CHECKING AND ESTIMATING RIR VALUES

Size: px
Start display at page:

Download "CHECKING AND ESTIMATING RIR VALUES"

Transcription

1 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol CHECKING AND ESTIMATING RIR VALUES Q. Johnson and R.S. Zhou Materials Data, Inc Concannon Blvd. Livermore, CA ABSTRACT With the publication of nearly 38,000 calculated x-ray diffraction patterns in its new CD-ROM, the ICDD has provided users with a wealth of RIR values (i.e., reference intensity ratio values, also signified by Ill,, where c refers to corundum, the standard used currently). Compared to previous CDs, this new one will provide nearly ten times as many RIR values. In the past, quantitative calculations using RIRs were often frustrated by one or more missing values among the several phases in a mixture subjected to x-ray diffraction analysis. That is no longer much of an issue. But some new problems emerge. Do I believe these new RIR numbereall of them? Can I use calculated values to represent my real materials, especially when I know I may be dealing with possible solid solutions? What value among the several in the new database should I use? What should I do when I m still missing an RIR for a phase? How good are quantitative calculations using these RIRs anyway? Should the RIR definition, based primarily on experimental considerations, be fine-tuned now that calculated RIR values dominate? Here we present simple expressions to enable checking or estimating RIR values without need for structures. INTRODUCTION Suppose an XRD analyst, after conclusion of a qualitative phase identification analysis involving two unknowns, is asked to provide quantitative results as well. While there are many methods to choose from, one of the quickest ways to do this would be to measure the integrated intensity of the strongest peak in each phase and then, using the reference intensity ratio (RIR), basically a scaling factor, convert these intensity values to weight percent2-4. With the publication this year of nearly 38,000 calculated XRD powder patterns based on the ICSD structure database5, the ICDD will be placing a powerful new tool into the hands of the XRD analyst. Previous pattern files for Inorganic Level-II (sets l-47) contained less than 10% RIR scaling values. Furthermore, many of these RIR values were measured and there exists no method whereby editors could easily check the correctness of these values. If an analyst wished to perform an RIR-based quantitative analysis using RIR data from sets l-47, there exists only a

2 This document was presented at the Denver X-ray Conference (DXC) on Applications of X-ray Analysis. Sponsored by the International Centre for Diffraction Data (ICDD). This document is provided by ICDD in cooperation with the authors and presenters of the DXC for the express purpose of educating the scientific community. All copyrights for the document are retained by ICDD. Usage is restricted for the purposes of education and scientific research. DXC Website ICDD Website -

3 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol % chance both RIR values would be available for a two-phase mixture. By contrast, for phases of the new calculated patterns, the likelihood of finding all RIR values for a five-phase mixture is better than 99%. Table 1 presents a comparison of some typical RIR values from the original (sets l-47) and new (sets 70-85) pattern databases for three minerals. Table 1. Comparison of RIR values from older versus new ICDD databases. Older patterns RIR New patterns RIR Rutile Hematite Anatase These are not especially complicated or troublesome materials. Yet, except for t-utile, there is great disagreement in RIR values that would lead to considerably different quantitative results. So what advice can be given, what tools are available to assist the analyst? First, like the stock market, things are neither as good or as bad as they seem. For example, Figure 1 shows an experimental pattern that is a mixture of the three phases of Table 1. moo IOOD~ 3503~ H,. 6 % P 2500~ B C mm.,503.,m- Figure 1. Experimental pattern containing a mixture of r-utile, hematite, and anatase.

4 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol There is a resolved peak for each phase in the first three peaks. We can use these three lines in a quantitative analysis if we believe the intensity relationship these have to the strongest line in each phase and have confidence in the RIR values. Table 2 presents this one-line quantitative analysis using ICDD original RIR values together with intensity characterization by profile fitting, a more complete multi-line profile-based RIR quantitative analysis using Jade 5 (Ref. 6) with the original pattern database (l-47), one using Jade 5 with the new pattern database (70-85), and a Rietveld quantitative analysis using the Riqas program7. The latter values should be considered the best or most likely values. Table 2. Quantitative analysis results for the three-phase mixture pattern of Figure 1. One-line Jade 5 (l-47) Jade 5 (70-85) Riqas Rutile Hematite Anatase 50% 46% 54% 55.7% This single example does not, of course, prove much but it is encouraging and provides hope that the new patterns and their RIR values might be very useful, especially if combined with profile fitting. POSSIBILITY OF ERRORS One trouble that confronts us immediately, however, is the possibility that there may be errors in the new calculated patterns and their RIR values. It isn t reasonable to expect such a great undertaking could be accomplished without errors. Unfortunately, there is no way that the ICDD editors can exhaustively check all these patterns immediately even with the excellent help of the AIDS program. If some systematic error can be uncovered for certain phases, these patterns can easily be corrected with future updates. Simple tests have already led to a short exclusion list of patterns that should be avoided for now. These tests include such things as looking for excessively high or low calculated densities or RIR values, missing cell constants, or inconsistent combinations of formula, space group, Z, density, and molecular weight. Another area for potential trouble is that this new data set contains many materials that appear multiple times as a consequence of measurements made at non-ambient conditions of temperature or pressure as well as slight formula variations. For example, there are now 40 entries for corundum, all with space group R-3c, cell constants approximately a = 4.8 and c = 13, and density = 4. Of these 40 entries, no RIR value is provided for one pattern, another pattern lists RIR = 0.12,29 pattern RIRs vary between 0.89 and 1.04, and 9 pattern RIRs range from 1.96 to If you can t trust corundum, which is the standard for RIR and is defined as 1.O, what pattern can you trust?

5 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol Because the RIR values were calculated, the best answer to that question is to obtain the structure and calculate it again if you have any question. This approach is shown in Table 3 where two very different results were obtained for old and new AlF, patterns.

