Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String

Size: px
Start display at page:

Download "Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String"

Transcription

1 ecture Notes for Math 251: ODE and PDE. ecture 3: 1.7 Wave Equation and Vibrations of an Eastic String Shawn D. Ryan Spring 212 ast Time: We studied other Heat Equation probems with various other boundary conditions. 1 The Wave Equation 1.1 Derivation of the Wave Equation Consider a competey fexibe string of ength and constant density ρ. We wi assume that the string wi ony undergo reativey sma vertica vibrations, so that points do not move from side to side. An exampe might be a pucked guitar string. Thus we can et u(x, t) be its dispacement from equiibrium at time t. The assumption of compete fexibiity means that the tension force is tangent to the string, and the string itsef provides no resistance to bending. This means the tension force ony depends on the sope of the string. Take a sma piece of string going from x to x + x. et Θ(x, t) be the ange from the horizonta of the string. Our goa is to use Newton s Second aw F = ma to describe the motion. What forces are acting on this piece of string? (a) Tension puing to the right, which has magnitude T(x + x, t) and acts at an ange of Θ(x + x, t) from the horizonta. (b) Tension puing to the eft, which has magnitude T(x, t) and acts at an ange of Θ(x, t) from the horizonta. (c) Any externa forces, which we denote by F(x, t). Initiay, we wi assume that F(x, t) =. The ength of the string is essentiay ( x) 2 + ( u) 2, so the vertica component of Newton s aw says that ρ ( x) 2 + ( u) 2 u tt (x, t) = T(x + x, t) sin(θ(x + x, t)) T(x, t) sin(θ(x, t)). (1) Dividing by x and taking the imit as x, we get ρ 1 + (u x ) 2 u tt (x, t) = T(x, t) sin(θ(x, t))]. (2) We assumed our vibrations were reativey sma. This means that Θ(x, t) is very cose to zero. As a resut, sin(θ(x, t)) tan(θ(x, t)). Moreover, tan(θ(x, t)) is just the sope of the string 1

2 u x (x, t). We concude, since Θ(x, t) is sma, that u x (x, t) is aso very sma. The above equation becomes ρu tt (x, t) = (T(x, t)u x (x, t)) x. (3) We have not used the horizonta component of Newton s aw yet. Since we assume there are ony vertica vibrations, our tiny piece of string can ony move verticay. Thus the net horizonta force is zero. T(x + x, t) cos(θ(x + x, t)) T(x, t) cos(θ(x, t)) =. () Dividing by x and taking the imit as x yieds T(x, t) cos(θ(x, t))] =. (5) Since Θ(x, t) is very cose to zero, cos(θ(x, t)) is cose to one. thus we have that T (x, t) is cose to zero. So T(x, t) is constant aong the string, and independent of x. We wi aso assume that T is independent of t. Then Equation (??) becomes the one-dimensiona wave equation where c 2 = T ρ. 1.2 The Homogeneous Dirichet Probem u tt = c 2 u xx (6) Now that we have derived the wave equation, we can use Separation of Variabes to obtain basic soutions. We wi consider homogeneous Dirichet conditions, but if we had homogeneous Neumann conditions the same techniques woud give us a soution. The wave equation is second order in t, unike the heat equation which was first order in t. We wi need to initia conditions in order to obtain a soution, one for the initia dispacement and the other for the initia speed. The reevant wave equation probem we wi study is u tt = c 2 u xx (7) u(, t) = u(, t) = (8) u(x, ) = f(x), u t (x, ) = g(x) (9) The physica interpretation of the boundary conditions is that the ends of the string are fixed in pace. They might be attached to guitar pegs. We start by assuming our soution has the form Pugging this into the equation gives u(x, t) = X(x)T(t). (1) T (t)x(x) = c 2 T(t)X (x). (11) Separating variabes, we have X X = T c 2 T 2 = λ (12)

3 where λ is a constant. This gives a pair of ODEs The boundary conditions transform into T + c 2 λt = (13) X + λx =. (1) u(, t) = X()T(t) = X() = (15) u(, t) = X()T(t) = X() =. (16) This is the same boundary vaue probem that we saw for the heat equation and thus the eigenvaues and eigenfunctions are λ n = ( nπ) 2 (17) X n (x) = sin ( nπx) (18) for n = 1, 2,... The first ODE (??) is then ) 2T =, (19) and since the coefficient of T is ceary positive this has a genera soution T n (t) = A n cos ( nπct ) + Bn sin ( nπct). (2) There is no reason to think either of these are zero, so we end up with separated soutions u n (x, t) = A n cos( nπct ) + B n sin( nπct ] ) sin( nπx ) (21) and the genera soution is u(x, t) = A n cos( nπct ) + B n sin( nπct ] ) sin( nπx ). (22) We can directy appy our first initia condition, but to appy the second we wi need to differentiate with respect to t. This gives us u t (x, t) = nπc A n sin( nπct ) + nπc B n cos( nπct ] ) sin( nπx ) (23) Pugging in the initia condition then yieds the pair of equations u(x, ) = f(x) = A n sin( nπx ) (2) nπc u t (x, ) = g(x) = B n sin( nπx ). (25) 3

