4 Separation of Variables

Size: px
Start display at page:

Download "4 Separation of Variables"

Transcription

1 4 Separation of Variabes In this chapter we describe a cassica technique for constructing forma soutions to inear boundary vaue probems. The soution of three cassica (paraboic, hyperboic and eiptic) PDE probems are discussed in turn. Our treatment is not intended to be rigorous. A proper mathematica justification for the cass of soutions that resut in these simpe cases is knownas Fourier anaysis. An outine of the genera theory that underpins the appication of the separation of variabes soution technique can be found in the concuding section The Heat Equation The heat equation is the prototypica paraboic PDE (see Section 1.5). We consider the simpest possibe boundary vaue probem in the firstinstance The homogeneous probem A generic probem statement is: find a function u(x, t), representing the temperature at position x and time t in a rod with constant therma conductivity κ>, satisfying with boundary conditions and an initia condition u t κu xx = (x, t) (,) (,τ], (4.1) u(,t)=; u(, t) = t (,τ], (4.2) u(x, ) = u (x) x [,]. (4.3) This is a mode for what happens when a heated rod with a given initia temperature profie u has both ends immersed into ice at t =. Physicay 48

2 4.1 The Heat Equation 49 we woud expect the heat to diffuse out of the two ends and for thetemperature to tend to the ambient temperature of zero as t.twospecificexampes are given beow. Probem u (x) ={ 2 x x x 2 x 1 /2 Probem u (x) =1 x 1 1 Note that, in Probem the initia condition is consistent with the boundary conditions, whereas in Probem there is a jump in the temperature at the two ends x =andx = when t =. The fact that the boundary vaue probem (4.1) (4.3) is we posed can be shown by the foowing energy argument. WemutipythePDEbyu and integrate in space, uu t dx κ We now introduce the energy E, ascaarfunctionoftime: E(t) = uu xx dx =. (4.4) u 2 dx, and note that if u is sufficienty smooth then we can differentiate the integra to give E (t) = d u 2 1 dx = dt t (u2 ) dx =2 uu t dx. (4.5)

3 5 Separation of Variabes Combining (4.4) with (4.5) we find that E (t) =2κ uu xx dx. We now foow the argument used in Theorem 3.2 and integrate the right hand side term by parts to give E (t) = 2κ (u x ) 2 dx. (4.6) {{ The boundary term [uu x ] 1 in (4.6) drops out because u(,t)=andu(1,t)=. This shows that the energy is a monotonicay non-increasing function of time. Thus we deduce that E(t) E() for a t>, which means that u 2 dx = E(t) E() u 2 dx. (4.7) This is a cassica stabiity estimate for a time dependent probem. The soution u is forever bounded by the size of the initia condition, so sma perturbations to u cannot generate arge changes in the soution. This is true even in the ong-time imit τ. The cruciay important point here is that the boundary vaue probem (4.1) (4.3) is inear, which means that we can appy the principe of superposition (see Section 1.3). Our target wi be to represent the soution u(x, t) as a inear combination of the increasingy osciatory sine waves that are iustrated in Figure 4.1. These sine waves (usuay referred to as Fourier modes) are associated with the so-caed Fourier expansion of the initia data, u (x) = n=1 a n sin nπx, (4.8) and the numbers a n are caed the Fourier coefficients. Wewiseethateach of the component sine waves wi correspond to a different particuar soution of the boundary vaue probem. Two important properties of these Fourier modes are isted beow. ➊ The modes are mutuay orthogona with respect to the inner products (a, b) = ab dx: thatis nπx sin sin mπx dx =, n m. ➋ The modes are ineary independent. Moreovertheyformabasisforthe space L 2 (,)ofsquareintegrabefunctionsdefinedon(,).

4 4.1 The Heat Equation 51 sin(π x) sin(2π x) sin(3π x) sin(4π x) sin(8π x) sin(16π x) Figure 4.1. Fourier modes: the scaed anaogues sin( kπx ) ook ike this over [,]. An immediate consequence of ➋ the representation (4.8) is unique as ong as u is square integrabe which is the case for either of the two exampes above. The condition ➊ eads to a characterization of the Fourier coefficients a n. Starting from (4.8) and mutipying by sin mπx and integrating over the interva (,)gives: Thus we deduce that u (x)sin mπx a n = 2 dx = a n n=1 = a m = 2 a m. sin nπx (sin mπx ) 2 dx u (x)sin nπx sin mπx dx dx. (4.9) Let s get back to separation of variabes. Theideaistoookforsoutions of the form u(x, t) =X(x)T (t). (4.1)

5 52 Separation of Variabes Substituting the ansatz (4.1) into (4.1) gives and coecting ike terms gives 1 1 dt κ T {{ dt function of t X dt dt = κd2 X dx 2 T = 1 d 2 X X {{ dx 2. function of x Ceary both sides of this equation must be equa to a constant, µ say, caed the separation constant. Thuswegetapairofordinarydifferentiaequations, one for each variabe: X = µx, (4.11) T = κµt. (4.12) To get boundary conditions for (4.11) we substitute (4.1) into (4.2) and since T (otherwise,theonypossibesoutionisu =)weobtain u(,t) = X()T (t) = u(, t) = X()T (t) = X() =, X() =. (4.13) Combining (4.11) with (4.13) gives a differentia eigenvaue probem: X = µx X() = ; X() = (4.14) where µ is an eigenvaue and X is the associated eigenfunction. Note that the trivia soution X = must be excuded if we are to find a nontrivia soution u. Unike matrix eigenvaue probems, which are finite dimensiona, the probem (4.14) may have infinitey many soutions {µ n,x n.itturnsoutthatony negative eigenvaues µ n < makesense.toseethis,wemutipy(4.11)byx and integrate over (,)togive XX dx + µ X 2 dx =. At first sight this does not seem too hepfu. The trick though is to integrate the first term by parts to remove the second derivative, thus (X ) 2 dx + µ X 2 dx = [XX ].

