Answers to QUIZ

Size: px
Start display at page:

Download "Answers to QUIZ"

Transcription

1 18441 Answers o QUIZ Le P be he proporion of voers who will voe Yes Suppose he prior probabiliy disribuion of P is given by Pr(P < p) p for 0 < p < 1 You ake a poll by choosing nine voers a random, he choice of each being independen of who else was chosen I is found ha six of he nine will voe Yes Find he poserior probabiliy ha more han half of all voers in he whole populaion will voe Yes Answer: The prior probabiliy densiy funcion of P is f P (p) d dp F P (p) d dp Pr(P p) d dp p 1 if 0 < p < 1 and 0 if p < 0 or p > 1 In oher words, P is uniformly disribued on he inerval [0, 1], or, in ye oher words, P Bea(1, 1) Le X be he number of voers in he sample of nine who will voe Yes Then he likelihood funcion is 9 L(p) Pr(X 6 P p) p 6 (1 p) 6 Muliplying he prior densiy by he likelihood gives us [consan] 1 p 6 (1 p) [consan] p 7 1 (1 p) 4 1, so we have P [X 6] Bea(7, 4) In order o find Pr(P > 1/ X 6), we need he value of he normalizing consan; we wrie he densiy as f P [X6] (p) for 0 < p < 1 Then Pr(P > 1/) 1 1/ Γ(7 + 4) Γ(7)Γ(4) p7 1 (1 p) !!6! p6 (1 p) 840p 6 (1 p) 840p 6 (1 p) dp 1 [ p p8 8 + p9 p } 15 {{ } 1 1/ ] p1 840 ( p 6 p 7 + p 8 p 9) dp p1/ If his 1 hen we can infer ha an error has occurred! ] p1 [10p 7 15p p 9 84p 10 ( ) p1/

2 Suppose a family of probabiliy disribuions of a random variable X is indexed by a parameer θ (a) Wha does i mean o say ha T (X) is a sufficien saisic for θ? Answer: I means ha he condiional probabiliy disribuion of X given T (X) does no depend on θ; he condiional disribuion remains he same as θ changes (b) Suppose T (X) is a sufficien saisic for θ Explain why he value of he Rao- Blackwell esimaor E(δ(X) T (X)) does no depend on θ, even hough he probabiliy disribuion of δ(x) mus depend on θ in order ha δ(x) make sense as an esimaor of θ Answer: The condiional disribuion of X given T (X) does no depend on θ The condiional disribuion of δ(x) given T (X) does no depend on θ The condiional expecaion of δ(x) given T (X) does no depend on θ Suppose X 1, X i i d Bernoulli(p), ie, hey are independen and idenically disribued and { 1 wih probabiliy p, X 1 0 wih probabiliy 1 p (a) Show ha X 1 X is no a complee saisic Answer: I is enough o find some funcion g such ha E(g(X 1 X )) remains zero as p changes Bu we have E(X 1 X ) E(X 1 ) E(X ) p p 0, so we can ake g o be he ideniy funcion (b) Show ha X 1 + X is a sufficien saisic for p Answer: One way o do his is by appealing direcly o he definiion of sufficiency, ie, by finding Pr(X 1 x 1 & X x X 1 + X ) and observing ha no p appears in he answer Pr(X 1 x 1 & X x X 1 + X ) px 1 (1 p) 1 x 1 p x (1 p) 1 x p (1 p) px 1+x (1 p) (x 1+x ) ( )p (1 p) and no p appears here p (1 p) ( )p (1 p) 1,