4 These are both Fourier Sine series. The first is directy the Fourier Since series for f(x) on (, ). The second equation is the Fourier Sine series for g(x) on (, ) with a sighty messy coefficient. The Euer-Fourier formuas then te us that 1.3 Exampes A n nπc B n A n = 2 = 2 = 2 B n = 2 nπc f(x) sin( nπx )dx (26) g(x) sin( nπx )dx (27) f(x) sin( nπx )dx (28) g(x) sin( nπx )dx. (29) Exampe 1. Find the soution (dispacement u(x, t)) for the probem of an eastic string of ength whose ends are hed fixed. The string has no initia veocity (u t (x, ) = ) from an initia position x x u(x, ) = f(x) = 1 < x < 3 (3) ( x) 3 x By the formuas above we see if we separate variabes we have the foowing equation for T with the genera soution )2 T = (31) T n (t) = A n cos( nπct ) + B n sin( nπct ). (32) since the initia speed is zero, we find T () = and thus B n =. Therefore the genera soution is u(x, t) = A n cos( nπct ) sin(nπx ). (33) where the coefficients are the Fourier Sine coefficients of f(x). So A n = 2 = 2 / f(x) sin( nπx )dx (3) x 3/ sin(nπx )dx + sin( nπx / )dx + x sin( nπx ] 3/ )dx (35) = 8 sin(nπ ) + sin(3nπ ) n 2 π 2 (36)

5 Thus the dispacement of the string wi be u(x, t) = 8 sin( nπ) + sin(3nπ) cos( nπct π 2 π 2 ) sin(nπx ). (37) Exampe 2. Find the soution (dispacement u(x, t)) for the probem of an eastic string of ength whose ends are hed fixed. The string has no initia veocity (u t (x, ) = ) from an initia position u(x, ) = f(x) = 8x( x)2 3 (38) By the formuas above we see if we separate variabes we have the foowing equation for T with the genera soution )2 T = (39) T n (t) = A n cos( nπct ) + B n sin( nπct ). () since the initia speed is zero, we find T () = and thus B n =. Therefore the genera soution is u(x, t) = A n cos( nπct ) sin(nπx ). (1) where the coefficients are the Fourier Sine coefficients of f(x). So A n = 2 = 2 Thus the dispacement of the string wi be u(x, t) = 32 π 3 f(x) sin( nπx )dx (2) 8x( x) 2 3 sin( nπx )dx (3) = cos(nπ) n 3 π 3 Integrate By Parts () Exampe 3. Probem 12 is a great exercise. HW 1.7 # a, 5a, 7a, 8a, cos(nπ) n 3 Go through the Separation of Variabes it wi be important for Exams. cos( nπct ) sin(nπx ). (5) 5

MA 201: Partial Differential Equations Lecture - 10

MA 201: Partial Differential Equations Lecture - 10 MA 201: Partia Differentia Equations Lecture - 10 Separation of Variabes, One dimensiona Wave Equation Initia Boundary Vaue Probem (IBVP) Reca: A physica probem governed by a PDE may contain both boundary

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 32: 10.2 Fourier Series

Lecture Notes for Math 251: ODE and PDE. Lecture 32: 10.2 Fourier Series Lecture Notes for Math 251: ODE and PDE. Lecture 32: 1.2 Fourier Series Shawn D. Ryan Spring 212 Last Time: We studied the heat equation and the method of Separation of Variabes. We then used Separation

More information

Math 124B January 31, 2012

Math 124B January 31, 2012 Math 124B January 31, 212 Viktor Grigoryan 7 Inhomogeneous boundary vaue probems Having studied the theory of Fourier series, with which we successfuy soved boundary vaue probems for the homogeneous heat

More information

14 Separation of Variables Method

14 Separation of Variables Method 14 Separation of Variabes Method Consider, for exampe, the Dirichet probem u t = Du xx < x u(x, ) = f(x) < x < u(, t) = = u(, t) t > Let u(x, t) = T (t)φ(x); now substitute into the equation: dt

More information

Math 124B January 17, 2012

Math 124B January 17, 2012 Math 124B January 17, 212 Viktor Grigoryan 3 Fu Fourier series We saw in previous ectures how the Dirichet and Neumann boundary conditions ead to respectivey sine and cosine Fourier series of the initia

More information

Homework #04 Answers and Hints (MATH4052 Partial Differential Equations)

Homework #04 Answers and Hints (MATH4052 Partial Differential Equations) Homework #4 Answers and Hints (MATH452 Partia Differentia Equations) Probem 1 (Page 89, Q2) Consider a meta rod ( < x < ), insuated aong its sides but not at its ends, which is initiay at temperature =

More information

Solution of Wave Equation by the Method of Separation of Variables Using the Foss Tools Maxima

Solution of Wave Equation by the Method of Separation of Variables Using the Foss Tools Maxima Internationa Journa of Pure and Appied Mathematics Voume 117 No. 14 2017, 167-174 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-ine version) ur: http://www.ijpam.eu Specia Issue ijpam.eu Soution

More information

MA 201: Partial Differential Equations Lecture - 11

MA 201: Partial Differential Equations Lecture - 11 MA 201: Partia Differentia Equations Lecture - 11 Heat Equation Heat conduction in a thin rod The IBVP under consideration consists of: The governing equation: u t = αu xx, (1) where α is the therma diffusivity.