6 4.1 The Heat Equation 53 The right-hand side term is zero because of the boundary conditions X() = and X() =sothatweareeftwithtwonon-negativetermswhichsumto zero (X ) 2 dx +µ {{ X 2 dx =, (4.15) {{ > X thus µ<. We write µ = ω 2 and note that the genera soution of (4.11) is given by X(x) =A cos(ωx)+b sin(ωx). (4.16) The eft end condition X() = impies that A =. Therightendcondition X() =givessin(ω) =eadingtothenontriviasoutionsω = nπ for a positive integers n. Wededucethat (4.14) hasaninfinitenumberof eigenfunctions X n (x) =sin nπx, n =1, 2,... (4.17) and corresponding eigenvaues ( nπ µ n = ) 2, n =1, 2,... (4.18) Note that the eigenfunctions are the Fourier modes in (4.8). Returning to (4.12), for each distinct n we have that T n κµ n T n =. This is a inear first order ordinary differentia equation with integrating factor e κµnt.ithasthesoution T n (t) =e κµnt = e nπ κ( )2 t (4.19) when the constant of integration is set to be equa to one. Combining (4.17) with (4.19) gives an infinite famiy of separated soutions u n (x, t) =X n (x) T n (t) =e nπ κ( )2t sin nπx, n =1, 2,... It is easiy checked that each u n satisfies the heat equation (4.1) and the zero boundary condition (4.2). Thus, using the principe of superposition we can construct a genera soution to (4.1) (4.2) by taking a inear combination of these soutions nπ κ( u(x, t) = c n e )2t sin nπx. (4.2) n=1

7 54 Separation of Variabes Finay if we put t =in(4.2)werecover(4.8)andweidentifythecoefficients c n as being the Fourier coefficients of the initia condition u (x). Thus from (4.9) we deduce that u(x, ) = u = n=1 c n sin nπx c n = 2 u (x)sin nπx dx. (4.21) Remark 4.1. From (4.21) it seems that we can sove any probem for which u (x) ispiecewise continuous. Theonyissueistomakesurethatthecoefficients c n in (4.2) are a finite. 1 Probem temperature x Figure 4.2. Evoution of soution u(x, t) to Exampe Exampe u (x) ={ 2 x x x 2 x. Note that u (x) issymmetricwithrespecttotheverticainethroughthe midpoint x = 2,andsoc n = u sin nπx dx =foratheanti-symmetric, even-numbered waves n =2, 4,... as shown in Figure 4.1. For the odd numbered waves n = 1, 3, 5,... the characterization (4.9) gives c n = 2 u sin nπx dx = 4 /2 u sin nπx dx = 8 2 /2 x sin nπx dx

8 4.1 The Heat Equation 55 = 8 [ ] /2 1 nπx π 2 sin = 8 { 1 n2 π 2 1 2, 1 3 2, 1 5 2, 1 7 2, 1 9 2,.... Note that the Fourier coefficients are decreasing ike 1/n 2 in this case. Substituting c n into (4.2) gives the soution u(x, t) = 8 π 2 { e κπ2 2 t sin πx 1 9 9κπ2 e 2 t sin 3πx κπ2 e 2 t sin 5πx... Two important observations are that a the Fourier modes components of the soution decay exponentiay in time, with the highy osciating waves decaying faster than ow frequency ones. Thus, utimatey, u ast which is consistent with the physics. Aso, the bigger the conductivity constant κ is, the faster the decay. The evoution of the temperature profie with time is shown in Figure The numerica soution of this exampe probem wi be discussed in Chapter 6. Exampe c n = 2 sin nπx dx = 2 π u (x) =1, <x<1. [ 1 ] nπx cos = 4 { 1 n π 1, 2, 1 3, 4, 1 5, 6,.... Since the Fourier coefficients are proportiona to 1/n rather that 1/n 2 the high frequency waves are more significant in this exampe. Substituting the c n into (4.2) gives the soution u(x, t) = 4 π { e κπ2 2 t sin πx κπ2 e 2 t sin 3πx κπ2 e 2 t sin 5πx +... Remark 4.2. Our Fourier series soution (4.2) (4.21) is often referred to as a forma soution. Stricty speaking, to be sure that such an infinite series soution is vaid we woud need to show two extra things. First, that the series converges to a we-defined imit function, and second, that the imit function soves the boundary vaue probem (4.1) (4.3). Such technica considerations are beyond the scope of this book. Further detais are discussed in Chapter 9 of the foowing textbook. Asak Tvieto & Ragner Winther, Introduction to Partia Differentia Equations: A Computationa Approach, Springer, The soution can be visuaized using the matab function fourier heat, forexampe, using the caing sequence [u,m] = fourier heat(8,64,1,.3);

14 Separation of Variables Method

14 Separation of Variables Method 14 Separation of Variabes Method Consider, for exampe, the Dirichet probem u t = Du xx < x u(x, ) = f(x) < x < u(, t) = = u(, t) t > Let u(x, t) = T (t)φ(x); now substitute into the equation: dt

More information

Strauss PDEs 2e: Section Exercise 2 Page 1 of 12. For problem (1), complete the calculation of the series in case j(t) = 0 and h(t) = e t.

Strauss PDEs 2e: Section Exercise 2 Page 1 of 12. For problem (1), complete the calculation of the series in case j(t) = 0 and h(t) = e t. Strauss PDEs e: Section 5.6 - Exercise Page 1 of 1 Exercise For probem (1, compete the cacuation of the series in case j(t = and h(t = e t. Soution With j(t = and h(t = e t, probem (1 on page 147 becomes

More information

Wave Equation Dirichlet Boundary Conditions

Wave Equation Dirichlet Boundary Conditions Wave Equation Dirichet Boundary Conditions u tt x, t = c u xx x, t, < x 1 u, t =, u, t = ux, = fx u t x, = gx Look for simpe soutions in the form ux, t = XxT t Substituting into 13 and dividing

More information

MA 201: Partial Differential Equations Lecture - 11

MA 201: Partial Differential Equations Lecture - 11 MA 201: Partia Differentia Equations Lecture - 11 Heat Equation Heat conduction in a thin rod The IBVP under consideration consists of: The governing equation: u t = αu xx, (1) where α is the therma diffusivity.