6 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol Table 3. RIR values for AlF,. Pattern Comments (old) 7.08 Measured? 76-l 623 (new) 3.20 Calculated (new) 3.22 Calculated (new) 2.9 This work, calculated using Micro-Powd The final entry in Table 3 confirms the two calculated values by agreeing within 10% of their values. This small difference is no cause for concern because slightly different theoretical models were used. As good as this approach is, it isn t simple and it s not practical for every lab. Before moving on to some simpler methods, it should be stressed that the new database is an excellent first step by the ICDD. We shouldn t expect all entries to be absolutely correct at this early date (unfortunately that s what we want for quantitative analysis). A large percentage of these patterns will be correct, and new ideas and new tools in the future will bring greater confidence in all the data. For the present, the user should be cautious and verify RIR values before using them in quantitative analysis if there is any question. VERIFYING RIR VALUES So how do I verify an RIR value? To check an RIR value, you should either recalculate it from the structure or measure it. Either option may prove difficult. Some help may be found in an amazingly simple relationship that exists between RIR and density (p). Nearly 95% of the new patterns have an RIR/p ratio within the range of 0.2 to 3.0. You should be suspicious of values outside this range. This RIR-p relationship can be rationalized by substituting the approximate expression for F,!&l given in equation (1) below into the expression for RIR given later in equation (2). Fhkl = Fooo(B) z k z, Mol. Wt. * 2, (1) where Fooo(0) is Fooo adjusted for the fall-off of the scattering factor at 8, k is a constant, Mol. Wt. is the molecular weight, and 2 is the number of molecules or formula weights in the unit cell. There is a symmetry dependence that should be considered to make this RIR/p rule-of-thumb more valuable. First, consider the concept of average RIR for a symmetry type. To determine this, we take a symmetry system, for example, orthorhombic, remove a small number of excessively low and high RIR values (below 0.1 and greater than 25) and then compute the average RIR. These numbers are shown in Table 4.

7 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol Table 4. Average RIR values for different symmetries. Symmetry Avg. RIR Symmetry factor Cubic Tetragonal Hexagonal Rhombohedral 5.O 0.42 Orthorhombic Monoclinic Triclinic The symmetry factor is a heuristically derived number approximately one-tenth of the average RIR value. It can be used to set the low end of a four-fold range of RIIUp values that will accommodate more than 70% of the observed values. For example, over 70% of the RIR/p values lie between 0.3 and 1.2 for orthorhombic symmetries and more than 80% lie between 0.5 and 2.0 for tetragonal symmetries. Another relationship may prove helpful. We will first need to consider the Maximum Derived Intensity for a phase. We define this as the intensity of the reflection having the highest value after corrections for geometrical, multiplicity, density, and unit cell volume considerations. Consider the following equation, which expresses the RIR, Ill,, without the assumption or need of corundum as a reference standard: where I/I, = U * Fh,$ * Lp(8) * mhkl / (p e p) (2) K = a constant depending on the standard used, F = structure factor, hkl = reflection indices, Lp = Lorentz-polarization factor, m = reflection multiplicity, V = cell volume, p = density. The problem with this relationship is that, without the structure, we have no way to determine the structure factor, Fhkl. On the other hand, if we assume the Maximum Derived Intensity can be represented by F,,,(8), we can easily calculate a maximum value for RIR, I/I,. We know this value will be the maximum possible RIR value because no structure factor can be larger than Fooo(0). For relatively uncomplicated materials, this maximum value will be a good approximation. For example, some estimates for MgO (periclase) are provided in Table 5.

8 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol Table 5. Comparison of ICDD RIR values for periclase and estimates based on our Maximum Derived Intensity approximation. ICDD pattern ICDD RIR Our estimate (new) (new) (new) (old) 1.oo 3.28 Notice two things about these values. First, RIR for is strongly suspect. Second, the estimated RIR for is smaller than the calculated value, which we just pointed out above cannot happen. The reason for this discrepancy is that the calculation for the estimated value did not include anomalous scattering whereas the ICDD calculation included it, resulting in this slight difference. This simple calculation, made without reference to the structure but using only cell volume, density, Lp and reflection multiplicity, provides good guidance for RIR values. Nearly 80% of the new patterns have a ratio of RIR (estimated)/rir (ICDD) within the range of 1 to 4. If the estimated value is used in place of the true RIR, the result for that particular phase would be to place a lower bound on the amount present in a quantitative analysis. OBSERVATIONS AND RECOMMENDATIONS Listed below are some observations and recommendations that can be made based on this study: Previously, only about 4000 RIR values were known, many of them measured. The available RIR values have now been expanded in one year to over ten times as many as before, most of which have been calculated. The present method for defining RIR was based more on experimental considerations than calculational ones. With ubiquitous PCs and far more calculated than measured RIR values, a redefinition more in tune with calculational concerns should be considered. Present conventions don t specify the hkl values for a material s reference reflection. Present conventions don t specify whether the RIR value was calculated or measured. Compare this practice with what is done for density values. Certain classes of materials have very large RIR values that severely limit their use in such analyses (see below). Perhaps it is time to provide a simple Greek symbol for this important number, for example, the Greek letter iota (t), as one possibility, is far easier to verbalize than RIR. Item 6 above should be dealt with in more detail. Consider the standard Lp factor as shown in Fig. 2.

9 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol Lorentz Polarization ~. 40 ~~ UT * 7 z t? 2 I Theta Figure 2. Lorentz-polarization must be made at small angles. correction as a function of Theta shows that very large corrections This theta-dependent value is extreme at low theta values, resulting in very intense reflections for some materials. For example, Figure 3 shows one pattern with and without Lp factors. Simulated I corrected for Lp Z-Theta(deg) Figure 3. Simulated pattern for with and without Lp factors.

10 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol Using the present definition for RIR, we would select the reflection at 10 for our RIR measurement. Unfortunately, this reflection has a very small structure component for its intensity, deriving its dominance over a much better reflection at 44,. to the Lp factor. The problem this presents is that if the structure exhibits slight compositional variations such that the lattice constant changes slightly, the calculated RIR value can change significantly and affect your quantitative analysis adversely. The problem won t arise if the 44 reflection is used. Summarizing, the new database of the ICDD will be of enormous significance for XRD pattern analysis, but it is important to proceed carefully in using RIR-based quantitative analysis because some of the new RIR values may prove to be in error. Certain earlier practices and definitions with respect to RIR should be reviewed and perhaps changed by the community. Finally, we have presented two approximate methods useful for checking and estimating RIR values that don t require full knowledge of the structures. and 1.O < RIR (estimated)/rir (ICDD) < 4.0 (4) 0.2 -=c RIRlp -==c 3.0. (5) Expression (5) can be fine-tuned using symmetry considerations as discussed in this work. These approximations may save an analysis missing an RIR value so long as the limitations are understood. They also provide a tool for evaluating correctness of existing values or for estimating values where few exist (for example prior sets 1-47). REFERENCES 1. J. W. Visser and P. M. DeWolff, Absolute Intensities, Report , Technisch Physische Dienst, Delft, Netherlands (1964). 2. C. R. Hubbard, E. H. Evans, and D. K. Smith, The Reference Intensity Ratio, I/I,-, for Computer Simulated Powder Patterns, J. Appl. Cryst. 9, 169 (1976). 3. C. R. Hubbard and R.L. Snyder, RIR-Measurement and Use in Quantitative XRD, Powder Diffraction 3(2), 74 (1988). 4. Robert L. Snyder, The Use of Reference Intensity Ratios in X-Ray Quantitative Analysis, Powder Diffraction 7(4), 186 (1992). 5. Powder Diffraction File, PDF-2 Database Release 1998, announcement of new database release, International Centre for Diffraction Data (ICDD). 6. Jade program for analyzing x-ray diffraction pattern data, Materials Data Inc., 1224 Concannon Blvd., Livermore, CA Riqas program for analyzing x-ray diffraction pattern data, Materials Data Inc., 1224 Concannon Blvd., Liver-more, CA A manual describing the data format used in NBS AIDS83, Standard Reference Data, U.S. Dept. of Commerce, National Institute of Standards and Technology (1990).