More information

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES Separation of variabes is a method to sove certain PDEs which have a warped product structure. First, on R n, a inear PDE of order m is

More information

Wave Equation Dirichlet Boundary Conditions

Wave Equation Dirichlet Boundary Conditions Wave Equation Dirichet Boundary Conditions u tt x, t = c u xx x, t, < x 1 u, t =, u, t = ux, = fx u t x, = gx Look for simpe soutions in the form ux, t = XxT t Substituting into 13 and dividing

More information

Strauss PDEs 2e: Section Exercise 2 Page 1 of 12. For problem (1), complete the calculation of the series in case j(t) = 0 and h(t) = e t.

Strauss PDEs 2e: Section Exercise 2 Page 1 of 12. For problem (1), complete the calculation of the series in case j(t) = 0 and h(t) = e t. Strauss PDEs e: Section 5.6 - Exercise Page 1 of 1 Exercise For probem (1, compete the cacuation of the series in case j(t = and h(t = e t. Soution With j(t = and h(t = e t, probem (1 on page 147 becomes

More information

The Wave Equation. Units. Recall that [z] means the units of z. Suppose [t] = s, [x] = m. Then u = c 2 2 u. [u]

The Wave Equation. Units. Recall that [z] means the units of z. Suppose [t] = s, [x] = m. Then u = c 2 2 u. [u] The Wave Equation UBC M57/316 Lecture Notes c 014 by Phiip D. Loewen Many PDE s describe wave motion. The simpest is u tt = c u xx. Here c > 0 is a given constant, and u = u(x, t is some quantity of interest

More information

Assignment 7 Due Tuessday, March 29, 2016

Assignment 7 Due Tuessday, March 29, 2016 Math 45 / AMCS 55 Dr. DeTurck Assignment 7 Due Tuessday, March 9, 6 Topics for this week Convergence of Fourier series; Lapace s equation and harmonic functions: basic properties, compuations on rectanges

More information

6 Wave Equation on an Interval: Separation of Variables

6 Wave Equation on an Interval: Separation of Variables 6 Wave Equation on an Interva: Separation of Variabes 6.1 Dirichet Boundary Conditions Ref: Strauss, Chapter 4 We now use the separation of variabes technique to study the wave equation on a finite interva.

More information

1D Heat Propagation Problems

1D Heat Propagation Problems Chapter 1 1D Heat Propagation Probems If the ambient space of the heat conduction has ony one dimension, the Fourier equation reduces to the foowing for an homogeneous body cρ T t = T λ 2 + Q, 1.1) x2

More information

u tt = a 2 u xx u tt = a 2 (u xx + u yy )

u tt = a 2 u xx u tt = a 2 (u xx + u yy ) 10.7 The wave equation 10.7 The wave equation O. Costin: 10.7 1 This equation describes the propagation of waves through a medium: in one dimension, such as a vibrating string u tt = a 2 u xx 1 This equation

More information

Module 22: Simple Harmonic Oscillation and Torque

Module 22: Simple Harmonic Oscillation and Torque Modue : Simpe Harmonic Osciation and Torque.1 Introduction We have aready used Newton s Second Law or Conservation of Energy to anayze systems ike the boc-spring system that osciate. We sha now use torque

More information

Fourier Series. 10 (D3.9) Find the Cesàro sum of the series. 11 (D3.9) Let a and b be real numbers. Under what conditions does a series of the form

Fourier Series. 10 (D3.9) Find the Cesàro sum of the series. 11 (D3.9) Let a and b be real numbers. Under what conditions does a series of the form Exercises Fourier Anaysis MMG70, Autumn 007 The exercises are taken from: Version: Monday October, 007 DXY Section XY of H F Davis, Fourier Series and orthogona functions EÖ Some exercises from earier

More information

Math 220B - Summer 2003 Homework 1 Solutions

Math 220B - Summer 2003 Homework 1 Solutions Math 0B - Summer 003 Homework Soutions Consider the eigenvaue probem { X = λx 0 < x < X satisfies symmetric BCs x = 0, Suppose f(x)f (x) x=b x=a 0 for a rea-vaued functions f(x) which satisfy the boundary

More information

Lecture Notes 4: Fourier Series and PDE s

Lecture Notes 4: Fourier Series and PDE s Lecture Notes 4: Fourier Series and PDE s 1. Periodic Functions A function fx defined on R is caed a periodic function if there exists a number T > such that fx + T = fx, x R. 1.1 The smaest number T for

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . Two points A and B ie on a smooth horizonta tabe with AB = a. One end of a ight eastic spring, of natura ength a and moduus of easticity mg, is attached to A. The other end of the spring is attached

More information

LECTURE 19: SEPARATION OF VARIABLES, HEAT CONDUCTION IN A ROD

LECTURE 19: SEPARATION OF VARIABLES, HEAT CONDUCTION IN A ROD ECTURE 19: SEPARATION OF VARIABES, HEAT CONDUCTION IN A ROD The idea of separation of variables is simple: in order to solve a partial differential equation in u(x, t), we ask, is it possible to find a