More information

4 1-D Boundary Value Problems Heat Equation

4 1-D Boundary Value Problems Heat Equation 4 -D Boundary Vaue Probems Heat Equation The main purpose of this chapter is to study boundary vaue probems for the heat equation on a finite rod a x b. u t (x, t = ku xx (x, t, a < x < b, t > u(x, = ϕ(x

More information

Homework #04 Answers and Hints (MATH4052 Partial Differential Equations)

Homework #04 Answers and Hints (MATH4052 Partial Differential Equations) Homework #4 Answers and Hints (MATH452 Partia Differentia Equations) Probem 1 (Page 89, Q2) Consider a meta rod ( < x < ), insuated aong its sides but not at its ends, which is initiay at temperature =

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 32: 10.2 Fourier Series

Lecture Notes for Math 251: ODE and PDE. Lecture 32: 10.2 Fourier Series Lecture Notes for Math 251: ODE and PDE. Lecture 32: 1.2 Fourier Series Shawn D. Ryan Spring 212 Last Time: We studied the heat equation and the method of Separation of Variabes. We then used Separation

More information

Math 124B January 17, 2012

Math 124B January 17, 2012 Math 124B January 17, 212 Viktor Grigoryan 3 Fu Fourier series We saw in previous ectures how the Dirichet and Neumann boundary conditions ead to respectivey sine and cosine Fourier series of the initia

More information

C. Fourier Sine Series Overview

C. Fourier Sine Series Overview 12 PHILIP D. LOEWEN C. Fourier Sine Series Overview Let some constant > be given. The symboic form of the FSS Eigenvaue probem combines an ordinary differentia equation (ODE) on the interva (, ) with a

More information

6 Wave Equation on an Interval: Separation of Variables

6 Wave Equation on an Interval: Separation of Variables 6 Wave Equation on an Interva: Separation of Variabes 6.1 Dirichet Boundary Conditions Ref: Strauss, Chapter 4 We now use the separation of variabes technique to study the wave equation on a finite interva.

More information

MA 201: Partial Differential Equations Lecture - 10

MA 201: Partial Differential Equations Lecture - 10 MA 201: Partia Differentia Equations Lecture - 10 Separation of Variabes, One dimensiona Wave Equation Initia Boundary Vaue Probem (IBVP) Reca: A physica probem governed by a PDE may contain both boundary

More information

Vibrations of Structures

Vibrations of Structures Vibrations of Structures Modue I: Vibrations of Strings and Bars Lesson : The Initia Vaue Probem Contents:. Introduction. Moda Expansion Theorem 3. Initia Vaue Probem: Exampes 4. Lapace Transform Method

More information

Math 124B January 31, 2012

Math 124B January 31, 2012 Math 124B January 31, 212 Viktor Grigoryan 7 Inhomogeneous boundary vaue probems Having studied the theory of Fourier series, with which we successfuy soved boundary vaue probems for the homogeneous heat

More information

Assignment 7 Due Tuessday, March 29, 2016

Assignment 7 Due Tuessday, March 29, 2016 Math 45 / AMCS 55 Dr. DeTurck Assignment 7 Due Tuessday, March 9, 6 Topics for this week Convergence of Fourier series; Lapace s equation and harmonic functions: basic properties, compuations on rectanges

More information

Week 6 Lectures, Math 6451, Tanveer

Week 6 Lectures, Math 6451, Tanveer Fourier Series Week 6 Lectures, Math 645, Tanveer In the context of separation of variabe to find soutions of PDEs, we encountered or and in other cases f(x = f(x = a 0 + f(x = a 0 + b n sin nπx { a n

More information

Strauss PDEs 2e: Section Exercise 1 Page 1 of 7

Strauss PDEs 2e: Section Exercise 1 Page 1 of 7 Strauss PDEs 2e: Section 4.3 - Exercise 1 Page 1 of 7 Exercise 1 Find the eigenvaues graphicay for the boundary conditions X(0) = 0, X () + ax() = 0. Assume that a 0. Soution The aim here is to determine

More information

1 Heat Equation Dirichlet Boundary Conditions

1 Heat Equation Dirichlet Boundary Conditions Chapter 3 Heat Exampes in Rectanges Heat Equation Dirichet Boundary Conditions u t (x, t) = ku xx (x, t), < x (.) u(, t) =, u(, t) = u(x, ) = f(x). Separate Variabes Look for simpe soutions in the

More information

1D Heat Propagation Problems

1D Heat Propagation Problems Chapter 1 1D Heat Propagation Probems If the ambient space of the heat conduction has ony one dimension, the Fourier equation reduces to the foowing for an homogeneous body cρ T t = T λ 2 + Q, 1.1) x2

More information

Course 2BA1, Section 11: Periodic Functions and Fourier Series

Course 2BA1, Section 11: Periodic Functions and Fourier Series Course BA, 8 9 Section : Periodic Functions and Fourier Series David R. Wikins Copyright c David R. Wikins 9 Contents Periodic Functions and Fourier Series 74. Fourier Series of Even and Odd Functions...........