11 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol MD1 MicroPowd code, Materials Data Inc., 1224 Concannon Blvd., Livermore, CA

PREDICTION OF THE CRYSTAL STRUCTURE OF BYNARY AND TERNARY INORGANIC COMPOUNDS USING SYMMETRY RESTRICTIONS AND POWDER DIFFRACTION DATA

PREDICTION OF THE CRYSTAL STRUCTURE OF BYNARY AND TERNARY INORGANIC COMPOUNDS USING SYMMETRY RESTRICTIONS AND POWDER DIFFRACTION DATA Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 116 PREDICTION OF THE CRYSTAL STRUCTURE OF BYNARY AND TERNARY INORGANIC COMPOUNDS USING SYMMETRY RESTRICTIONS

More information

THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS DIFFRACTION DATA

THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS DIFFRACTION DATA Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 96 THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS

More information

IMPROVING THE ACCURACY OF RIETVELD-DERIVED LATTICE PARAMETERS BY AN ORDER OF MAGNITUDE

IMPROVING THE ACCURACY OF RIETVELD-DERIVED LATTICE PARAMETERS BY AN ORDER OF MAGNITUDE Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 158 IMPROVING THE ACCURACY OF RIETVELD-DERIVED LATTICE PARAMETERS BY AN ORDER OF MAGNITUDE B. H.

More information

ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION

ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION 173 ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION N. A. Raftery, L. K. Bekessy, and J. Bowpitt Faculty of Science, Queensland University of Technology, GPO Box 2434,

More information

Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K.

Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K. 783 SCOPE AND LIMITATIONS XRF ANALYSIS FOR SEMI-QUANTITATIVE Introduction Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K. Historically x-ray fluorescence spectrometry has

More information

Crystallography Reading: Warren, Chapters 2.1, 2.2, 2.6, 8 Surface symmetry: Can be a clue to underlying structure. Examples:

Crystallography Reading: Warren, Chapters 2.1, 2.2, 2.6, 8 Surface symmetry: Can be a clue to underlying structure. Examples: Crystallography Reading: Warren, Chapters 2.1, 2.2, 2.6, 8 Surface symmetry: Can be a clue to underlying structure. Examples: Snow (SnowCrystals.com) Bismuth (Bao, Kavanagh, APL 98 66103 (2005) Hexagonal,

More information

DATA MINING WITH DIFFERENT TYPES OF X-RAY DATA

DATA MINING WITH DIFFERENT TYPES OF X-RAY DATA DATA MINING WITH DIFFERENT TYPES OF X-RAY DATA 315 C. K. Lowe-Ma, A. E. Chen, D. Scholl Physical & Environmental Sciences, Research and Advanced Engineering Ford Motor Company, Dearborn, Michigan, USA

More information

RIETVELD REFINEMENT WITH XRD AND ND: ANALYSIS OF METASTABLE QANDILITE-LIKE STRUCTURES

RIETVELD REFINEMENT WITH XRD AND ND: ANALYSIS OF METASTABLE QANDILITE-LIKE STRUCTURES Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 261 RIETVELD REFINEMENT WITH XRD AND ND: ANALYSIS OF METASTABLE QANDILITE-LIKE STRUCTURES G. Kimmel

More information

EFFECT OF CALIBRATION SPECIMEN PREPARATION TECHNIQUES ON NARROW RANGE X-RAY FLUORESCENCE CALIBRATION ACCURACY

EFFECT OF CALIBRATION SPECIMEN PREPARATION TECHNIQUES ON NARROW RANGE X-RAY FLUORESCENCE CALIBRATION ACCURACY Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol.43 424 EFFECT OF CALIBRATION SPECIMEN PREPARATION TECHNIQUES ON NARROW RANGE X-RAY FLUORESCENCE CALIBRATION

More information

Crystallographic Symmetry. Jeremy Karl Cockcroft

Crystallographic Symmetry. Jeremy Karl Cockcroft Crystallographic Symmetry Jeremy Karl Cockcroft Why bother? To describe crystal structures Simplifies the description, e.g. NaCl structure Requires coordinates for just 2 atoms + space group symmetry!

More information

AN ELASTIC CONSTANTS DATABASE AND XEC CALCULATOR FOR USE IN XRD RESIDUAL STRESS ANALYSIS

AN ELASTIC CONSTANTS DATABASE AND XEC CALCULATOR FOR USE IN XRD RESIDUAL STRESS ANALYSIS Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 128 AN ELASTIC CONSTANTS DATABASE AND XEC CALCULATOR FOR USE IN XRD RESIDUAL STRESS ANALYSIS A.C. Vermeulen

More information

Analytical Methods for Materials

Analytical Methods for Materials Analytical Methods for Materials Laboratory Module # Crystal Structure Determination for Non-Cubic Crystals Suggested Reading 1. Y. Waseda, E. Matsubara, and K. Shinoda, X-ray Diffraction Crystallography,

More information

Earth Materials Lab 2 - Lattices and the Unit Cell

Earth Materials Lab 2 - Lattices and the Unit Cell Earth Materials Lab 2 - Lattices and the Unit Cell Unit Cell Minerals are crystallographic solids and therefore are made of atoms arranged into lattices. The average size hand specimen is made of more

More information

CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY

CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY Copyright -International Centre for Diffraction Data 2010 ISSN 1097-0002 CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY B. Chyba, M. Mantler, H. Ebel, R. Svagera Technische Universit Vienna,

More information

COMPARISON OF THREE UNIVERSAL CURVES FOR THE ESCAPE PROBABILITY OF X-RAY EXCITED ELECTRONS - I. THEORY

COMPARISON OF THREE UNIVERSAL CURVES FOR THE ESCAPE PROBABILITY OF X-RAY EXCITED ELECTRONS - I. THEORY Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 380 COMPARISON OF THREE UNIVERSAL CURVES FOR THE ESCAPE PROBABILITY OF X-RAY EXCITED ELECTRONS - I. THEORY

More information

Symmetry. 2-D Symmetry. 2-D Symmetry. Symmetry. EESC 2100: Mineralogy 1. Symmetry Elements 1. Rotation. Symmetry Elements 1. Rotation.