More information

4 Separation of Variables

4 Separation of Variables 4 Separation of Variabes In this chapter we describe a cassica technique for constructing forma soutions to inear boundary vaue probems. The soution of three cassica (paraboic, hyperboic and eiptic) PDE

More information

Vibrations of Structures

Vibrations of Structures Vibrations of Structures Modue I: Vibrations of Strings and Bars Lesson : The Initia Vaue Probem Contents:. Introduction. Moda Expansion Theorem 3. Initia Vaue Probem: Exampes 4. Lapace Transform Method

More information

Strauss PDEs 2e: Section Exercise 1 Page 1 of 7

Strauss PDEs 2e: Section Exercise 1 Page 1 of 7 Strauss PDEs 2e: Section 4.3 - Exercise 1 Page 1 of 7 Exercise 1 Find the eigenvaues graphicay for the boundary conditions X(0) = 0, X () + ax() = 0. Assume that a 0. Soution The aim here is to determine

More information

4 1-D Boundary Value Problems Heat Equation

4 1-D Boundary Value Problems Heat Equation 4 -D Boundary Vaue Probems Heat Equation The main purpose of this chapter is to study boundary vaue probems for the heat equation on a finite rod a x b. u t (x, t = ku xx (x, t, a < x < b, t > u(x, = ϕ(x

More information

Week 5 Lectures, Math 6451, Tanveer

Week 5 Lectures, Math 6451, Tanveer Week 5 Lectures, Math 651, Tanveer 1 Separation of variabe method The method of separation of variabe is a suitabe technique for determining soutions to inear PDEs, usuay with constant coefficients, when

More information

Introduction to the Wave Equation

Introduction to the Wave Equation Introduction to the Ryan C. Trinity University Partial Differential Equations ecture 4 Modeling the Motion of an Ideal Elastic String Idealizing Assumptions: The only force acting on the string is (constant

More information

Chapter 5. Wave equation. 5.1 Physical derivation

Chapter 5. Wave equation. 5.1 Physical derivation Chapter 5 Wave equation In this chapter, we discuss the wave equation u tt a 2 u = f, (5.1) where a > is a constant. We wi discover that soutions of the wave equation behave in a different way comparing

More information

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE MA 201: Method of Separation of Variables Finite Vibrating String Problem ecture - 11 IBVP for Vibrating string with no external forces We consider the problem in a computational domain (x,t) [0,] [0,

More information

C. Fourier Sine Series Overview

C. Fourier Sine Series Overview 12 PHILIP D. LOEWEN C. Fourier Sine Series Overview Let some constant > be given. The symboic form of the FSS Eigenvaue probem combines an ordinary differentia equation (ODE) on the interva (, ) with a

More information

Mechanics 3. Elastic strings and springs

Mechanics 3. Elastic strings and springs Chapter assessment Mechanics 3 Eastic strings and springs. Two identica ight springs have natura ength m and stiffness 4 Nm -. One is suspended verticay with its upper end fixed to a ceiing and a partice

More information

Fourier series. Part - A

Fourier series. Part - A Fourier series Part - A 1.Define Dirichet s conditions Ans: A function defined in c x c + can be expanded as an infinite trigonometric series of the form a + a n cos nx n 1 + b n sin nx, provided i) f

More information

1 Heat Equation Dirichlet Boundary Conditions

1 Heat Equation Dirichlet Boundary Conditions Chapter 3 Heat Exampes in Rectanges Heat Equation Dirichet Boundary Conditions u t (x, t) = ku xx (x, t), < x (.) u(, t) =, u(, t) = u(x, ) = f(x). Separate Variabes Look for simpe soutions in the

More information

Math Assignment 14

Math Assignment 14 Math 2280 - Assignment 14 Dylan Zwick Spring 2014 Section 9.5-1, 3, 5, 7, 9 Section 9.6-1, 3, 5, 7, 14 Section 9.7-1, 2, 3, 4 1 Section 9.5 - Heat Conduction and Separation of Variables 9.5.1 - Solve the

More information

Numerical methods for PDEs FEM - abstract formulation, the Galerkin method

Numerical methods for PDEs FEM - abstract formulation, the Galerkin method Patzhater für Bid, Bid auf Titefoie hinter das Logo einsetzen Numerica methods for PDEs FEM - abstract formuation, the Gaerkin method Dr. Noemi Friedman Contents of the course Fundamentas of functiona

More information

MAS 315 Waves 1 of 8 Answers to Examples Sheet 1. To solve the three problems, we use the methods of 1.3 (with necessary changes in notation).