More information

Lecture Notes 4: Fourier Series and PDE s

Lecture Notes 4: Fourier Series and PDE s Lecture Notes 4: Fourier Series and PDE s 1. Periodic Functions A function fx defined on R is caed a periodic function if there exists a number T > such that fx + T = fx, x R. 1.1 The smaest number T for

More information

Week 5 Lectures, Math 6451, Tanveer

Week 5 Lectures, Math 6451, Tanveer Week 5 Lectures, Math 651, Tanveer 1 Separation of variabe method The method of separation of variabe is a suitabe technique for determining soutions to inear PDEs, usuay with constant coefficients, when

More information

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l Probem 7. Simpe Penduum SEMINAR. PENDULUMS A simpe penduum means a mass m suspended by a string weightess rigid rod of ength so that it can swing in a pane. The y-axis is directed down, x-axis is directed

More information

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES Separation of variabes is a method to sove certain PDEs which have a warped product structure. First, on R n, a inear PDE of order m is

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String ecture Notes for Math 251: ODE and PDE. ecture 3: 1.7 Wave Equation and Vibrations of an Eastic String Shawn D. Ryan Spring 212 ast Time: We studied other Heat Equation probems with various other boundary

More information

Fourier Series. 10 (D3.9) Find the Cesàro sum of the series. 11 (D3.9) Let a and b be real numbers. Under what conditions does a series of the form

Fourier Series. 10 (D3.9) Find the Cesàro sum of the series. 11 (D3.9) Let a and b be real numbers. Under what conditions does a series of the form Exercises Fourier Anaysis MMG70, Autumn 007 The exercises are taken from: Version: Monday October, 007 DXY Section XY of H F Davis, Fourier Series and orthogona functions EÖ Some exercises from earier

More information

Math 220B - Summer 2003 Homework 1 Solutions

Math 220B - Summer 2003 Homework 1 Solutions Math 0B - Summer 003 Homework Soutions Consider the eigenvaue probem { X = λx 0 < x < X satisfies symmetric BCs x = 0, Suppose f(x)f (x) x=b x=a 0 for a rea-vaued functions f(x) which satisfy the boundary

More information

221B Lecture Notes Notes on Spherical Bessel Functions

221B Lecture Notes Notes on Spherical Bessel Functions Definitions B Lecture Notes Notes on Spherica Besse Functions We woud ike to sove the free Schrödinger equation [ h d r R(r) = h k R(r). () m r dr r m R(r) is the radia wave function ψ( x) = R(r)Y m (θ,

More information

Chapter 5. Wave equation. 5.1 Physical derivation

Chapter 5. Wave equation. 5.1 Physical derivation Chapter 5 Wave equation In this chapter, we discuss the wave equation u tt a 2 u = f, (5.1) where a > is a constant. We wi discover that soutions of the wave equation behave in a different way comparing

More information

Methods for Ordinary Differential Equations. Jacob White

Methods for Ordinary Differential Equations. Jacob White Introduction to Simuation - Lecture 12 for Ordinary Differentia Equations Jacob White Thanks to Deepak Ramaswamy, Jaime Peraire, Micha Rewienski, and Karen Veroy Outine Initia Vaue probem exampes Signa

More information

2M2. Fourier Series Prof Bill Lionheart

2M2. Fourier Series Prof Bill Lionheart M. Fourier Series Prof Bi Lionheart 1. The Fourier series of the periodic function f(x) with period has the form f(x) = a 0 + ( a n cos πnx + b n sin πnx ). Here the rea numbers a n, b n are caed the Fourier

More information

David Eigen. MA112 Final Paper. May 10, 2002

David Eigen. MA112 Final Paper. May 10, 2002 David Eigen MA112 Fina Paper May 1, 22 The Schrodinger equation describes the position of an eectron as a wave. The wave function Ψ(t, x is interpreted as a probabiity density for the position of the eectron.

More information

More Scattering: the Partial Wave Expansion

More Scattering: the Partial Wave Expansion More Scattering: the Partia Wave Expansion Michae Fower /7/8 Pane Waves and Partia Waves We are considering the soution to Schrödinger s equation for scattering of an incoming pane wave in the z-direction

More information

Module 22: Simple Harmonic Oscillation and Torque

Module 22: Simple Harmonic Oscillation and Torque Modue : Simpe Harmonic Osciation and Torque.1 Introduction We have aready used Newton s Second Law or Conservation of Energy to anayze systems ike the boc-spring system that osciate. We sha now use torque

More information

Separation of Variables and a Spherical Shell with Surface Charge

Separation of Variables and a Spherical Shell with Surface Charge Separation of Variabes and a Spherica She with Surface Charge In cass we worked out the eectrostatic potentia due to a spherica she of radius R with a surface charge density σθ = σ cos θ. This cacuation

More information

Numerical methods for PDEs FEM - abstract formulation, the Galerkin method

Numerical methods for PDEs FEM - abstract formulation, the Galerkin method Patzhater für Bid, Bid auf Titefoie hinter das Logo einsetzen Numerica methods for PDEs FEM - abstract formuation, the Gaerkin method Dr. Noemi Friedman Contents of the course Fundamentas of functiona

More information

A Brief Introduction to Markov Chains and Hidden Markov Models

A Brief Introduction to Markov Chains and Hidden Markov Models A Brief Introduction to Markov Chains and Hidden Markov Modes Aen B MacKenzie Notes for December 1, 3, &8, 2015 Discrete-Time Markov Chains You may reca that when we first introduced random processes,

More information

A Fictitious Time Integration Method for a One-Dimensional Hyperbolic Boundary Value Problem

A Fictitious Time Integration Method for a One-Dimensional Hyperbolic Boundary Value Problem Journa o mathematics and computer science 14 (15) 87-96 A Fictitious ime Integration Method or a One-Dimensiona Hyperboic Boundary Vaue Probem Mir Saad Hashemi 1,*, Maryam Sariri 1 1 Department o Mathematics,

More information

EXISTENCE OF SOLUTIONS FOR ONE-DIMENSIONAL WAVE EQUATIONS WITH NONLOCAL CONDITIONS

EXISTENCE OF SOLUTIONS FOR ONE-DIMENSIONAL WAVE EQUATIONS WITH NONLOCAL CONDITIONS Eectronic Journa of Differentia Equations, Vo. 21(21), No. 76, pp. 1 8. ISSN: 172-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (ogin: ftp) EXISTENCE OF SOLUTIONS

More information

Lecture 6: Moderately Large Deflection Theory of Beams

Lecture 6: Moderately Large Deflection Theory of Beams Structura Mechanics 2.8 Lecture 6 Semester Yr Lecture 6: Moderatey Large Defection Theory of Beams 6.1 Genera Formuation Compare to the cassica theory of beams with infinitesima deformation, the moderatey

More information

WMS. MA250 Introduction to Partial Differential Equations. Revision Guide. Written by Matthew Hutton and David McCormick