Symmetry. 2-D Symmetry. 2-D Symmetry. Symmetry. EESC 2100: Mineralogy 1. Symmetry Elements 1. Rotation. Symmetry Elements 1. Rotation. Symmetry a. Two-fold rotation = 30 o /2 rotation a. Two-fold rotation = 30 o /2 rotation Operation Motif = the symbol for a two-fold rotation EESC 2100: Mineralogy 1 a. Two-fold rotation = 30 o /2 rotation

More information

TEMScripts Real-time Crystallography Manual. TEMScripts LLC. Last updated: 11/4/2016

TEMScripts Real-time Crystallography Manual. TEMScripts LLC. Last updated: 11/4/2016 TEMScripts Real-time Crystallography Manual TEMScripts LLC. Last updated: 11/4/2016 Close Digital Micrograph Installation Copy following files to \\Gatan\DigitalMicrograph\PlugIns (normally under C:\Program

More information

O.A. Smirnova Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu , Japan

O.A. Smirnova Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu , Japan 89 MULTIALIQUOT CELL APPROACH FOR STRUCTURE DETERMINATION FROM POWDER DIFFRACTION OF HIGH SYMMETRY COMPOUNDS O.A. Smirnova Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011, Japan

More information

GLANCING INCIDENCE XRF FOR THE ANALYSIS OF EARLY CHINESE BRONZE MIRRORS

GLANCING INCIDENCE XRF FOR THE ANALYSIS OF EARLY CHINESE BRONZE MIRRORS 176 177 GLANCING INCIDENCE XRF FOR THE ANALYSIS OF EARLY CHINESE BRONZE MIRRORS Robert W. Zuneska, Y. Rong, Isaac Vander, and F. J. Cadieu* Physics Dept., Queens College of CUNY, Flushing, NY 11367. ABSTRACT

More information

Applications of X-ray and Neutron Scattering in Biological Sciences: Symmetry in direct and reciprocal space 2012

Applications of X-ray and Neutron Scattering in Biological Sciences: Symmetry in direct and reciprocal space 2012 Department of Drug Design and Pharmacology Applications of X-ray and Neutron Scattering in Biological Sciences: Symmetry in direct and reciprocal space 2012 Michael Gajhede Biostructural Research Copenhagen

More information

HOW TO ANALYZE SYNCHROTRON DATA

HOW TO ANALYZE SYNCHROTRON DATA HOW TO ANALYZE SYNCHROTRON DATA 1 SYNCHROTRON APPLICATIONS - WHAT Diffraction data are collected on diffractometer lines at the world s synchrotron sources. Most synchrotrons have one or more user facilities

More information

PDF-4+ Tools and Searches

PDF-4+ Tools and Searches PDF-4+ Tools and Searches PDF-4+ 2018 The PDF-4+ 2018 database is powered by our integrated search display software. PDF-4+ 2018 boasts 72 search selections coupled with 125 display fields resulting in

More information

PDF-4+ Tools and Searches

PDF-4+ Tools and Searches PDF-4+ Tools and Searches PDF-4+ 2019 The PDF-4+ 2019 database is powered by our integrated search display software. PDF-4+ 2019 boasts 74 search selections coupled with 126 display fields resulting in

More information

Introduction to Quantitative Analysis

Introduction to Quantitative Analysis ntroduction to Quantitative Analysis Qualitative: D phases by comparison with standard patterns. Estimate of proportions of phases by comparing peak intensities attributed to the identified phases with

More information

DEVELOPMENT OF XRD IN EL SALVADOR

DEVELOPMENT OF XRD IN EL SALVADOR PACIFIC OCEAN Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 150 ABSTRACT DEVELOPMENT OF XRD IN EL SALVADOR Elizabeth de Henríquez LaGeo S.A. de

More information

EFFECT OF THE HOLE-BOTTOM FILLET RADIUS ON THE RESIDUAL STRESS ANALYSIS BY THE HOLE DRILLING METHOD

EFFECT OF THE HOLE-BOTTOM FILLET RADIUS ON THE RESIDUAL STRESS ANALYSIS BY THE HOLE DRILLING METHOD 63 EFFECT OF THE HOLE-BOTTOM FILLET RADIUS ON THE RESIDUAL STRESS ANALYSIS BY THE HOLE DRILLING METHOD M. Scafidi a, E. Valentini b, B. Zuccarello a scafidi@dima.unipa.it, emilio.valentini@sintechnology.com,

More information

Recent activities around the crystallography open databases COD, PCOD and P2D2

Recent activities around the crystallography open databases COD, PCOD and P2D2 Recent activities around the crystallography open databases COD, PCOD and P2D2 Armel Le Bail and the COD Advisory Board Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O.

More information

Basic Crystallography Part 1. Theory and Practice of X-ray Crystal Structure Determination

Basic Crystallography Part 1. Theory and Practice of X-ray Crystal Structure Determination Basic Crystallography Part 1 Theory and Practice of X-ray Crystal Structure Determination We have a crystal How do we get there? we want a structure! The Unit Cell Concept Ralph Krätzner Unit Cell Description

More information

In Situ High-Temperature Study Of Silver Behenate Reduction To Silver Metal Using Synchrotron Radiation

In Situ High-Temperature Study Of Silver Behenate Reduction To Silver Metal Using Synchrotron Radiation Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 371 In Situ High-Temperature Study Of Silver Behenate Reduction To Silver Metal Using Synchrotron

More information

Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol ISSN

Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol ISSN Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol.43 129 MATHEMATICAL OF DIFFRACTION PROPERTIES POLE FIGURES ABSTRACT Helmut Schaeben Mathematics and Computer

More information

Introduction to Twinning

Introduction to Twinning S.Parsons@ed.ac.uk Introduction to Twinning Simon Parsons School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK. Introduction Although twinning has