MAS 315 Waves 1 of 8 Answers to Examples Sheet 1. To solve the three problems, we use the methods of 1.3 (with necessary changes in notation). MAS 35 Waves of 8 Answers to Exampes Sheet. From.) and.5), the genera soution of φ xx = c φ yy is φ = fx cy) + gx + cy). Put c = : the genera soution of φ xx = φ yy is therefore φ = fx y) + gx + y) ) To

More information

Course 2BA1, Section 11: Periodic Functions and Fourier Series

Course 2BA1, Section 11: Periodic Functions and Fourier Series Course BA, 8 9 Section : Periodic Functions and Fourier Series David R. Wikins Copyright c David R. Wikins 9 Contents Periodic Functions and Fourier Series 74. Fourier Series of Even and Odd Functions...........

More information

Forces of Friction. through a viscous medium, there will be a resistance to the motion. and its environment

Forces of Friction. through a viscous medium, there will be a resistance to the motion. and its environment Forces of Friction When an object is in motion on a surface or through a viscous medium, there wi be a resistance to the motion This is due to the interactions between the object and its environment This

More information

Method of Separation of Variables

Method of Separation of Variables MODUE 5: HEAT EQUATION 11 ecture 3 Method of Separation of Variables Separation of variables is one of the oldest technique for solving initial-boundary value problems (IBVP) and applies to problems, where

More information

Physics 235 Chapter 8. Chapter 8 Central-Force Motion

Physics 235 Chapter 8. Chapter 8 Central-Force Motion Physics 35 Chapter 8 Chapter 8 Centra-Force Motion In this Chapter we wi use the theory we have discussed in Chapter 6 and 7 and appy it to very important probems in physics, in which we study the motion

More information

Midterm 2: Sample solutions Math 118A, Fall 2013

Midterm 2: Sample solutions Math 118A, Fall 2013 Midterm 2: Sample solutions Math 118A, Fall 213 1. Find all separated solutions u(r,t = F(rG(t of the radially symmetric heat equation u t = k ( r u. r r r Solve for G(t explicitly. Write down an ODE for

More information

Separation of variables in two dimensions. Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 )

Separation of variables in two dimensions. Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 ) Separation of variables in two dimensions Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 ) Separation of variables in two dimensions Overview of method: Consider linear, homogeneous

More information

PHYSICS LOCUS / / d dt. ( vi) mass, m moment of inertia, I. ( ix) linear momentum, p Angular momentum, l p mv l I

PHYSICS LOCUS / / d dt. ( vi) mass, m moment of inertia, I. ( ix) linear momentum, p Angular momentum, l p mv l I 6 n terms of moment of inertia, equation (7.8) can be written as The vector form of the above equation is...(7.9 a)...(7.9 b) The anguar acceeration produced is aong the direction of appied externa torque.

More information

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law Gauss Law 1. Review on 1) Couomb s Law (charge and force) 2) Eectric Fied (fied and force) 2. Gauss s Law: connects charge and fied 3. Appications of Gauss s Law Couomb s Law and Eectric Fied Couomb s

More information

Strauss PDEs 2e: Section Exercise 1 Page 1 of 6

Strauss PDEs 2e: Section Exercise 1 Page 1 of 6 Strauss PDEs 2e: Section 3 - Exercise Page of 6 Exercise Carefully derive the equation of a string in a medium in which the resistance is proportional to the velocity Solution There are two ways (among

More information

WMS. MA250 Introduction to Partial Differential Equations. Revision Guide. Written by Matthew Hutton and David McCormick

WMS. MA250 Introduction to Partial Differential Equations. Revision Guide. Written by Matthew Hutton and David McCormick WMS MA25 Introduction to Partia Differentia Equations Revision Guide Written by Matthew Hutton and David McCormick WMS ii MA25 Introduction to Partia Differentia Equations Contents Introduction 1 1 First-Order

More information

Week 6 Lectures, Math 6451, Tanveer

Week 6 Lectures, Math 6451, Tanveer Fourier Series Week 6 Lectures, Math 645, Tanveer In the context of separation of variabe to find soutions of PDEs, we encountered or and in other cases f(x = f(x = a 0 + f(x = a 0 + b n sin nπx { a n

More information

Lecture 17 - The Secrets we have Swept Under the Rug

Lecture 17 - The Secrets we have Swept Under the Rug Lecture 17 - The Secrets we have Swept Under the Rug Today s ectures examines some of the uirky features of eectrostatics that we have negected up unti this point A Puzze... Let s go back to the basics

More information

Term Test AER301F. Dynamics. 5 November The value of each question is indicated in the table opposite.

Term Test AER301F. Dynamics. 5 November The value of each question is indicated in the table opposite. U N I V E R S I T Y O F T O R O N T O Facuty of Appied Science and Engineering Term Test AER31F Dynamics 5 November 212 Student Name: Last Name First Names Student Number: Instructions: 1. Attempt a questions.