WMS. MA250 Introduction to Partial Differential Equations. Revision Guide. Written by Matthew Hutton and David McCormick WMS MA25 Introduction to Partia Differentia Equations Revision Guide Written by Matthew Hutton and David McCormick WMS ii MA25 Introduction to Partia Differentia Equations Contents Introduction 1 1 First-Order

More information

Physics 127c: Statistical Mechanics. Fermi Liquid Theory: Collective Modes. Boltzmann Equation. The quasiparticle energy including interactions

Physics 127c: Statistical Mechanics. Fermi Liquid Theory: Collective Modes. Boltzmann Equation. The quasiparticle energy including interactions Physics 27c: Statistica Mechanics Fermi Liquid Theory: Coective Modes Botzmann Equation The quasipartice energy incuding interactions ε p,σ = ε p + f(p, p ; σ, σ )δn p,σ, () p,σ with ε p ε F + v F (p p

More information

FOURIER SERIES ON ANY INTERVAL

FOURIER SERIES ON ANY INTERVAL FOURIER SERIES ON ANY INTERVAL Overview We have spent considerabe time earning how to compute Fourier series for functions that have a period of 2p on the interva (-p,p). We have aso seen how Fourier series

More information

Introduction to Simulation - Lecture 13. Convergence of Multistep Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

Introduction to Simulation - Lecture 13. Convergence of Multistep Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Introduction to Simuation - Lecture 13 Convergence of Mutistep Methods Jacob White Thans to Deepa Ramaswamy, Micha Rewiensi, and Karen Veroy Outine Sma Timestep issues for Mutistep Methods Loca truncation

More information

Integrating Factor Methods as Exponential Integrators

Integrating Factor Methods as Exponential Integrators Integrating Factor Methods as Exponentia Integrators Borisav V. Minchev Department of Mathematica Science, NTNU, 7491 Trondheim, Norway Borko.Minchev@ii.uib.no Abstract. Recenty a ot of effort has been

More information

First-Order Corrections to Gutzwiller s Trace Formula for Systems with Discrete Symmetries

First-Order Corrections to Gutzwiller s Trace Formula for Systems with Discrete Symmetries c 26 Noninear Phenomena in Compex Systems First-Order Corrections to Gutzwier s Trace Formua for Systems with Discrete Symmetries Hoger Cartarius, Jörg Main, and Günter Wunner Institut für Theoretische

More information

Higher dimensional PDEs and multidimensional eigenvalue problems

Higher dimensional PDEs and multidimensional eigenvalue problems Higher dimensiona PEs and mutidimensiona eigenvaue probems 1 Probems with three independent variabes Consider the prototypica equations u t = u (iffusion) u tt = u (W ave) u zz = u (Lapace) where u = u

More information

LECTURE NOTES 9 TRACELESS SYMMETRIC TENSOR APPROACH TO LEGENDRE POLYNOMIALS AND SPHERICAL HARMONICS

LECTURE NOTES 9 TRACELESS SYMMETRIC TENSOR APPROACH TO LEGENDRE POLYNOMIALS AND SPHERICAL HARMONICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Eectromagnetism II October 7, 202 Prof. Aan Guth LECTURE NOTES 9 TRACELESS SYMMETRIC TENSOR APPROACH TO LEGENDRE POLYNOMIALS AND SPHERICAL

More information

ON THE POSITIVITY OF SOLUTIONS OF SYSTEMS OF STOCHASTIC PDES

ON THE POSITIVITY OF SOLUTIONS OF SYSTEMS OF STOCHASTIC PDES ON THE POSITIVITY OF SOLUTIONS OF SYSTEMS OF STOCHASTIC PDES JACKY CRESSON 1,2, MESSOUD EFENDIEV 3, AND STEFANIE SONNER 3,4 On the occasion of the 75 th birthday of Prof. Dr. Dr.h.c. Wofgang L. Wendand

More information

Solution of Wave Equation by the Method of Separation of Variables Using the Foss Tools Maxima

Solution of Wave Equation by the Method of Separation of Variables Using the Foss Tools Maxima Internationa Journa of Pure and Appied Mathematics Voume 117 No. 14 2017, 167-174 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-ine version) ur: http://www.ijpam.eu Specia Issue ijpam.eu Soution

More information

Coupling of LWR and phase transition models at boundary

Coupling of LWR and phase transition models at boundary Couping of LW and phase transition modes at boundary Mauro Garaveo Dipartimento di Matematica e Appicazioni, Università di Miano Bicocca, via. Cozzi 53, 20125 Miano Itay. Benedetto Piccoi Department of

More information

Physics 235 Chapter 8. Chapter 8 Central-Force Motion

Physics 235 Chapter 8. Chapter 8 Central-Force Motion Physics 35 Chapter 8 Chapter 8 Centra-Force Motion In this Chapter we wi use the theory we have discussed in Chapter 6 and 7 and appy it to very important probems in physics, in which we study the motion

More information

Numerical solution of one dimensional contaminant transport equation with variable coefficient (temporal) by using Haar wavelet

Numerical solution of one dimensional contaminant transport equation with variable coefficient (temporal) by using Haar wavelet Goba Journa of Pure and Appied Mathematics. ISSN 973-1768 Voume 1, Number (16), pp. 183-19 Research India Pubications http://www.ripubication.com Numerica soution of one dimensiona contaminant transport

More information

11.1 One-dimensional Helmholtz Equation

11.1 One-dimensional Helmholtz Equation Chapter Green s Functions. One-dimensiona Hemhotz Equation Suppose we have a string driven by an externa force, periodic with frequency ω. The differentia equation here f is some prescribed function) 2

More information

Lecture Note 3: Stationary Iterative Methods

Lecture Note 3: Stationary Iterative Methods MATH 5330: Computationa Methods of Linear Agebra Lecture Note 3: Stationary Iterative Methods Xianyi Zeng Department of Mathematica Sciences, UTEP Stationary Iterative Methods The Gaussian eimination (or

More information

THINKING IN PYRAMIDS

THINKING IN PYRAMIDS ECS 178 Course Notes THINKING IN PYRAMIDS Kenneth I. Joy Institute for Data Anaysis and Visuaization Department of Computer Science University of Caifornia, Davis Overview It is frequenty usefu to think

More information

$, (2.1) n="# #. (2.2)

$, (2.1) n=# #. (2.2) Chapter. Eectrostatic II Notes: Most of the materia presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartoo, Chap... Mathematica Considerations.. The Fourier series and the Fourier

More information

Method of Separation of Variables

Method of Separation of Variables MODUE 5: HEAT EQUATION 11 ecture 3 Method of Separation of Variables Separation of variables is one of the oldest technique for solving initial-boundary value problems (IBVP) and applies to problems, where

More information

MAS 315 Waves 1 of 8 Answers to Examples Sheet 1. To solve the three problems, we use the methods of 1.3 (with necessary changes in notation).