3 (c) You may use he fac ha X 1 + X is a complee saisic Show ha X 1 X is an unbiased esimaor of p, and find he bes unbiased esimaor of p, ie, he one wih he smalles mean error among all unbiased esimaors of p Answer: The Lehman-Scheffé heorem says ha he condiional expecaion of an unbiased esimaor given a complee sufficien saisic is he unique bes unbiased esimaor So we seek E(X 1 X X 1 + X ) Noice ha X 1 X mus be eiher 0 or 1, and is 1 if and only if boh X 1 and X are 1, and ha happens if and only if X 1 + X So { 1 if X1 + X E(X 1 X X 1 +X ) Pr(X 1 X 1 X 1 +X ), 0 if X 1 + X eiher 0 or 1 Since we also have X 1 X { 1 if X1 + X, 0 if X 1 + X eiher 0 or 1, we can say ha E(X 1 X X 1 + X ) X 1 X In oher words, X 1 X is already he bes unbiased esimaor of p, and is unchanged by he Rao-Blackwell process of improving an esimaor (d) Find he maximum likelihood esimaor of p Answer: By invariance of maximum-likelihood esimaors, he maximumlikelihood esimaor of p is jus he square of he maximum-likelihood esimaor of p The likelihood funcion is L(p) P (X 1 x 1 & X x ) p x 1+x (1 p) x 1 x Therefore l(p) log L(p) (x 1 + x ) log p + ( x 1 x ) log(1 p) l (p) x 1 + x p x 1 x 1 p x1 + x p p(1 p) > 0 if 0 < p < (x 1 + x )/, 0 if p (x 1 + x )/, < 0 if (x 1 + x )/ < p < 1 Consequenly p (X 1 + X 1 )/, and so he maximum-likelihood esimaor of p is (X 1 + X ) /4

4 (e) Consider he wo esimaors ha you found above: he bes unbiased esimaor of p and he maximum likelihood esimaor of p Which has a smaller mean error when p 1/? Answer: The bes unbiased esimaor is { 0 if X1 + X { 0, 1 }, 1 if X 1 + X, and so i is { 0 wih probabiliy 1 p, 1 wih probabiliy p Is mean error is Squared error when he Squared error when he esimaor is 0 esimaor is 1 when p 1/ {}}{ (0 p ) (1 p ) + (1 p ) p Probabiliy ha Probabiliy ha he esimaor is 0 he esimaor is 1 The maximum-likelihood esimaor is 0 if X 1 + X 0, 1/4 if X 1 + X 1, 1 if X 1 + X, and so i is 0 wih probabiliy (1 p), 1/4 wih probabiliy p(1 p), 1 wih probabiliy p Is mean error is herefore error error {}}{ (0 p ) (1 p) + (1/4 p ) p(1 p) probabiliy probabiliy + error when p 1/ {}}{ (1 p ) p probabiliy So he MSE of he MLE is slighly smaller han ha of he bes unbiased esimaor when p 1/ 4

5 4 Among families wih wo children, le X be he score on a saisics es aken by he firs child a age 1, and le Y be he income of he second child a age 40 Suppose he pair (X, Y ) has a bivariae normal disribuion, and E(X) 65, SD(X) 10, E(Y ) $50, 000 per year, SD(Y ) $10, 000 per year, and corr(x, Y ) 1/ [All of his is ficion] Among families in which he firs child scores 75 on he saisics es a age 1, in wha proporion of cases does he second child have an income of a leas $59, 0 a age 40? Answer: On page 15 of DeGroo & Schervish, we learn ha E(Y X) X E(X) E(Y ) + corr(x, Y ) SD(Y ) SD(X) X 65 50, (1/)(10, 000) 10 So E(Y X 75) 55, 000, and var(y X) (1 corr(x, Y ) ) SD(Y ) So SD(Y X 75) (/4) 10, , Since he condiional disribuion of Y given ha X 75 is normal, we can say Pr(Y 59, 0 X 75) 1 Pr(Y 59, 0 X 75) Y 55, Pr , 0 55, 000 / / X 75 59, 0 55, Φ Φ(0500) / So he even of ineres occurs in abou 085% of all cases 5

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Foundations of Statistical Inference. Sufficient statistics. Definition (Sufficiency) Definition (Sufficiency)

Foundations of Statistical Inference. Sufficient statistics. Definition (Sufficiency) Definition (Sufficiency) Foundaions of Saisical Inference Julien Beresycki Lecure 2 - Sufficiency, Facorizaion, Minimal sufficiency Deparmen of Saisics Universiy of Oxford MT 2016 Julien Beresycki (Universiy of Oxford BS2a MT

More information

Stochastic models and their distributions

Stochastic models and their distributions Sochasic models and heir disribuions Couning cusomers Suppose ha n cusomers arrive a a grocery a imes, say T 1,, T n, each of which akes any real number in he inerval (, ) equally likely The values T 1,,

More information

An random variable is a quantity that assumes different values with certain probabilities.