More information

Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol

Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 386 COMPARISON OF THREE UNIVERSAL CURVES FOR THE ESCAPE PROBABILITY OF X-RAY EXCITED ELECTRONS II. EVALUATION

More information

INFLUENCE OF GROWTH INTERRUPTION ON THE FORMATION OF SOLID-STATE INTERFACES

INFLUENCE OF GROWTH INTERRUPTION ON THE FORMATION OF SOLID-STATE INTERFACES 122 INFLUENCE OF GROWTH INTERRUPTION ON THE FORMATION OF SOLID-STATE INTERFACES I. Busch 1, M. Krumrey 2 and J. Stümpel 1 1 Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

More information

PDF-2 Tools and Searches

PDF-2 Tools and Searches PDF-2 Tools and Searches PDF-2 2019 The PDF-2 2019 database is powered by our integrated search display software. PDF-2 2019 boasts 69 search selections coupled with 53 display fields resulting in a nearly

More information

Crystallographic Calculations

Crystallographic Calculations Page 1 of 7 EENS 2110 Tulane University Mineralogy Prof. Stephen A. Nelson This page last updated on 07-Sep-2010 Crystallographic calculations involve the following: 1. Miller Indices (hkl) 2. Axial ratios

More information

CHARACTERIZING PROCESS SEMICONDUCTOR THIN FILMS WITH A CONFOCAL MICRO X-RAY FLUORESCENCE MICROSCOPE

CHARACTERIZING PROCESS SEMICONDUCTOR THIN FILMS WITH A CONFOCAL MICRO X-RAY FLUORESCENCE MICROSCOPE CHARACTERIZING PROCESS SEMICONDUCTOR THIN FILMS WITH A CONFOCAL MICRO X-RAY FLUORESCENCE MICROSCOPE 218 Chris M. Sparks 1, Elizabeth P. Hastings 2, George J. Havrilla 2, and Michael Beckstead 2 1. ATDF,

More information

MATERIALS CHARACTERIZATION USING A NOVEL SIMULTANEOUS NEAR-INFRARED/X-RAY DIFFRACTION INSTRUMENT

MATERIALS CHARACTERIZATION USING A NOVEL SIMULTANEOUS NEAR-INFRARED/X-RAY DIFFRACTION INSTRUMENT Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 249 MATERIALS CHARACTERIZATION USING A NOVEL SIMULTANEOUS NEAR-INFRARED/X-RAY DIFFRACTION INSTRUMENT

More information

X-ray, Neutron and e-beam scattering

X-ray, Neutron and e-beam scattering X-ray, Neutron and e-beam scattering Introduction Why scattering? Diffraction basics Neutrons and x-rays Techniques Direct and reciprocal space Single crystals Powders CaFe 2 As 2 an example What is the

More information

RADIOACTIVE SAMPLE EFFECTS ON EDXRF SPECTRA

RADIOACTIVE SAMPLE EFFECTS ON EDXRF SPECTRA 90 RADIOACTIVE SAMPLE EFFECTS ON EDXRF SPECTRA Christopher G. Worley Los Alamos National Laboratory, MS G740, Los Alamos, NM 87545 ABSTRACT Energy dispersive X-ray fluorescence (EDXRF) is a rapid, straightforward

More information

X-Ray Diffraction. Parkland College. Reuben James Parkland College. Recommended Citation

X-Ray Diffraction. Parkland College. Reuben James Parkland College. Recommended Citation Parkland College A with Honors Projects Honors Program 2014 X-Ray Diffraction Reuben James Parkland College Recommended Citation James, Reuben, "X-Ray Diffraction" (2014). A with Honors Projects. 115.

More information

n-dimensional, infinite, periodic array of points, each of which has identical surroundings.

n-dimensional, infinite, periodic array of points, each of which has identical surroundings. crystallography ll Lattice n-dimensional, infinite, periodic array of points, each of which has identical surroundings. use this as test for lattice points A2 ("bcc") structure lattice points Lattice n-dimensional,

More information

ANALYSIS OF GEOLOGIC MATERIALS USING RIETVELD QUANTIATIVE X-RAY DIFFRACTION

ANALYSIS OF GEOLOGIC MATERIALS USING RIETVELD QUANTIATIVE X-RAY DIFFRACTION Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 204 ANALYSIS OF GEOLOGIC MATERIALS USING RIETVELD QUANTIATIVE X-RAY DIFFRACTION Robin M. Gonzalez,

More information

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE Copyright(C)JCPDS-International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Vol.46 74 ISSN 1097-0002 LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE K. Chouffani 1, D. Wells

More information

APPLICATION OF MICRO X-RAY FLUORESCENCE SPECTROMETRY FOR LOCALIZED AREA ANALYSIS OF BIOLOGICAL AND ENVIRONMENTAL MATERIALS

APPLICATION OF MICRO X-RAY FLUORESCENCE SPECTROMETRY FOR LOCALIZED AREA ANALYSIS OF BIOLOGICAL AND ENVIRONMENTAL MATERIALS Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol.43 540 APPLICATION OF MICRO X-RAY FLUORESCENCE SPECTROMETRY FOR LOCALIZED AREA ANALYSIS OF BIOLOGICAL AND

More information

Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands

Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands This document was presented at PPXRD - Pharmaceutical Powder X-ray

More information

EXPERIMENT: REACTION TIME

EXPERIMENT: REACTION TIME EXPERIMENT: REACTION TIME OBJECTIVES to make a series of measurements of your reaction time to make a histogram, or distribution curve, of your measured reaction times to calculate the "average" or "mean"

More information

Semi-Quantitative Analysis of Analytical Data using Chemometric Methods. Part II.