MAS 315 Waves 1 of 8 Answers to Examples Sheet 1. To solve the three problems, we use the methods of 1.3 (with necessary changes in notation). MAS 35 Waves of 8 Answers to Exampes Sheet. From.) and.5), the genera soution of φ xx = c φ yy is φ = fx cy) + gx + cy). Put c = : the genera soution of φ xx = φ yy is therefore φ = fx y) + gx + y) ) To

More information

NOISE-INDUCED STABILIZATION OF STOCHASTIC DIFFERENTIAL EQUATIONS

NOISE-INDUCED STABILIZATION OF STOCHASTIC DIFFERENTIAL EQUATIONS NOISE-INDUCED STABILIZATION OF STOCHASTIC DIFFERENTIAL EQUATIONS TONY ALLEN, EMILY GEBHARDT, AND ADAM KLUBALL 3 ADVISOR: DR. TIFFANY KOLBA 4 Abstract. The phenomenon of noise-induced stabiization occurs

More information

Fourier series. Part - A

Fourier series. Part - A Fourier series Part - A 1.Define Dirichet s conditions Ans: A function defined in c x c + can be expanded as an infinite trigonometric series of the form a + a n cos nx n 1 + b n sin nx, provided i) f

More information

CS229 Lecture notes. Andrew Ng

CS229 Lecture notes. Andrew Ng CS229 Lecture notes Andrew Ng Part IX The EM agorithm In the previous set of notes, we taked about the EM agorithm as appied to fitting a mixture of Gaussians. In this set of notes, we give a broader view

More information

An approximate method for solving the inverse scattering problem with fixed-energy data

An approximate method for solving the inverse scattering problem with fixed-energy data J. Inv. I-Posed Probems, Vo. 7, No. 6, pp. 561 571 (1999) c VSP 1999 An approximate method for soving the inverse scattering probem with fixed-energy data A. G. Ramm and W. Scheid Received May 12, 1999

More information

Solving the Heat Equation (Sect. 10.5).

Solving the Heat Equation (Sect. 10.5). Solving the Heat Equation Sect. 1.5. Review: The Stationary Heat Equation. The Heat Equation. The Initial-Boundary Value Problem. The separation of variables method. An example of separation of variables.

More information

Dual Integral Equations and Singular Integral. Equations for Helmholtz Equation

Dual Integral Equations and Singular Integral. Equations for Helmholtz Equation Int.. Contemp. Math. Sciences, Vo. 4, 9, no. 34, 1695-1699 Dua Integra Equations and Singuar Integra Equations for Hemhotz Equation Naser A. Hoshan Department of Mathematics TafiaTechnica University P.O.

More information

Wavelet Galerkin Solution for Boundary Value Problems

Wavelet Galerkin Solution for Boundary Value Problems Internationa Journa of Engineering Research and Deveopment e-issn: 2278-67X, p-issn: 2278-8X, www.ijerd.com Voume, Issue 5 (May 24), PP.2-3 Waveet Gaerkin Soution for Boundary Vaue Probems D. Pate, M.K.

More information

General Decay of Solutions in a Viscoelastic Equation with Nonlinear Localized Damping

General Decay of Solutions in a Viscoelastic Equation with Nonlinear Localized Damping Journa of Mathematica Research with Appications Jan.,, Vo. 3, No., pp. 53 6 DOI:.377/j.issn:95-65...7 Http://jmre.dut.edu.cn Genera Decay of Soutions in a Viscoeastic Equation with Noninear Locaized Damping

More information

17 Lecture 17: Recombination and Dark Matter Production

17 Lecture 17: Recombination and Dark Matter Production PYS 652: Astrophysics 88 17 Lecture 17: Recombination and Dark Matter Production New ideas pass through three periods: It can t be done. It probaby can be done, but it s not worth doing. I knew it was

More information

b n n=1 a n cos nx (3) n=1

b n n=1 a n cos nx (3) n=1 Fourier Anaysis The Fourier series First some terminoogy: a function f(x) is periodic if f(x ) = f(x) for a x for some, if is the smaest such number, it is caed the period of f(x). It is even if f( x)

More information

BALANCING REGULAR MATRIX PENCILS

BALANCING REGULAR MATRIX PENCILS BALANCING REGULAR MATRIX PENCILS DAMIEN LEMONNIER AND PAUL VAN DOOREN Abstract. In this paper we present a new diagona baancing technique for reguar matrix pencis λb A, which aims at reducing the sensitivity

More information

STABILITY OF A PARAMETRICALLY EXCITED DAMPED INVERTED PENDULUM 1. INTRODUCTION

STABILITY OF A PARAMETRICALLY EXCITED DAMPED INVERTED PENDULUM 1. INTRODUCTION Journa of Sound and Vibration (996) 98(5), 643 65 STABILITY OF A PARAMETRICALLY EXCITED DAMPED INVERTED PENDULUM G. ERDOS AND T. SINGH Department of Mechanica and Aerospace Engineering, SUNY at Buffao,

More information

Solution Set Seven. 1 Goldstein Components of Torque Along Principal Axes Components of Torque Along Cartesian Axes...