An random variable is a quantity that assumes different values with certain probabilities. Probabiliy The probabiliy PrA) of an even A is a number in [, ] ha represens how likely A is o occur. The larger he value of PrA), he more likely he even is o occur. PrA) means he even mus occur. PrA)

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

CS Homework Week 2 ( 2.25, 3.22, 4.9)

CS Homework Week 2 ( 2.25, 3.22, 4.9) CS3150 - Homework Week 2 ( 2.25, 3.22, 4.9) Dan Li, Xiaohui Kong, Hammad Ibqal and Ihsan A. Qazi Deparmen of Compuer Science, Universiy of Pisburgh, Pisburgh, PA 15260 Inelligen Sysems Program, Universiy

More information

Sensors, Signals and Noise

Sensors, Signals and Noise Sensors, Signals and Noise COURSE OUTLINE Inroducion Signals and Noise: 1) Descripion Filering Sensors and associaed elecronics rv 2017/02/08 1 Noise Descripion Noise Waveforms and Samples Saisics of Noise

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

Notes for Lecture 17-18

Notes for Lecture 17-18 U.C. Berkeley CS278: Compuaional Complexiy Handou N7-8 Professor Luca Trevisan April 3-8, 2008 Noes for Lecure 7-8 In hese wo lecures we prove he firs half of he PCP Theorem, he Amplificaion Lemma, up

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

REVIEW OF MAXIMUM LIKELIHOOD ESTIMATION

REVIEW OF MAXIMUM LIKELIHOOD ESTIMATION REVIEW OF MAXIMUM LIKELIHOOD ESIMAION [] Maximum Likelihood Esimaor () Cases in which θ (unknown parameer) is scalar Noaional Clarificaion: From now on, we denoe he rue alue of θ as θ o hen, iew θ as a

More information

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H.

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H. ACE 56 Fall 5 Lecure 8: The Simple Linear Regression Model: R, Reporing he Resuls and Predicion by Professor Sco H. Irwin Required Readings: Griffihs, Hill and Judge. "Explaining Variaion in he Dependen

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

5. Stochastic processes (1)

5. Stochastic processes (1) Lec05.pp S-38.45 - Inroducion o Teleraffic Theory Spring 2005 Conens Basic conceps Poisson process 2 Sochasic processes () Consider some quaniy in a eleraffic (or any) sysem I ypically evolves in ime randomly

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

Linear Cryptanalysis

Linear Cryptanalysis Linear Crypanalysis T-79.550 Crypology Lecure 5 February 6, 008 Kaisa Nyberg Linear Crypanalysis /36 SPN A Small Example Linear Crypanalysis /36 Linear Approximaion of S-boxes Linear Crypanalysis 3/36

More information

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE Topics MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES 2-6 3. FUNCTION OF A RANDOM VARIABLE 3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE 3.3 EXPECTATION AND MOMENTS

More information

Empirical Process Theory

Empirical Process Theory Empirical Process heory 4.384 ime Series Analysis, Fall 27 Reciaion by Paul Schrimpf Supplemenary o lecures given by Anna Mikusheva Ocober 7, 28 Reciaion 7 Empirical Process heory Le x be a real-valued

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Approximation Algorithms for Unique Games via Orthogonal Separators

Approximation Algorithms for Unique Games via Orthogonal Separators Approximaion Algorihms for Unique Games via Orhogonal Separaors Lecure noes by Konsanin Makarychev. Lecure noes are based on he papers [CMM06a, CMM06b, LM4]. Unique Games In hese lecure noes, we define

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests Ouline Ouline Hypohesis Tes wihin he Maximum Likelihood Framework There are hree main frequenis approaches o inference wihin he Maximum Likelihood framework: he Wald es, he Likelihood Raio es and he Lagrange

More information

Introduction to Probability and Statistics Slides 4 Chapter 4

Introduction to Probability and Statistics Slides 4 Chapter 4 Inroducion o Probabiliy and Saisics Slides 4 Chaper 4 Ammar M. Sarhan, asarhan@mahsa.dal.ca Deparmen of Mahemaics and Saisics, Dalhousie Universiy Fall Semeser 8 Dr. Ammar Sarhan Chaper 4 Coninuous Random

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

Comparing Means: t-tests for One Sample & Two Related Samples

Comparing Means: t-tests for One Sample & Two Related Samples Comparing Means: -Tess for One Sample & Two Relaed Samples Using he z-tes: Assumpions -Tess for One Sample & Two Relaed Samples The z-es (of a sample mean agains a populaion mean) is based on he assumpion