Semi-Quantitative Analysis of Analytical Data using Chemometric Methods. Part II. Semi-Quantitative Analysis of Analytical Data using Chemometric Methods. Part II. Simon Bates, Ph.D. After working through the various identification and matching methods, we are finally at the point where

More information

PX-CBMSO Course (2) of Symmetry

PX-CBMSO Course (2) of Symmetry PX-CBMSO Course (2) The mathematical description of Symmetry y PX-CBMSO-June 2011 Cele Abad-Zapatero University of Illinois at Chicago Center for Pharmaceutical Biotechnology. Lecture no. 2 This material

More information

MEASUREMENT CAPABILITIES OF X-RAY FLUORESCENCE FOR BPSG FILMS

MEASUREMENT CAPABILITIES OF X-RAY FLUORESCENCE FOR BPSG FILMS , MEASUREMENT CAPABILITIES OF X-RAY FLUORESCENCE FOR BPSG FILMS K.O. Goyal, J.W. Westphal Semiconductor Equipment Group Watkins-Johnson Company Scotts Valley, California 95066 Abstract Deposition of borophosphosilicate

More information

Space Group & Structure Solution

Space Group & Structure Solution Space Group & Structure Solution Determine the Space Group Space group determination can always be performed by hand by examining the intensity data. A program that can facilitate this step is the command-prompt

More information

Data Mining with the PDF-4 Databases. FeO Non-stoichiometric Oxides

Data Mining with the PDF-4 Databases. FeO Non-stoichiometric Oxides Data Mining with the PDF-4 Databases FeO Non-stoichiometric Oxides This is one of three example-based tutorials for using the data mining capabilities of the PDF-4+ database and it covers the following

More information

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 266 NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

More information

Quadratic Equations Part I

Quadratic Equations Part I Quadratic Equations Part I Before proceeding with this section we should note that the topic of solving quadratic equations will be covered in two sections. This is done for the benefit of those viewing

More information

Experiment 3: Simulating X-Ray Diffraction CH3500: Inorganic Chemistry, Plymouth State University

Experiment 3: Simulating X-Ray Diffraction CH3500: Inorganic Chemistry, Plymouth State University Experiment 3: Simulating X-Ray Diffraction CH3500: Inorganic Chemistry, Plymouth State University Created by Jeremiah Duncan, Dept. of Atmospheric Science and Chemistry, Plymouth State University (2012).

More information

RESIDUAL STRESS MEASUREMENT IN STEEL BEAMS USING THE INCREMENTAL SLITTING TECHNIQUE

RESIDUAL STRESS MEASUREMENT IN STEEL BEAMS USING THE INCREMENTAL SLITTING TECHNIQUE 659 RESIDUAL STRESS MEASUREMENT IN STEEL BEAMS USING THE INCREMENTAL SLITTING TECHNIQUE DZL Hodgson 1, DJ Smith 1, A Shterenlikht 1 1 Department of Mechanical Engineering, University of Bristol University

More information

Uncertainty and Graphical Analysis

Uncertainty and Graphical Analysis Uncertainty and Graphical Analysis Introduction Two measures of the quality of an experimental result are its accuracy and its precision. An accurate result is consistent with some ideal, true value, perhaps

More information

The formal lab reports should use the format given below.

The formal lab reports should use the format given below. Lab Reports - First Four Experiments General comments on the lab reports. You will do formal lab reports for the first four experiments (lattice energy of argon, chain length in polyvinyl alcohol polymer,

More information

XRD Intensity Calculations -Example FCC Cu (centric)

XRD Intensity Calculations -Example FCC Cu (centric) Ihkl F hkl F hkl hkl f f Cu Cu ( e (1 e XRD Intensity Calculations -Example FCC Cu (centric) Consider Copper which is F 3 with a=3.615å; atoms in positions [0,0,0] m m [½,½,0][½,0,½][0,½,½] and l=1.54å

More information

USABILITY OF PORTABLE X-RAY SPECTROMETER FOR DISCRIMINATION OF VALENCE STATES

USABILITY OF PORTABLE X-RAY SPECTROMETER FOR DISCRIMINATION OF VALENCE STATES Copyright (c)jcpds-international Centre for Diffraction Data 00, Advances in X-ray Analysis, Volume 45. 409 ISSN 1097-000 USABIITY OF POTABE X-AY SPECTOMETE FO DISCIMINATION OF VAENCE STATES I.A.Brytov,.I.Plotnikov,B.D.Kalinin,

More information

ADVANTAGES AND DISADVANTAGES OF BAYESIAN METHODS FOR OBTAINING XRF NET INTENSITIES

ADVANTAGES AND DISADVANTAGES OF BAYESIAN METHODS FOR OBTAINING XRF NET INTENSITIES 187 188 ADVANTAGES AND DISADVANTAGES OF BAYESIAN METHODS FOR OBTAINING XRF NET INTENSITIES ABSTRACT W. T. Elam, B. Scruggs, F. Eggert, and J. A. Nicolosi EDAX, a unit of Ametek Inc., 91 McKee Drive, Mahwah,

More information

Crystals! Table of Contents. Vocabulary 2. Word Search 6. What is a Crystal? 7. Atoms, Ions, Molecules. and the Unit Cell 13.

Crystals! Table of Contents. Vocabulary 2. Word Search 6. What is a Crystal? 7. Atoms, Ions, Molecules. and the Unit Cell 13. Crystals! Table of Contents Vocabulary 2 Word Search 6 What is a Crystal? 7 Atoms, Ions, Molecules and the Unit Cell 13 Crystal Shapes 15 X-Ray Crystallography 17 Recipes for Making A Booklet for Elementary

More information

DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN THICK MATERIALS

DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN THICK MATERIALS Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 59 DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN

More information

Symmetry Crystallography

Symmetry Crystallography Crystallography Motif: the fundamental part of a symmetric design that, when repeated, creates the whole pattern In 3-D, translation defines operations which move the motif into infinitely repeating patterns

More information

CHARACTERIZATION OF Pu-CONTAINING PARTICLES BY X-RAY MICROFLUORESCENCE

CHARACTERIZATION OF Pu-CONTAINING PARTICLES BY X-RAY MICROFLUORESCENCE Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol.43 534 CHARACTERIZATION OF Pu-CONTAINING PARTICLES BY X-RAY MICROFLUORESCENCE Marco Mattiuzzi, Andrzej Markowicz,

More information

Time-Resolved μ-xrf and Elemental Mapping of Biological Materials

Time-Resolved μ-xrf and Elemental Mapping of Biological Materials 296 Time-Resolved μ-xrf and Elemental Mapping of Biological Materials K. Tsuji 1,2), K. Tsutsumimoto 1), K. Nakano 1,2), K. Tanaka 1), A. Okhrimovskyy 1), Y. Konishi 1), and X. Ding 3) 1) Department of

More information

A COMPACT X-RAY SPECTROMETER WITH MULTI-CAPILLARY X-RAY LENS AND FLAT CRYSTALS

A COMPACT X-RAY SPECTROMETER WITH MULTI-CAPILLARY X-RAY LENS AND FLAT CRYSTALS Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 320 A COMPACT X-RAY SPECTROMETER WITH MULTI-CAPILLARY X-RAY LENS AND FLAT CRYSTALS Hiroyoshi SOEJIMA and