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM REVIEW Vo. 49,No. 1,pp. 111 1 c 7 Society for Industria and Appied Mathematics Domino Waves C. J. Efthimiou M. D. Johnson Abstract. Motivated by a proposa of Daykin [Probem 71-19*, SIAM Rev., 13 (1971),

More information

MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation

MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation Lecture 12 Lecture 12 MA 201, PDE (2016) 1 / 24 Formal Solution of

More information

Lecture6. Partial Differential Equations

Lecture6. Partial Differential Equations EP219 ecture notes - prepared by- Assoc. Prof. Dr. Eser OĞAR 2012-Spring ecture6. Partial Differential Equations 6.1 Review of Differential Equation We have studied the theoretical aspects of the solution

More information

2M2. Fourier Series Prof Bill Lionheart

2M2. Fourier Series Prof Bill Lionheart M. Fourier Series Prof Bi Lionheart 1. The Fourier series of the periodic function f(x) with period has the form f(x) = a 0 + ( a n cos πnx + b n sin πnx ). Here the rea numbers a n, b n are caed the Fourier

More information

Lecture notes. May 2, 2017

Lecture notes. May 2, 2017 Lecture notes May, 7 Preface These are ecture notes for MATH 47: Partia differentia equations with the soe purpose of providing reading materia for topics covered in the ectures of the cass. Severa exampes

More information

THINKING IN PYRAMIDS

THINKING IN PYRAMIDS ECS 178 Course Notes THINKING IN PYRAMIDS Kenneth I. Joy Institute for Data Anaysis and Visuaization Department of Computer Science University of Caifornia, Davis Overview It is frequenty usefu to think

More information

Lecture 9. Stability of Elastic Structures. Lecture 10. Advanced Topic in Column Buckling

Lecture 9. Stability of Elastic Structures. Lecture 10. Advanced Topic in Column Buckling Lecture 9 Stabiity of Eastic Structures Lecture 1 Advanced Topic in Coumn Bucking robem 9-1: A camped-free coumn is oaded at its tip by a oad. The issue here is to find the itica bucking oad. a) Suggest

More information

CE601-Structura Anaysis I UNIT-IV SOPE-DEFECTION METHOD 1. What are the assumptions made in sope-defection method? (i) Between each pair of the supports the beam section is constant. (ii) The joint in

More information

XI PHYSICS. M. Affan Khan LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS. M. Affan Khan LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. Affan Khan LECTURER PHYSICS, AKHSS, K affan_414@ive.com https://promotephysics.wordpress.com [TORQUE, ANGULAR MOMENTUM & EQUILIBRIUM] CHAPTER NO. 5 Okay here we are going to discuss Rotationa

More information

Bohr s atomic model. 1 Ze 2 = mv2. n 2 Z

Bohr s atomic model. 1 Ze 2 = mv2. n 2 Z Bohr s atomic mode Another interesting success of the so-caed od quantum theory is expaining atomic spectra of hydrogen and hydrogen-ike atoms. The eectromagnetic radiation emitted by free atoms is concentrated

More information

Lecture Notes for Ch 10 Fourier Series and Partial Differential Equations

Lecture Notes for Ch 10 Fourier Series and Partial Differential Equations ecture Notes for Ch 10 Fourier Series and Partial Differential Equations Part III. Outline Pages 2-8. The Vibrating String. Page 9. An Animation. Page 10. Extra Credit. 1 Classic Example I: Vibrating String

More information

Partial Differential Equations Summary

Partial Differential Equations Summary Partial Differential Equations Summary 1. The heat equation Many physical processes are governed by partial differential equations. temperature of a rod. In this chapter, we will examine exactly that.

More information

Math 201 Assignment #11

Math 201 Assignment #11 Math 21 Assignment #11 Problem 1 (1.5 2) Find a formal solution to the given initial-boundary value problem. = 2 u x, < x < π, t > 2 u(, t) = u(π, t) =, t > u(x, ) = x 2, < x < π Problem 2 (1.5 5) Find

More information

More Scattering: the Partial Wave Expansion

More Scattering: the Partial Wave Expansion More Scattering: the Partia Wave Expansion Michae Fower /7/8 Pane Waves and Partia Waves We are considering the soution to Schrödinger s equation for scattering of an incoming pane wave in the z-direction

More information

1) For a block of mass m to slide without friction up a rise of height h, the minimum initial speed of the block must be

1) For a block of mass m to slide without friction up a rise of height h, the minimum initial speed of the block must be v m 1) For a bock of mass m to side without friction up a rise of height h, the minimum initia speed of the bock must be a ) gh b ) gh d ) gh e ) gh c ) gh P h b 3 15 ft 3) A man pus a pound crate up a

More information

APPENDIX C FLEXING OF LENGTH BARS

APPENDIX C FLEXING OF LENGTH BARS Fexing of ength bars 83 APPENDIX C FLEXING OF LENGTH BARS C.1 FLEXING OF A LENGTH BAR DUE TO ITS OWN WEIGHT Any object ying in a horizonta pane wi sag under its own weight uness it is infinitey stiff or

More information

CABLE SUPPORTED STRUCTURES

CABLE SUPPORTED STRUCTURES CABLE SUPPORTED STRUCTURES STATIC AND DYNAMIC ANALYSIS OF CABLES 3/22/2005 Prof. dr Stanko Brcic 1 Cabe Supported Structures Suspension bridges Cabe-Stayed Bridges Masts Roof structures etc 3/22/2005 Prof.