More information

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin ACE 56 Fall 005 Lecure 4: Simple Linear Regression Model: Specificaion and Esimaion by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Simple Regression: Economic and Saisical Model

More information

Lecture 2 April 04, 2018

Lecture 2 April 04, 2018 Sas 300C: Theory of Saisics Spring 208 Lecure 2 April 04, 208 Prof. Emmanuel Candes Scribe: Paulo Orensein; edied by Sephen Baes, XY Han Ouline Agenda: Global esing. Needle in a Haysack Problem 2. Threshold

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecure Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/i2ml3e CHAPTER 2: SUPERVISED LEARNING Learning a Class

More information

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates Biol. 356 Lab 8. Moraliy, Recruimen, and Migraion Raes (modified from Cox, 00, General Ecology Lab Manual, McGraw Hill) Las week we esimaed populaion size hrough several mehods. One assumpion of all hese

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN Inernaional Journal of Scienific & Engineering Research, Volume 4, Issue 10, Ocober-2013 900 FUZZY MEAN RESIDUAL LIFE ORDERING OF FUZZY RANDOM VARIABLES J. EARNEST LAZARUS PIRIYAKUMAR 1, A. YAMUNA 2 1.

More information

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross.

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross. Homework (Sas 6, Winer 7 Due Tuesday April 8, in class Quesions are derived from problems in Sochasic Processes by S. Ross.. A sochasic process {X(, } is said o be saionary if X(,..., X( n has he same

More information

STA 114: Statistics. Notes 2. Statistical Models and the Likelihood Function

STA 114: Statistics. Notes 2. Statistical Models and the Likelihood Function STA 114: Saisics Noes 2. Saisical Models and he Likelihood Funcion Describing Daa & Saisical Models A physicis has a heory ha makes a precise predicion of wha s o be observed in daa. If he daa doesn mach

More information

13.3 Term structure models

13.3 Term structure models 13.3 Term srucure models 13.3.1 Expecaions hypohesis model - Simples "model" a) shor rae b) expecaions o ge oher prices Resul: y () = 1 h +1 δ = φ( δ)+ε +1 f () = E (y +1) (1) =δ + φ( δ) f (3) = E (y +)

More information

Lecture 4 Notes (Little s Theorem)

Lecture 4 Notes (Little s Theorem) Lecure 4 Noes (Lile s Theorem) This lecure concerns one of he mos imporan (and simples) heorems in Queuing Theory, Lile s Theorem. More informaion can be found in he course book, Bersekas & Gallagher,

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Estimation Uncertainty

Estimation Uncertainty Esimaion Uncerainy The sample mean is an esimae of β = E(y +h ) The esimaion error is = + = T h y T b ( ) = = + = + = = = T T h T h e T y T y T b β β β Esimaion Variance Under classical condiions, where

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data Chaper 2 Models, Censoring, and Likelihood for Failure-Time Daa William Q. Meeker and Luis A. Escobar Iowa Sae Universiy and Louisiana Sae Universiy Copyrigh 1998-2008 W. Q. Meeker and L. A. Escobar. Based

More information

Graphical Event Models and Causal Event Models. Chris Meek Microsoft Research

Graphical Event Models and Causal Event Models. Chris Meek Microsoft Research Graphical Even Models and Causal Even Models Chris Meek Microsof Research Graphical Models Defines a join disribuion P X over a se of variables X = X 1,, X n A graphical model M =< G, Θ > G =< X, E > is

More information

Transform Techniques. Moment Generating Function

Transform Techniques. Moment Generating Function Transform Techniques A convenien way of finding he momens of a random variable is he momen generaing funcion (MGF). Oher ransform echniques are characerisic funcion, z-ransform, and Laplace ransform. Momen

More information

Lie Derivatives operator vector field flow push back Lie derivative of

Lie Derivatives operator vector field flow push back Lie derivative of Lie Derivaives The Lie derivaive is a mehod of compuing he direcional derivaive of a vecor field wih respec o anoher vecor field We already know how o make sense of a direcional derivaive of real valued

More information

Hypothesis Testing in the Classical Normal Linear Regression Model. 1. Components of Hypothesis Tests

Hypothesis Testing in the Classical Normal Linear Regression Model. 1. Components of Hypothesis Tests ECONOMICS 35* -- NOTE 8 M.G. Abbo ECON 35* -- NOTE 8 Hypohesis Tesing in he Classical Normal Linear Regression Model. Componens of Hypohesis Tess. A esable hypohesis, which consiss of wo pars: Par : a