Solution Set Seven. 1 Goldstein Components of Torque Along Principal Axes Components of Torque Along Cartesian Axes... : Soution Set Seven Northwestern University, Cassica Mechanics Cassica Mechanics, Third Ed.- Godstein November 8, 25 Contents Godstein 5.8. 2. Components of Torque Aong Principa Axes.......................

More information

Problem set 6 The Perron Frobenius theorem.

Problem set 6 The Perron Frobenius theorem. Probem set 6 The Perron Frobenius theorem. Math 22a4 Oct 2 204, Due Oct.28 In a future probem set I want to discuss some criteria which aow us to concude that that the ground state of a sef-adjoint operator

More information

King Fahd University of Petroleum & Minerals

King Fahd University of Petroleum & Minerals King Fahd University of Petroeum & Mineras DEPARTMENT OF MATHEMATICAL SCIENCES Technica Report Series TR 369 December 6 Genera decay of soutions of a viscoeastic equation Saim A. Messaoudi DHAHRAN 3161

More information

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18 Quantum Mechanica Modes of Vibration and Rotation of Moecues Chapter 18 Moecuar Energy Transationa Vibrationa Rotationa Eectronic Moecuar Motions Vibrations of Moecues: Mode approximates moecues to atoms

More information

u(x) s.t. px w x 0 Denote the solution to this problem by ˆx(p, x). In order to obtain ˆx we may simply solve the standard problem max x 0

u(x) s.t. px w x 0 Denote the solution to this problem by ˆx(p, x). In order to obtain ˆx we may simply solve the standard problem max x 0 Bocconi University PhD in Economics - Microeconomics I Prof M Messner Probem Set 4 - Soution Probem : If an individua has an endowment instead of a monetary income his weath depends on price eves In particuar,

More information

FRST Multivariate Statistics. Multivariate Discriminant Analysis (MDA)

FRST Multivariate Statistics. Multivariate Discriminant Analysis (MDA) 1 FRST 531 -- Mutivariate Statistics Mutivariate Discriminant Anaysis (MDA) Purpose: 1. To predict which group (Y) an observation beongs to based on the characteristics of p predictor (X) variabes, using

More information

arxiv:nlin/ v2 [nlin.cd] 30 Jan 2006

arxiv:nlin/ v2 [nlin.cd] 30 Jan 2006 expansions in semicassica theories for systems with smooth potentias and discrete symmetries Hoger Cartarius, Jörg Main, and Günter Wunner arxiv:nin/0510051v [nin.cd] 30 Jan 006 1. Institut für Theoretische

More information

Radiation Fields. Lecture 12

Radiation Fields. Lecture 12 Radiation Fieds Lecture 12 1 Mutipoe expansion Separate Maxwe s equations into two sets of equations, each set separatey invoving either the eectric or the magnetic fied. After remova of the time dependence

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Mathematics II (Materials) Section A. Find the general solution of the equation

SCHOOL OF MATHEMATICS AND STATISTICS. Mathematics II (Materials) Section A. Find the general solution of the equation Data provided: Formua Sheet MAS250 SCHOOL OF MATHEMATICS AND STATISTICS Mathematics II (Materias Autumn Semester 204 5 2 hours Marks wi be awarded for answers to a questions in Section A, and for your

More information

Introduction to Riemann Solvers

Introduction to Riemann Solvers CO 5 BOLD WORKSHOP 2, 2 4 June Introduction to Riemann Sovers Oskar Steiner . Three major advancements in the numerica treatment of the hydrodynamic equations Three major progresses in computationa fuid

More information

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law Gauss Law 1. Review on 1) Couomb s Law (charge and force) 2) Eectric Fied (fied and force) 2. Gauss s Law: connects charge and fied 3. Appications of Gauss s Law Couomb s Law and Eectric Fied Couomb s

More information

Introduction to Simulation - Lecture 14. Multistep Methods II. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

Introduction to Simulation - Lecture 14. Multistep Methods II. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Introduction to Simuation - Lecture 14 Mutistep Methods II Jacob White Thans to Deepa Ramaswamy, Micha Rewiensi, and Karen Veroy Outine Sma Timestep issues for Mutistep Methods Reminder about LTE minimization

More information

Finite element method for structural dynamic and stability analyses

Finite element method for structural dynamic and stability analyses Finite eement method for structura dynamic and stabiity anayses Modue-9 Structura stabiity anaysis Lecture-33 Dynamic anaysis of stabiity and anaysis of time varying systems Prof C S Manohar Department

More information

A proposed nonparametric mixture density estimation using B-spline functions

A proposed nonparametric mixture density estimation using B-spline functions A proposed nonparametric mixture density estimation using B-spine functions Atizez Hadrich a,b, Mourad Zribi a, Afif Masmoudi b a Laboratoire d Informatique Signa et Image de a Côte d Opae (LISIC-EA 4491),

More information

VTU-NPTEL-NMEICT Project

VTU-NPTEL-NMEICT Project MODUE-X -CONTINUOUS SYSTEM : APPROXIMATE METHOD VIBRATION ENGINEERING 14 VTU-NPTE-NMEICT Project Progress Report The Project on Deveopment of Remaining Three Quadrants to NPTE Phase-I under grant in aid

More information

CABLE SUPPORTED STRUCTURES

CABLE SUPPORTED STRUCTURES CABLE SUPPORTED STRUCTURES STATIC AND DYNAMIC ANALYSIS OF CABLES 3/22/2005 Prof. dr Stanko Brcic 1 Cabe Supported Structures Suspension bridges Cabe-Stayed Bridges Masts Roof structures etc 3/22/2005 Prof.

