits and Continuity

Chapter 2: Functions, Limits and Continuity Chapter 2: Functions, Limits and Continuity Functions Limits Continuity Chapter 2: Functions, Limits and Continuity 1 Functions Functions are the major tools for describing the real world in mathematical

More information

Analysis II: Fourier Series

Analysis II: Fourier Series .... Analysis II: Fourier Series Kenichi Maruno Department of Mathematics, The University of Texas - Pan American May 3, 011 K.Maruno (UT-Pan American) Analysis II May 3, 011 1 / 16 Fourier series were

More information

Physics 127c: Statistical Mechanics. Fermi Liquid Theory: Collective Modes. Boltzmann Equation. The quasiparticle energy including interactions

Physics 127c: Statistical Mechanics. Fermi Liquid Theory: Collective Modes. Boltzmann Equation. The quasiparticle energy including interactions Physics 27c: Statistica Mechanics Fermi Liquid Theory: Coective Modes Botzmann Equation The quasipartice energy incuding interactions ε p,σ = ε p + f(p, p ; σ, σ )δn p,σ, () p,σ with ε p ε F + v F (p p

More information

Math 121A: Homework 6 solutions

Math 121A: Homework 6 solutions Math A: Homework 6 solutions. (a) The coefficients of the Fourier sine series are given by b n = π f (x) sin nx dx = x(π x) sin nx dx π = (π x) cos nx dx nπ nπ [x(π x) cos nx]π = n ( )(sin nx) dx + π n

More information

Lecture Note 3: Stationary Iterative Methods

Lecture Note 3: Stationary Iterative Methods MATH 5330: Computationa Methods of Linear Agebra Lecture Note 3: Stationary Iterative Methods Xianyi Zeng Department of Mathematica Sciences, UTEP Stationary Iterative Methods The Gaussian eimination (or

More information

TRIGONOMETRIC RATIOS AND GRAPHS

TRIGONOMETRIC RATIOS AND GRAPHS Mathematics Revision Guides Trigonometric Ratios and Graphs Page 1 of 15 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 TRIGONOMETRIC RATIOS

More information

Homework 5 Solutions

Homework 5 Solutions Stat 310B/Math 230B Theory of Probabiity Homework 5 Soutions Andrea Montanari Due on 2/19/2014 Exercise [5.3.20] 1. We caim that n 2 [ E[h F n ] = 2 n i=1 A i,n h(u)du ] I Ai,n (t). (1) Indeed, integrabiity

More information

221B Lecture Notes Notes on Spherical Bessel Functions

221B Lecture Notes Notes on Spherical Bessel Functions Definitions B Lecture Notes Notes on Spherica Besse Functions We woud ike to sove the free Schrödinger equation [ h d r R(r) = h k R(r). () m r dr r m R(r) is the radia wave function ψ( x) = R(r)Y m (θ,

More information

More Scattering: the Partial Wave Expansion

More Scattering: the Partial Wave Expansion More Scattering: the Partia Wave Expansion Michae Fower /7/8 Pane Waves and Partia Waves We are considering the soution to Schrödinger s equation for scattering of an incoming pane wave in the z-direction

More information

Theory of Generalized k-difference Operator and Its Application in Number Theory

Theory of Generalized k-difference Operator and Its Application in Number Theory Internationa Journa of Mathematica Anaysis Vo. 9, 2015, no. 19, 955-964 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.12988/ijma.2015.5389 Theory of Generaized -Difference Operator and Its Appication

More information

$, (2.1) n="# #. (2.2)

$, (2.1) n=# #. (2.2) Chapter. Eectrostatic II Notes: Most of the materia presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartoo, Chap... Mathematica Considerations.. The Fourier series and the Fourier

More information

Course 2BA1: Hilary Term 2006 Section 7: Trigonometric and Exponential Functions

Course 2BA1: Hilary Term 2006 Section 7: Trigonometric and Exponential Functions Course 2BA1: Hilary Term 2006 Section 7: Trigonometric and Exponential Functions David R. Wilkins Copyright c David R. Wilkins 2005 Contents 7 Trigonometric and Exponential Functions 1 7.1 Basic Trigonometric

More information

Notes on Fourier Series and Integrals Fourier Series

Notes on Fourier Series and Integrals Fourier Series Notes on Fourier Series and Integrals Fourier Series et f(x) be a piecewise linear function on [, ] (This means that f(x) may possess a finite number of finite discontinuities on the interval). Then f(x)

More information

General Certificate of Education Advanced Level Examination June 2010

General Certificate of Education Advanced Level Examination June 2010 Genera Certificate of Education Advanced Leve Examination June 2010 Human Bioogy HBI6T/Q10/task Unit 6T A2 Investigative Skis Assignment Task Sheet The effect of using one or two eyes on the perception

More information

Fourier and Partial Differential Equations

Fourier and Partial Differential Equations Chapter 5 Fourier and Partial Differential Equations 5.1 Fourier MATH 294 SPRING 1982 FINAL # 5 5.1.1 Consider the function 2x, 0 x 1. a) Sketch the odd extension of this function on 1 x 1. b) Expand the

More information

Physics 505 Fall 2007 Homework Assignment #5 Solutions. Textbook problems: Ch. 3: 3.13, 3.17, 3.26, 3.27

Physics 505 Fall 2007 Homework Assignment #5 Solutions. Textbook problems: Ch. 3: 3.13, 3.17, 3.26, 3.27 Physics 55 Fa 7 Homework Assignment #5 Soutions Textook proems: Ch. 3: 3.3, 3.7, 3.6, 3.7 3.3 Sove for the potentia in Proem 3., using the appropriate Green function otained in the text, and verify that

More information

Problem set 6 The Perron Frobenius theorem.