More information

INSTANTANEOUS VELOCITY

INSTANTANEOUS VELOCITY INSTANTANEOUS VELOCITY I claim ha ha if acceleraion is consan, hen he elociy is a linear funcion of ime and he posiion a quadraic funcion of ime. We wan o inesigae hose claims, and a he same ime, work

More information

Chapter 4. Location-Scale-Based Parametric Distributions. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Chapter 4. Location-Scale-Based Parametric Distributions. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Chaper 4 Locaion-Scale-Based Parameric Disribuions William Q. Meeker and Luis A. Escobar Iowa Sae Universiy and Louisiana Sae Universiy Copyrigh 1998-2008 W. Q. Meeker and L. A. Escobar. Based on he auhors

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Sections 2.2 & 2.3 Limit of a Function and Limit Laws

Sections 2.2 & 2.3 Limit of a Function and Limit Laws Mah 80 www.imeodare.com Secions. &. Limi of a Funcion and Limi Laws In secion. we saw how is arise when we wan o find he angen o a curve or he velociy of an objec. Now we urn our aenion o is in general

More information

Generalized Least Squares

Generalized Least Squares Generalized Leas Squares Augus 006 1 Modified Model Original assumpions: 1 Specificaion: y = Xβ + ε (1) Eε =0 3 EX 0 ε =0 4 Eεε 0 = σ I In his secion, we consider relaxing assumpion (4) Insead, assume

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS LECTURE : GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS We will work wih a coninuous ime reversible Markov chain X on a finie conneced sae space, wih generaor Lf(x = y q x,yf(y. (Recall ha q

More information

Estimation of Poses with Particle Filters

Estimation of Poses with Particle Filters Esimaion of Poses wih Paricle Filers Dr.-Ing. Bernd Ludwig Chair for Arificial Inelligence Deparmen of Compuer Science Friedrich-Alexander-Universiä Erlangen-Nürnberg 12/05/2008 Dr.-Ing. Bernd Ludwig (FAU

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

in Engineering Prof. Dr. Michael Havbro Faber ETH Zurich, Switzerland Swiss Federal Institute of Technology

in Engineering Prof. Dr. Michael Havbro Faber ETH Zurich, Switzerland Swiss Federal Institute of Technology Risk and Saey in Engineering Pro. Dr. Michael Havbro Faber ETH Zurich, Swizerland Conens o Today's Lecure Inroducion o ime varian reliabiliy analysis The Poisson process The ormal process Assessmen o he

More information

Lecture 33: November 29

Lecture 33: November 29 36-705: Inermediae Saisics Fall 2017 Lecurer: Siva Balakrishnan Lecure 33: November 29 Today we will coninue discussing he boosrap, and hen ry o undersand why i works in a simple case. In he las lecure

More information

Measurement Error 1: Consequences Page 1. Definitions. For two variables, X and Y, the following hold: Expectation, or Mean, of X.

Measurement Error 1: Consequences Page 1. Definitions. For two variables, X and Y, the following hold: Expectation, or Mean, of X. Measuremen Error 1: Consequences of Measuremen Error Richard Williams, Universiy of Nore Dame, hps://www3.nd.edu/~rwilliam/ Las revised January 1, 015 Definiions. For wo variables, X and Y, he following

More information

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

Statistical Distributions

Statistical Distributions Saisical Disribuions 1 Discree Disribuions 1 The uniform disribuion A random variable (rv) X has a uniform disribuion on he n-elemen se A = {x 1,x 2,,x n } if P (X = x) =1/n whenever x is in he se A The

More information

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19 Sequenial Imporance Sampling (SIS) AKA Paricle Filering, Sequenial Impuaion (Kong, Liu, Wong, 994) For many problems, sampling direcly from he arge disribuion is difficul or impossible. One reason possible

More information

CHERNOFF DISTANCE AND AFFINITY FOR TRUNCATED DISTRIBUTIONS *

CHERNOFF DISTANCE AND AFFINITY FOR TRUNCATED DISTRIBUTIONS * haper 5 HERNOFF DISTANE AND AFFINITY FOR TRUNATED DISTRIBUTIONS * 5. Inroducion In he case of disribuions ha saisfy he regulariy condiions, he ramer- Rao inequaliy holds and he maximum likelihood esimaor

More information

Christos Papadimitriou & Luca Trevisan November 22, 2016

Christos Papadimitriou & Luca Trevisan November 22, 2016 U.C. Bereley CS170: Algorihms Handou LN-11-22 Chrisos Papadimiriou & Luca Trevisan November 22, 2016 Sreaming algorihms In his lecure and he nex one we sudy memory-efficien algorihms ha process a sream

More information

Homework 4 (Stats 620, Winter 2017) Due Tuesday Feb 14, in class Questions are derived from problems in Stochastic Processes by S. Ross.