More information

The Wave Equation. Units. Recall that [z] means the units of z. Suppose [t] = s, [x] = m. Then u = c 2 2 u. [u]

The Wave Equation. Units. Recall that [z] means the units of z. Suppose [t] = s, [x] = m. Then u = c 2 2 u. [u] The Wave Equation UBC M57/316 Lecture Notes c 014 by Phiip D. Loewen Many PDE s describe wave motion. The simpest is u tt = c u xx. Here c > 0 is a given constant, and u = u(x, t is some quantity of interest

More information

Distributed average consensus: Beyond the realm of linearity

Distributed average consensus: Beyond the realm of linearity Distributed average consensus: Beyond the ream of inearity Usman A. Khan, Soummya Kar, and José M. F. Moura Department of Eectrica and Computer Engineering Carnegie Meon University 5 Forbes Ave, Pittsburgh,

More information

Homotopy Perturbation Method for Solving Partial Differential Equations of Fractional Order

Homotopy Perturbation Method for Solving Partial Differential Equations of Fractional Order Int Journa of Math Anaysis, Vo 6, 2012, no 49, 2431-2448 Homotopy Perturbation Method for Soving Partia Differentia Equations of Fractiona Order A A Hemeda Department of Mathematics, Facuty of Science

More information

Strauss PDEs 2e: Section Exercise 4 Page 1 of 5. u tt = c 2 u xx ru t for 0 < x < l u = 0 at both ends u(x, 0) = φ(x) u t (x, 0) = ψ(x),

Strauss PDEs 2e: Section Exercise 4 Page 1 of 5. u tt = c 2 u xx ru t for 0 < x < l u = 0 at both ends u(x, 0) = φ(x) u t (x, 0) = ψ(x), Strauss PDEs e: Sectio 4.1 - Exercise 4 Page 1 of 5 Exercise 4 Cosider waves i a resistat medium that satisfy the probem u tt = c u xx ru t for < x < u = at both eds ux, ) = φx) u t x, ) = ψx), where r

More information

Smoothness equivalence properties of univariate subdivision schemes and their projection analogues

Smoothness equivalence properties of univariate subdivision schemes and their projection analogues Numerische Mathematik manuscript No. (wi be inserted by the editor) Smoothness equivaence properties of univariate subdivision schemes and their projection anaogues Phiipp Grohs TU Graz Institute of Geometry

More information

Another Class of Admissible Perturbations of Special Expressions

Another Class of Admissible Perturbations of Special Expressions Int. Journa of Math. Anaysis, Vo. 8, 014, no. 1, 1-8 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.014.31187 Another Cass of Admissibe Perturbations of Specia Expressions Jerico B. Bacani

More information

Volume 13, MAIN ARTICLES

Volume 13, MAIN ARTICLES Voume 13, 2009 1 MAIN ARTICLES THE BASIC BVPs OF THE THEORY OF ELASTIC BINARY MIXTURES FOR A HALF-PLANE WITH CURVILINEAR CUTS Bitsadze L. I. Vekua Institute of Appied Mathematics of Iv. Javakhishvii Tbiisi

More information

LECTURE 19: SEPARATION OF VARIABLES, HEAT CONDUCTION IN A ROD

LECTURE 19: SEPARATION OF VARIABLES, HEAT CONDUCTION IN A ROD ECTURE 19: SEPARATION OF VARIABES, HEAT CONDUCTION IN A ROD The idea of separation of variables is simple: in order to solve a partial differential equation in u(x, t), we ask, is it possible to find a

More information

ODE Homework 2. Since M y N x, the equation is not exact. 2. Determine whether the following equation is exact. If it is exact, M y N x 1 x.

ODE Homework 2. Since M y N x, the equation is not exact. 2. Determine whether the following equation is exact. If it is exact, M y N x 1 x. ODE Homework.6. Exact Equations and Integrating Factors 1. Determine whether the foowing equation is exact. If it is exact, find the soution pe x sin qdx p3x e x sin qd 0 [.6 #8] So. Let Mpx, q e x sin,

More information

SUPPLEMENTARY MATERIAL TO INNOVATED SCALABLE EFFICIENT ESTIMATION IN ULTRA-LARGE GAUSSIAN GRAPHICAL MODELS

SUPPLEMENTARY MATERIAL TO INNOVATED SCALABLE EFFICIENT ESTIMATION IN ULTRA-LARGE GAUSSIAN GRAPHICAL MODELS ISEE 1 SUPPLEMENTARY MATERIAL TO INNOVATED SCALABLE EFFICIENT ESTIMATION IN ULTRA-LARGE GAUSSIAN GRAPHICAL MODELS By Yingying Fan and Jinchi Lv University of Southern Caifornia This Suppementary Materia

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM REVIEW Vo. 49,No. 1,pp. 111 1 c 7 Society for Industria and Appied Mathematics Domino Waves C. J. Efthimiou M. D. Johnson Abstract. Motivated by a proposa of Daykin [Probem 71-19*, SIAM Rev., 13 (1971),

More information

DISTRIBUTION OF TEMPERATURE IN A SPATIALLY ONE- DIMENSIONAL OBJECT AS A RESULT OF THE ACTIVE POINT SOURCE

DISTRIBUTION OF TEMPERATURE IN A SPATIALLY ONE- DIMENSIONAL OBJECT AS A RESULT OF THE ACTIVE POINT SOURCE DISTRIBUTION OF TEMPERATURE IN A SPATIALLY ONE- DIMENSIONAL OBJECT AS A RESULT OF THE ACTIVE POINT SOURCE Yury Iyushin and Anton Mokeev Saint-Petersburg Mining University, Vasiievsky Isand, 1 st ine, Saint-Petersburg,

More information

MARKOV CHAINS AND MARKOV DECISION THEORY. Contents

MARKOV CHAINS AND MARKOV DECISION THEORY. Contents MARKOV CHAINS AND MARKOV DECISION THEORY ARINDRIMA DATTA Abstract. In this paper, we begin with a forma introduction to probabiity and expain the concept of random variabes and stochastic processes. After

More information

VALIDATED CONTINUATION FOR EQUILIBRIA OF PDES

VALIDATED CONTINUATION FOR EQUILIBRIA OF PDES VALIDATED CONTINUATION FOR EQUILIBRIA OF PDES SARAH DAY, JEAN-PHILIPPE LESSARD, AND KONSTANTIN MISCHAIKOW Abstract. One of the most efficient methods for determining the equiibria of a continuous parameterized

More information