Problem set 6 The Perron Frobenius theorem. Probem set 6 The Perron Frobenius theorem. Math 22a4 Oct 2 204, Due Oct.28 In a future probem set I want to discuss some criteria which aow us to concude that that the ground state of a sef-adjoint operator

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

Physics 235 Chapter 8. Chapter 8 Central-Force Motion

Physics 235 Chapter 8. Chapter 8 Central-Force Motion Physics 35 Chapter 8 Chapter 8 Centra-Force Motion In this Chapter we wi use the theory we have discussed in Chapter 6 and 7 and appy it to very important probems in physics, in which we study the motion

More information

Lecture 6: Moderately Large Deflection Theory of Beams

Lecture 6: Moderately Large Deflection Theory of Beams Structura Mechanics 2.8 Lecture 6 Semester Yr Lecture 6: Moderatey Large Defection Theory of Beams 6.1 Genera Formuation Compare to the cassica theory of beams with infinitesima deformation, the moderatey

More information

NEW FIBONACCI-LIKE WILD ATTRACTORS FOR UNIMODAL INTERVAL MAPS ZHANG RONG. (B.Sc., Nanjing University, China)

NEW FIBONACCI-LIKE WILD ATTRACTORS FOR UNIMODAL INTERVAL MAPS ZHANG RONG. (B.Sc., Nanjing University, China) NEW FIBONACCI-LIKE WILD ATTRACTORS FOR UNIMODAL INTERVAL MAPS ZHANG RONG B.Sc., Nanjing University, China) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MATHEMATICS NATIONAL UNIVERSITY

More information

23.4. Convergence. Introduction. Prerequisites. Learning Outcomes

23.4. Convergence. Introduction. Prerequisites. Learning Outcomes Convergence 3.4 Introduction In this Section we examine, briefly, the convergence characteristics of a Fourier series. We have seen that a Fourier series can be found for functions which are not necessarily

More information

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law Gauss Law 1. Review on 1) Couomb s Law (charge and force) 2) Eectric Fied (fied and force) 2. Gauss s Law: connects charge and fied 3. Appications of Gauss s Law Couomb s Law and Eectric Fied Couomb s

More information

~, '" " f ' ~ (") ' ~" -~ ~ (, ~)

~, '  f ' ~ () ' ~ -~ ~ (, ~) N THE HARMNIC SUMMABILITY F FURIER SERIES BY J. A. SIDDII (Aahabad Universty, Atahabad) Received May ) 94 {Communieated by Prof. B. S. Madhava Rao). Let f(x) be a function integrabe in the sense of Lebesgue

More information

Some Measures for Asymmetry of Distributions

Some Measures for Asymmetry of Distributions Some Measures for Asymmetry of Distributions Georgi N. Boshnakov First version: 31 January 2006 Research Report No. 5, 2006, Probabiity and Statistics Group Schoo of Mathematics, The University of Manchester

More information

u(x) s.t. px w x 0 Denote the solution to this problem by ˆx(p, x). In order to obtain ˆx we may simply solve the standard problem max x 0

u(x) s.t. px w x 0 Denote the solution to this problem by ˆx(p, x). In order to obtain ˆx we may simply solve the standard problem max x 0 Bocconi University PhD in Economics - Microeconomics I Prof M Messner Probem Set 4 - Soution Probem : If an individua has an endowment instead of a monetary income his weath depends on price eves In particuar,

More information

PHYS 502 Lecture 3: Fourier Series

PHYS 502 Lecture 3: Fourier Series PHYS 52 Lecture 3: Fourier Series Fourier Series Introduction In mathematics, a Fourier series decomposes periodic functions or periodic signals into the sum of a (possibly infinite) set of simple oscillating

More information

Schedulability Analysis of Deferrable Scheduling Algorithms for Maintaining Real-Time Data Freshness

Schedulability Analysis of Deferrable Scheduling Algorithms for Maintaining Real-Time Data Freshness 1 Scheduabiity Anaysis of Deferrabe Scheduing Agorithms for Maintaining Rea-Time Data Freshness Song Han, Deji Chen, Ming Xiong, Kam-yiu Lam, Aoysius K. Mok, Krithi Ramamritham UT Austin, Emerson Process