Homework 4 (Stats 620, Winter 2017) Due Tuesday Feb 14, in class Questions are derived from problems in Stochastic Processes by S. Ross. Homework 4 (Sas 62, Winer 217) Due Tuesday Feb 14, in class Quesions are derived from problems in Sochasic Processes by S. Ross. 1. Le A() and Y () denoe respecively he age and excess a. Find: (a) P{Y

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Cash Flow Valuation Mode Lin Discrete Time

Cash Flow Valuation Mode Lin Discrete Time IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728,p-ISSN: 2319-765X, 6, Issue 6 (May. - Jun. 2013), PP 35-41 Cash Flow Valuaion Mode Lin Discree Time Olayiwola. M. A. and Oni, N. O. Deparmen of Mahemaics

More information

Math 106: Review for Final Exam, Part II. (x x 0 ) 2 = !

Math 106: Review for Final Exam, Part II. (x x 0 ) 2 = ! Mah 6: Review for Final Exam, Par II. Use a second-degree Taylor polynomial o esimae 8. We choose f(x) x and x 7 because 7 is he perfec cube closes o 8. f(x) x / f(7) f (x) x / f (7) x / 7 / 7 f (x) 9

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Echocardiography Project and Finite Fourier Series

Echocardiography Project and Finite Fourier Series Echocardiography Projec and Finie Fourier Series 1 U M An echocardiagram is a plo of how a porion of he hear moves as he funcion of ime over he one or more hearbea cycles If he hearbea repeas iself every

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

non -negative cone Population dynamics motivates the study of linear models whose coefficient matrices are non-negative or positive.

non -negative cone Population dynamics motivates the study of linear models whose coefficient matrices are non-negative or positive. LECTURE 3 Linear/Nonnegaive Marix Models x ( = Px ( A= m m marix, x= m vecor Linear sysems of difference equaions arise in several difference conexs: Linear approximaions (linearizaion Perurbaion analysis

More information

TMA 4265 Stochastic Processes

TMA 4265 Stochastic Processes TMA 4265 Sochasic Processes Norges eknisk-naurvienskapelige universie Insiu for maemaiske fag Soluion - Exercise 8 Exercises from he ex book 5.2 The expeced service ime for one cusomer is 1/µ, due o he

More information

1 Review of Zero-Sum Games

1 Review of Zero-Sum Games COS 5: heoreical Machine Learning Lecurer: Rob Schapire Lecure #23 Scribe: Eugene Brevdo April 30, 2008 Review of Zero-Sum Games Las ime we inroduced a mahemaical model for wo player zero-sum games. Any

More information

The Strong Law of Large Numbers

The Strong Law of Large Numbers Lecure 9 The Srong Law of Large Numbers Reading: Grimme-Sirzaker 7.2; David Williams Probabiliy wih Maringales 7.2 Furher reading: Grimme-Sirzaker 7.1, 7.3-7.5 Wih he Convergence Theorem (Theorem 54) and

More information

A Bayesian Approach to Spectral Analysis

A Bayesian Approach to Spectral Analysis Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2

More information

T. J. HOLMES AND T. J. KEHOE INTERNATIONAL TRADE AND PAYMENTS THEORY FALL 2011 EXAMINATION

T. J. HOLMES AND T. J. KEHOE INTERNATIONAL TRADE AND PAYMENTS THEORY FALL 2011 EXAMINATION ECON 841 T. J. HOLMES AND T. J. KEHOE INTERNATIONAL TRADE AND PAYMENTS THEORY FALL 211 EXAMINATION This exam has wo pars. Each par has wo quesions. Please answer one of he wo quesions in each par for a

More information

4 Sequences of measurable functions

4 Sequences of measurable functions 4 Sequences of measurable funcions 1. Le (Ω, A, µ) be a measure space (complee, afer a possible applicaion of he compleion heorem). In his chaper we invesigae relaions beween various (nonequivalen) convergences

More information

Properties of Autocorrelated Processes Economics 30331

Properties of Autocorrelated Processes Economics 30331 Properies of Auocorrelaed Processes Economics 3033 Bill Evans Fall 05 Suppose we have ime series daa series labeled as where =,,3, T (he final period) Some examples are he dail closing price of he S&500,

More information

) were both constant and we brought them from under the integral.