More information

Lecture 6: Moderately Large Deflection Theory of Beams

Lecture 6: Moderately Large Deflection Theory of Beams Structura Mechanics 2.8 Lecture 6 Semester Yr Lecture 6: Moderatey Large Defection Theory of Beams 6.1 Genera Formuation Compare to the cassica theory of beams with infinitesima deformation, the moderatey

More information

SECTION A. Question 1

SECTION A. Question 1 SECTION A Question 1 (a) In the usua notation derive the governing differentia equation of motion in free vibration for the singe degree of freedom system shown in Figure Q1(a) by using Newton's second

More information

Wave Equation With Homogeneous Boundary Conditions

Wave Equation With Homogeneous Boundary Conditions Wave Equation With Homogeneous Boundary Conditions MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 018 Objectives In this lesson we will learn: how to solve the

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur odue 2 naysis of Staticay ndeterminate Structures by the atri Force ethod Version 2 E T, Kharagpur esson 12 The Three-oment Equations- Version 2 E T, Kharagpur nstructiona Objectives fter reading this

More information

UI FORMULATION FOR CABLE STATE OF EXISTING CABLE-STAYED BRIDGE

UI FORMULATION FOR CABLE STATE OF EXISTING CABLE-STAYED BRIDGE UI FORMULATION FOR CABLE STATE OF EXISTING CABLE-STAYED BRIDGE Juan Huang, Ronghui Wang and Tao Tang Coege of Traffic and Communications, South China University of Technoogy, Guangzhou, Guangdong 51641,

More information

3.10 Implications of Redundancy

3.10 Implications of Redundancy 118 IB Structures 2008-9 3.10 Impications of Redundancy An important aspect of redundant structures is that it is possibe to have interna forces within the structure, with no externa oading being appied.

More information

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination May 4, 2015 FORM A Name: Student Number: Section: This exam has 16 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all work must

More information

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l Probem 7. Simpe Penduum SEMINAR. PENDULUMS A simpe penduum means a mass m suspended by a string weightess rigid rod of ength so that it can swing in a pane. The y-axis is directed down, x-axis is directed

More information

Candidate Number. General Certificate of Education Advanced Level Examination January 2012

Candidate Number. General Certificate of Education Advanced Level Examination January 2012 entre Number andidate Number Surname Other Names andidate Signature Genera ertificate of Education dvanced Leve Examination January 212 Physics PHY4/1 Unit 4 Fieds and Further Mechanics Section Tuesday

More information

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18 Quantum Mechanica Modes of Vibration and Rotation of Moecues Chapter 18 Moecuar Energy Transationa Vibrationa Rotationa Eectronic Moecuar Motions Vibrations of Moecues: Mode approximates moecues to atoms

More information

Solution Set Seven. 1 Goldstein Components of Torque Along Principal Axes Components of Torque Along Cartesian Axes...

Solution Set Seven. 1 Goldstein Components of Torque Along Principal Axes Components of Torque Along Cartesian Axes... : Soution Set Seven Northwestern University, Cassica Mechanics Cassica Mechanics, Third Ed.- Godstein November 8, 25 Contents Godstein 5.8. 2. Components of Torque Aong Principa Axes.......................

More information

OSCILLATIONS. dt x = (1) Where = k m

OSCILLATIONS. dt x = (1) Where = k m OSCILLATIONS Periodic Motion. Any otion, which repeats itsef at reguar interva of tie, is caed a periodic otion. Eg: 1) Rotation of earth around sun. 2) Vibrations of a sipe penduu. 3) Rotation of eectron

More information

THE WAVE EQUATION. F = T (x, t) j + T (x + x, t) j = T (sin(θ(x, t)) + sin(θ(x + x, t)))

THE WAVE EQUATION. F = T (x, t) j + T (x + x, t) j = T (sin(θ(x, t)) + sin(θ(x + x, t))) THE WAVE EQUATION The aim is to derive a mathematical model that describes small vibrations of a tightly stretched flexible string for the one-dimensional case, or of a tightly stretched membrane for the

More information

University of California, Berkeley Physics 7A Spring 2009 (Yury Kolomensky) SOLUTIONS TO PRACTICE PROBLEMS FOR THE FINAL EXAM

University of California, Berkeley Physics 7A Spring 2009 (Yury Kolomensky) SOLUTIONS TO PRACTICE PROBLEMS FOR THE FINAL EXAM 1 University of Caifornia, Bereey Physics 7A Spring 009 (Yury Koomensy) SOLUIONS O PRACICE PROBLEMS FOR HE FINAL EXAM Maximum score: 00 points 1. (5 points) Ice in a Gass You are riding in an eevator hoding

More information

Physics Dynamics: Springs

Physics Dynamics: Springs F A C U L T Y O F E D U C A T I O N Department of Curricuum and Pedagogy Physics Dynamics: Springs Science and Mathematics Education Research Group Supported by UBC Teaching and Learning Enhancement Fund

More information

Convergence P H Y S I C S

Convergence P H Y S I C S +1 Test (Newton s Law of Motion) 1. Inertia is that property of a body by virtue of which the body is (a) Unabe to change by itsef the state of rest (b) Unabe to change by itsef the state of unifor otion

More information

Jackson 4.10 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 4.10 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 4.10 Homework Probem Soution Dr. Christopher S. Baird University of Massachusetts Lowe PROBLEM: Two concentric conducting spheres of inner and outer radii a and b, respectivey, carry charges ±.