More information

Physics 2020 Laboratory Manual

Physics 2020 Laboratory Manual Physics 00 Laboratory Manual Department of Physics University of Colorado at Boulder Spring, 000 This manual is available for FREE online at: http://www.colorado.edu/physics/phys00/ This manual supercedes

More information

Tables of crystallographic properties of double antisymmetry space groups

Tables of crystallographic properties of double antisymmetry space groups Tables of crystallographic properties of double antisymmetry space groups Mantao Huang a, Brian K. VanLeeuwen a, Daniel B. Litvin b and Venkatraman Gopalan a * a Department of Materials Science and Engineering,

More information

Scattering and Diffraction

Scattering and Diffraction Scattering and Diffraction Andreas Kreyssig, Alan Goldman, Rob McQueeney Ames Laboratory Iowa State University All rights reserved, 2018. Atomic scale structure - crystals Crystalline materials... atoms

More information

Lindgren CRYSTAL SYMMETRY AND ELASTIC CONSTANTS MICHAEL WANDZILAK. S.B., Massachusetts Institute of Technology (196'7)

Lindgren CRYSTAL SYMMETRY AND ELASTIC CONSTANTS MICHAEL WANDZILAK. S.B., Massachusetts Institute of Technology (196'7) CRYSTAL SYMMETRY AND ELASTIC CONSTANTS by MICHAEL WANDZILAK S.B., Massachusetts Institute of Technology (196'7) Submitted in partial fulfillment of the requirements for the degree of Master of Science

More information

Axial Ratios, Parameters, Miller Indices

Axial Ratios, Parameters, Miller Indices Page 1 of 7 EENS 2110 Tulane University Mineralogy Prof. Stephen A. Nelson Axial Ratios, Parameters, Miller Indices This document last updated on 07-Sep-2016 We've now seen how crystallographic axes can

More information

Overview - Macromolecular Crystallography

Overview - Macromolecular Crystallography Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The diffraction experiment 4. Phase problem 1. MIR (Multiple Isomorphous

More information

FINDING DESCRIPTORS USEFUL FOR DATA MINING IN THE CHARACTERIZATION DATA OF CATALYSTS

FINDING DESCRIPTORS USEFUL FOR DATA MINING IN THE CHARACTERIZATION DATA OF CATALYSTS Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 338 FINDING DESCRIPTORS USEFUL FOR DATA MINING IN THE CHARACTERIZATION DATA OF CATALYSTS C. K. Lowe-Ma,

More information

REALIZATION OF AN ASYMMETRIC MULTILAYER X-RAY MIRROR

REALIZATION OF AN ASYMMETRIC MULTILAYER X-RAY MIRROR Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol.43 218 REALIZATION OF AN ASYMMETRIC MULTILAYER X-RAY MIRROR S. M. Owens Laboratory for High Energy Astrophysics,

More information

Nove fizickohemijske metode. Ivana Radosavljevic Evans Durham University, UK

Nove fizickohemijske metode. Ivana Radosavljevic Evans Durham University, UK Nove fizickohemijske metode Ivana Radosavljevic Evans Durham University, UK Nove fizickohemijske metode: Metode zasnovane na sinhrotronskom zracenju Plan predavanja: Difrakcione metode strukturne karakterizacije

More information

MCSHAPE: A MONTE CARLO CODE FOR SIMULATION OF POLARIZED PHOTON TRANSPORT

MCSHAPE: A MONTE CARLO CODE FOR SIMULATION OF POLARIZED PHOTON TRANSPORT Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 363 MCSHAPE: A MONTE CARLO CODE FOR SIMULATION OF POLARIZED PHOTON TRANSPORT J.E. Fernández, V.

More information

Neutron Powder Diffraction Theory and Instrumentation

Neutron Powder Diffraction Theory and Instrumentation NTC, Taiwen Aug. 31, 212 Neutron Powder Diffraction Theory and Instrumentation Qingzhen Huang (qing.huang@nist.gov) NIST Center for Neutron Research (www.ncnr.nist.gov) Definitions E: energy; k: wave vector;

More information

4.3 Rational Inequalities and Applications

4.3 Rational Inequalities and Applications 342 Rational Functions 4.3 Rational Inequalities and Applications In this section, we solve equations and inequalities involving rational functions and eplore associated application problems. Our first

More information

POWDER DIFFRACTION ANALYSIS OF HYDRAULIC CEMENTS: ASTM RIETVELD ROUND ROBIN RESULTS ON PRECISION

POWDER DIFFRACTION ANALYSIS OF HYDRAULIC CEMENTS: ASTM RIETVELD ROUND ROBIN RESULTS ON PRECISION Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 33 POWDER DIFFRACTION ANALYSIS OF HYDRAULIC CEMENTS: ASTM RIETVELD ROUND ROBIN RESULTS ON PRECISION

More information

Section 0.6: Factoring from Precalculus Prerequisites a.k.a. Chapter 0 by Carl Stitz, PhD, and Jeff Zeager, PhD, is available under a Creative

Section 0.6: Factoring from Precalculus Prerequisites a.k.a. Chapter 0 by Carl Stitz, PhD, and Jeff Zeager, PhD, is available under a Creative Section 0.6: Factoring from Precalculus Prerequisites a.k.a. Chapter 0 by Carl Stitz, PhD, and Jeff Zeager, PhD, is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license. 201,

More information

Twinning. Andrea Thorn

Twinning. Andrea Thorn Twinning Andrea Thorn OVERVIEW Introduction: Definitions, origins of twinning Merohedral twins: Recognition, statistical analysis: H plot, Yeates Padilla plot Example Refinement and R values Reticular

More information

The structure of liquids and glasses. The lattice and unit cell in 1D. The structure of crystalline materials. Describing condensed phase structures

The structure of liquids and glasses. The lattice and unit cell in 1D. The structure of crystalline materials. Describing condensed phase structures Describing condensed phase structures Describing the structure of an isolated small molecule is easy to do Just specify the bond distances and angles How do we describe the structure of a condensed phase?