) were both constant and we brought them from under the integral. YIELD-PER-RECRUIT (coninued The yield-per-recrui model applies o a cohor, bu we saw in he Age Disribuions lecure ha he properies of a cohor do no apply in general o a collecion of cohors, which is wha

More information

Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time

Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time +v Today: Graphing v (miles per hour ) 9 8 7 6 5 4 - - Time Noe: I hope his joke will be funnier (or a leas make you roll your eyes and say ugh ) afer class. Do yourself a favor! Prof Sarah s fail-safe

More information

k B 2 Radiofrequency pulses and hardware

k B 2 Radiofrequency pulses and hardware 1 Exra MR Problems DC Medical Imaging course April, 214 he problems below are harder, more ime-consuming, and inended for hose wih a more mahemaical background. hey are enirely opional, bu hopefully will

More information

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence MATH 433/533, Fourier Analysis Secion 6, Proof of Fourier s Theorem for Poinwise Convergence Firs, some commens abou inegraing periodic funcions. If g is a periodic funcion, g(x + ) g(x) for all real x,

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Supplementary Material

Supplementary Material Dynamic Global Games of Regime Change: Learning, Mulipliciy and iming of Aacks Supplemenary Maerial George-Marios Angeleos MI and NBER Chrisian Hellwig UCLA Alessandro Pavan Norhwesern Universiy Ocober

More information

4.1 - Logarithms and Their Properties

4.1 - Logarithms and Their Properties Chaper 4 Logarihmic Funcions 4.1 - Logarihms and Their Properies Wha is a Logarihm? We define he common logarihm funcion, simply he log funcion, wrien log 10 x log x, as follows: If x is a posiive number,

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

Avd. Matematisk statistik

Avd. Matematisk statistik Avd Maemaisk saisik TENTAMEN I SF294 SANNOLIKHETSTEORI/EXAM IN SF294 PROBABILITY THE- ORY WEDNESDAY THE 9 h OF JANUARY 23 2 pm 7 pm Examinaor : Timo Koski, el 79 7 34, email: jkoski@khse Tillåna hjälpmedel

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

5.1 - Logarithms and Their Properties

5.1 - Logarithms and Their Properties Chaper 5 Logarihmic Funcions 5.1 - Logarihms and Their Properies Suppose ha a populaion grows according o he formula P 10, where P is he colony size a ime, in hours. When will he populaion be 2500? We

More information

Solutions Problem Set 3 Macro II (14.452)

Solutions Problem Set 3 Macro II (14.452) Soluions Problem Se 3 Macro II (14.452) Francisco A. Gallego 04/27/2005 1 Q heory of invesmen in coninuous ime and no uncerainy Consider he in nie horizon model of a rm facing adjusmen coss o invesmen.

More information

BEng (Hons) Telecommunications. Examinations for / Semester 2

BEng (Hons) Telecommunications. Examinations for / Semester 2 BEng (Hons) Telecommunicaions Cohor: BTEL/14/FT Examinaions for 2015-2016 / Semeser 2 MODULE: ELECTROMAGNETIC THEORY MODULE CODE: ASE2103 Duraion: 2 ½ Hours Insrucions o Candidaes: 1. Answer ALL 4 (FOUR)

More information

The Brock-Mirman Stochastic Growth Model

The Brock-Mirman Stochastic Growth Model c December 3, 208, Chrisopher D. Carroll BrockMirman The Brock-Mirman Sochasic Growh Model Brock and Mirman (972) provided he firs opimizing growh model wih unpredicable (sochasic) shocks. The social planner

More information

Elements of Stochastic Processes Lecture II Hamid R. Rabiee

Elements of Stochastic Processes Lecture II Hamid R. Rabiee Sochasic Processes Elemens of Sochasic Processes Lecure II Hamid R. Rabiee Overview Reading Assignmen Chaper 9 of exbook Furher Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A Firs Course

More information