More information

A UNIVERSAL METRIC FOR THE CANONICAL BUNDLE OF A HOLOMORPHIC FAMILY OF PROJECTIVE ALGEBRAIC MANIFOLDS

A UNIVERSAL METRIC FOR THE CANONICAL BUNDLE OF A HOLOMORPHIC FAMILY OF PROJECTIVE ALGEBRAIC MANIFOLDS A UNIERSAL METRIC FOR THE CANONICAL BUNDLE OF A HOLOMORPHIC FAMILY OF PROJECTIE ALGEBRAIC MANIFOLDS DROR AROLIN Dedicated to M Saah Baouendi on the occasion of his 60th birthday 1 Introduction In his ceebrated

More information

THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE

THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE KATIE L. MAY AND MELISSA A. MITCHELL Abstract. We show how to identify the minima path network connecting three fixed points on

More information

Mathematics 324 Riemann Zeta Function August 5, 2005

Mathematics 324 Riemann Zeta Function August 5, 2005 Mathematics 324 Riemann Zeta Function August 5, 25 In this note we give an introduction to the Riemann zeta function, which connects the ideas of real analysis with the arithmetic of the integers. Define

More information

University of Connecticut Lecture Notes for ME5507 Fall 2014 Engineering Analysis I Part III: Fourier Analysis

University of Connecticut Lecture Notes for ME5507 Fall 2014 Engineering Analysis I Part III: Fourier Analysis University of Connecticut Lecture Notes for ME557 Fall 24 Engineering Analysis I Part III: Fourier Analysis Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical

More information

Schedulability Analysis of Deferrable Scheduling Algorithms for Maintaining Real-Time Data Freshness

Schedulability Analysis of Deferrable Scheduling Algorithms for Maintaining Real-Time Data Freshness 1 Scheduabiity Anaysis of Deferrabe Scheduing Agorithms for Maintaining Rea- Data Freshness Song Han, Deji Chen, Ming Xiong, Kam-yiu Lam, Aoysius K. Mok, Krithi Ramamritham UT Austin, Emerson Process Management,

More information

PREPUBLICACIONES DEL DEPARTAMENTO DE ÁLGEBRA DE LA UNIVERSIDAD DE SEVILLA

PREPUBLICACIONES DEL DEPARTAMENTO DE ÁLGEBRA DE LA UNIVERSIDAD DE SEVILLA EUBLICACIONES DEL DEATAMENTO DE ÁLGEBA DE LA UNIVESIDAD DE SEVILLA Impicit ideas of a vauation centered in a oca domain F. J. Herrera Govantes, M. A. Oaa Acosta, M. Spivakovsky, B. Teissier repubicación

More information

MIXING AUTOMORPHISMS OF COMPACT GROUPS AND A THEOREM OF SCHLICKEWEI

MIXING AUTOMORPHISMS OF COMPACT GROUPS AND A THEOREM OF SCHLICKEWEI MIXING AUTOMORPHISMS OF COMPACT GROUPS AND A THEOREM OF SCHLICKEWEI KLAUS SCHMIDT AND TOM WARD Abstract. We prove that every mixing Z d -action by automorphisms of a compact, connected, abeian group is

More information

arxiv: v1 [math.ca] 6 Mar 2017

arxiv: v1 [math.ca] 6 Mar 2017 Indefinite Integras of Spherica Besse Functions MIT-CTP/487 arxiv:703.0648v [math.ca] 6 Mar 07 Joyon K. Boomfied,, Stephen H. P. Face,, and Zander Moss, Center for Theoretica Physics, Laboratory for Nucear

More information

Related Topics Maxwell s equations, electrical eddy field, magnetic field of coils, coil, magnetic flux, induced voltage

Related Topics Maxwell s equations, electrical eddy field, magnetic field of coils, coil, magnetic flux, induced voltage Magnetic induction TEP Reated Topics Maxwe s equations, eectrica eddy fied, magnetic fied of cois, coi, magnetic fux, induced votage Principe A magnetic fied of variabe frequency and varying strength is

More information

MA 201: Differentiation and Integration of Fourier Series Applications of Fourier Series Lecture - 10

MA 201: Differentiation and Integration of Fourier Series Applications of Fourier Series Lecture - 10 MA 201: Differentiation and Integration of Fourier Series Applications of Fourier Series ecture - 10 Fourier Series: Orthogonal Sets We begin our treatment with some observations: For m,n = 1,2,3,... cos

More information

SEMIGROUPS OF VALUATIONS ON LOCAL RINGS, II

SEMIGROUPS OF VALUATIONS ON LOCAL RINGS, II SEMIGROUPS OF VALUATIONS ON LOCAL RINGS, II STEVEN DALE CUTKOSKY, BERNARD TEISSIER Let (R, m R ) be a oca domain, with fraction fied K. Suppose that ν is a vauation of K with vauation ring (V, m V ) which

More information

Bourgain s Theorem. Computational and Metric Geometry. Instructor: Yury Makarychev. d(s 1, s 2 ).

Bourgain s Theorem. Computational and Metric Geometry. Instructor: Yury Makarychev. d(s 1, s 2 ). Bourgain s Theorem Computationa and Metric Geometry Instructor: Yury Makarychev 1 Notation Given a metric space (X, d) and S X, the distance from x X to S equas d(x, S) = inf d(x, s). s S The distance

More information