More information

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section: MATH 251 Final Examination December 19, 2012 FORM A Name: Student Number: Section: This exam has 17 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all

More information

Lecture Note 3: Stationary Iterative Methods

Lecture Note 3: Stationary Iterative Methods MATH 5330: Computationa Methods of Linear Agebra Lecture Note 3: Stationary Iterative Methods Xianyi Zeng Department of Mathematica Sciences, UTEP Stationary Iterative Methods The Gaussian eimination (or

More information

Work and energy method. Exercise 1 : Beam with a couple. Exercise 1 : Non-linear loaddisplacement. Exercise 2 : Horizontally loaded frame

Work and energy method. Exercise 1 : Beam with a couple. Exercise 1 : Non-linear loaddisplacement. Exercise 2 : Horizontally loaded frame Work and energy method EI EI T x-axis Exercise 1 : Beam with a coupe Determine the rotation at the right support of the construction dispayed on the right, caused by the coupe T using Castigiano s nd theorem.

More information

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE)

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) Cass XI TARGET : JEE Main/Adv PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) ALP ADVANCED LEVEL LPROBLEMS ROTATION- Topics Covered: Rigid body, moment of inertia, parae and perpendicuar axes theorems,

More information

Volume 13, MAIN ARTICLES

Volume 13, MAIN ARTICLES Voume 13, 2009 1 MAIN ARTICLES THE BASIC BVPs OF THE THEORY OF ELASTIC BINARY MIXTURES FOR A HALF-PLANE WITH CURVILINEAR CUTS Bitsadze L. I. Vekua Institute of Appied Mathematics of Iv. Javakhishvii Tbiisi

More information

arxiv: v1 [hep-th] 10 Dec 2018

arxiv: v1 [hep-th] 10 Dec 2018 Casimir energy of an open string with ange-dependent boundary condition A. Jahan 1 and I. Brevik 2 1 Research Institute for Astronomy and Astrophysics of Maragha (RIAAM, Maragha, Iran 2 Department of Energy

More information

Physics 505 Fall 2007 Homework Assignment #5 Solutions. Textbook problems: Ch. 3: 3.13, 3.17, 3.26, 3.27

Physics 505 Fall 2007 Homework Assignment #5 Solutions. Textbook problems: Ch. 3: 3.13, 3.17, 3.26, 3.27 Physics 55 Fa 7 Homework Assignment #5 Soutions Textook proems: Ch. 3: 3.3, 3.7, 3.6, 3.7 3.3 Sove for the potentia in Proem 3., using the appropriate Green function otained in the text, and verify that

More information

McGill University April 20, Advanced Calculus for Engineers

McGill University April 20, Advanced Calculus for Engineers McGill University April 0, 016 Faculty of Science Final examination Advanced Calculus for Engineers Math 64 April 0, 016 Time: PM-5PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer Student

More information

Lecture 24. Scott Pauls 5/21/07

Lecture 24. Scott Pauls 5/21/07 Lecture 24 Department of Mathematics Dartmouth College 5/21/07 Material from last class The heat equation α 2 u xx = u t with conditions u(x, 0) = f (x), u(0, t) = u(l, t) = 0. 1. Separate variables to

More information

Legendre Polynomials - Lecture 8

Legendre Polynomials - Lecture 8 Legendre Poynomias - Lecture 8 Introduction In spherica coordinates the separation of variabes for the function of the poar ange resuts in Legendre s equation when the soution is independent of the azimutha

More information

17 Lecture 17: Recombination and Dark Matter Production

17 Lecture 17: Recombination and Dark Matter Production PYS 652: Astrophysics 88 17 Lecture 17: Recombination and Dark Matter Production New ideas pass through three periods: It can t be done. It probaby can be done, but it s not worth doing. I knew it was

More information

(1 ) = 1 for some 2 (0; 1); (1 + ) = 0 for some > 0:

(1 ) = 1 for some 2 (0; 1); (1 + ) = 0 for some > 0: Answers, na. Economics 4 Fa, 2009. Christiano.. The typica househod can engage in two types of activities producing current output and studying at home. Athough time spent on studying at home sacrices

More information

PHYS 110B - HW #1 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #1 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased PHYS 110B - HW #1 Fa 2005, Soutions by David Pace Equations referenced as Eq. # are from Griffiths Probem statements are paraphrased [1.] Probem 6.8 from Griffiths A ong cyinder has radius R and a magnetization

More information

THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE

THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE KATIE L. MAY AND MELISSA A. MITCHELL Abstract. We show how to identify the minima path network connecting three fixed points on

More information

Introduction to Riemann Solvers

Introduction to Riemann Solvers CO 5 BOLD WORKSHOP 2, 2 4 June Introduction to Riemann Sovers Oskar Steiner . Three major advancements in the numerica treatment of the hydrodynamic equations Three major progresses in computationa fuid

More information

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination August 14, 2015 FORM A Name: Student Number: Section: This exam has 11 questions for a total of 150 points. Show all your work! In order to obtain full credit for partial credit

More information