More information

SRV02-Series Rotary Experiment # 1. Position Control. Student Handout

SRV02-Series Rotary Experiment # 1. Position Control. Student Handout SRV02-Series Rotary Experiment # 1 Position Control Student Handout SRV02-Series Rotary Experiment # 1 Position Control Student Handout 1. Objectives The objective in this experiment is to introduce the

More information

Measurement and Measurement Errors

Measurement and Measurement Errors 1 Measurement and Measurement Errors Introduction Physics makes very general yet quite detailed statements about how the universe works. These statements are organized or grouped together in such a way

More information

XAFS STUDIES OF Ni, Ta AND Nb CHLORIDES IN THE IONIC LIQUID 1-ETHYL-3- METHYL IMIDAZOLIUM CHLORIDE / ALUMINUM CHLORIDE

XAFS STUDIES OF Ni, Ta AND Nb CHLORIDES IN THE IONIC LIQUID 1-ETHYL-3- METHYL IMIDAZOLIUM CHLORIDE / ALUMINUM CHLORIDE 314 315 XAFS STUDIES OF Ni, Ta AND Nb CHLORIDES IN THE IONIC LIQUID 1-ETHYL-3- METHYL IMIDAZOLIUM CHLORIDE / ALUMINUM CHLORIDE W. E. O 1,D.F.Roeper 1,2,K.I.Pandya 3 andg.t.cheek 4 1 Naval Research Laboratory,

More information

Structure of Materials Prof. Anandh Subramaniam Department of Material Science and Engineering Indian Institute of Technology, Kanpur

Structure of Materials Prof. Anandh Subramaniam Department of Material Science and Engineering Indian Institute of Technology, Kanpur Structure of Materials Prof. Anandh Subramaniam Department of Material Science and Engineering Indian Institute of Technology, Kanpur Lecture - 5 Geometry of Crystals: Symmetry, Lattices The next question

More information

Identification of an unknown sample starts with making its diffraction pattern.

Identification of an unknown sample starts with making its diffraction pattern. Qualitative and Quantitative Analysis by X-Ray Diffraction A given substance always produces a characteristic diffraction pattern Whether that substance is present in the pure state or as one constituent

More information

EM Waves in Media. What happens when an EM wave travels through our model material?

EM Waves in Media. What happens when an EM wave travels through our model material? EM Waves in Media We can model a material as made of atoms which have a charged electron bound to a nucleus by a spring. We model the nuclei as being fixed to a grid (because they are heavy, they don t

More information

Why polymorphism? An Evaluation using Experimental Charge Densities Analysis

Why polymorphism? An Evaluation using Experimental Charge Densities Analysis Why polymorphism? An Evaluation using Experimental Charge Densities Analysis T. N. Guru Row Solid State and Structural Chemistry Unit Indian Institute of Science Bangalore 560012 INDIA Email: ssctng@sscu.iisc.ernet.in

More information

Crystal Chem Crystallography

Crystal Chem Crystallography Crystal Chem Crystallography Chemistry behind minerals and how they are assembled Bonding properties and ideas governing how atoms go together Mineral assembly precipitation/ crystallization and defects

More information

X-ray analysis. 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods

X-ray analysis. 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods X-ray analysis 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods Introduction Noble prizes associated with X-ray diffraction 1901 W. C. Roentgen (Physics) for the discovery

More information

SYNCHROTRON X-RAY MICROBEAM CHARACTERIZATION OF SMECTIC A LIQUID CRYSTALS UNDER ELECTRIC FIELD

SYNCHROTRON X-RAY MICROBEAM CHARACTERIZATION OF SMECTIC A LIQUID CRYSTALS UNDER ELECTRIC FIELD 73 SYNCHROTRON X-RAY MICROBEAM CHARACTERIZATION OF SMECTIC A LIQUID CRYSTALS UNDER ELECTRIC FIELD Atsuo Iida 1), Yoichi Takanishi 2) 1)Photon Factory, Institute of Materials Structure Science, High Energy

More information

Volume vs. Diameter. Teacher Lab Discussion. Overview. Picture, Data Table, and Graph

Volume vs. Diameter. Teacher Lab Discussion. Overview. Picture, Data Table, and Graph 5 6 7 Middle olume Length/olume vs. Diameter, Investigation page 1 of olume vs. Diameter Teacher Lab Discussion Overview Figure 1 In this experiment we investigate the relationship between the diameter

More information

Phys 460 Describing and Classifying Crystal Lattices

Phys 460 Describing and Classifying Crystal Lattices Phys 460 Describing and Classifying Crystal Lattices What is a material? ^ crystalline Regular lattice of atoms Each atom has a positively charged nucleus surrounded by negative electrons Electrons are

More information

ELECTRIC FIELD INFLUENCE ON EMISSION OF CHARACTERISTIC X-RAY FROM Al 2 O 3 TARGETS BOMBARDED BY SLOW Xe + IONS

ELECTRIC FIELD INFLUENCE ON EMISSION OF CHARACTERISTIC X-RAY FROM Al 2 O 3 TARGETS BOMBARDED BY SLOW Xe + IONS 390 ELECTRIC FIELD INFLUENCE ON EMISSION OF CHARACTERISTIC X-RAY FROM Al 2 O 3 TARGETS BOMBARDED BY SLOW Xe + IONS J. C. Rao 1, 2 *, M. Song 2, K. Mitsuishi 2, M. Takeguchi 2, K. Furuya 2 1 Department

More information

Homework 1 (not graded) X-ray Diffractometry CHE Multiple Choice. 1. One of the methods of reducing exposure to radiation is to minimize.

Homework 1 (not graded) X-ray Diffractometry CHE Multiple Choice. 1. One of the methods of reducing exposure to radiation is to minimize. Homework 1 (not graded) X-ray Diffractometry CHE 380.45 Multiple Choice 1. One of the methods of reducing exposure to radiation is to minimize. a) distance b) humidity c) time d) speed e) shielding 2.

More information

Standards-Based Quantification in DTSA-II Part I

Standards-Based Quantification in DTSA-II Part I Part I Nicholas W.M. Ritchie National Institute of Standards and Technology, Gaithersburg, MD 20899-8371 nicholas.ritchie@nist.gov Introduction Quantifying an X-ray spectrum is the process of converting

More information

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Lecture - 03 Symmetry in Perfect Solids Worked Examples Stated without prove to be in the lecture.

More information

DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov Lecture 4_2

DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov   Lecture 4_2 DIFFRACTION METHODS IN MATERIAL SCIENCE PD Dr. Nikolay Zotov Email: zotov@imw.uni-stuttgart.de Lecture 4_2 OUTLINE OF THE COURSE 0. Introduction 1. Classification of Materials 2. Defects in Solids 3. Basics

More information

27. THESE SENTENCES CERTAINLY LOOK DIFFERENT

27. THESE SENTENCES CERTAINLY LOOK DIFFERENT 27 HESE SENENCES CERAINLY LOOK DIEREN comparing expressions versus comparing sentences a motivating example: sentences that LOOK different; but, in a very important way, are the same Whereas the = sign

More information