MATRIX COMPUTATIONS ON PROJECTIVE MODULES USING NONCOMMUTATIVE GRÖBNER BASES

Size: px
Start display at page:

Download "MATRIX COMPUTATIONS ON PROJECTIVE MODULES USING NONCOMMUTATIVE GRÖBNER BASES"

Transcription

1 Jounal of lgeba Numbe heo: dance and pplcaon Volume 5 Numbe 6 Page -9 alable a hp://cenfcadance.co.n DOI: hp://d.do.og/.86/janaa_7686 MRIX COMPUIONS ON PROJCIV MODULS USING NONCOMMUIV GRÖBNR BSS CLUDI GLLGO Depaameno de Maemáca Semnao de Álgeba Conuca-SC Unedad Naconal de Colomba Sede Bogoá Colomba e-mal: cmgallegoj@unal.edu.co bac Conuce poof of fac ha a abl fee lef S-module M wh ank( M ) ( S) fee whee (S) denoe he able ank of an aba ng S wee deeloped n [7] (ee alo [5] and [5]). ddonall n uch pape ae peened algohmc poof fo calculang pojece dmenon and o check whehe a lef S-module M abl fee. Gen a lef -module M wh a bjece kew PBW eenon we wll ue hee eul and Göbne bae heo o eablh algohm ha allow u o calculae effecel he pojece dmenon fo h module o check whehe abl fee o conuc mnmal peenaon and o oban bae fo fee module. Mahemac Subjec Clafcaon: Pma: 6Z5; Seconda: 6D 65. Kewod and phae: noncommuae Göbne bae kew PBW eenon abl fee module fee module compuaon of bae conuce algohm. Receed Jul 6 6 Scenfc dance Publhe

2 CLUDI GLLGO. Inoducon he Göbne bae heo pode u wh a emakable aa of ool fo he effece calculaon of dee algebac objec. We hae deeloped h heo fo kew PBW eenon (ee [5] and [9]) whch n un ha enabled u ca ou calculaon n a boad cla of noncommuae ng. In addon gen an aba lef -module M a bjece kew PBW eenon h Göbne bae heo along wh he eence of ma conuce eul ha allow o eablh algohm fo calculang he pojece dmenon of M o check whehe o no M abl fee and o oban effecel a ba when M a abl fee module wh ank( M ) ( S) wll enable u o peen houghou cuen acle effece algohm and compuaon of h knd fo module defned on kew PBW eenon. he ke ool fo hee algohm wll be he calculaon of lef and gh nee mace. Relaed o he compuaon of pojece dmenon we hae ha he followng noable geneal fac oe aba ng. S wll epeen an aba noncommuae ng. heoem.. Le M be an S-module and fm Pm fm fm f f f Pm Pm P P M (.) be a pojece eoluon of M. If m and hee e a homomophm gm : uch ha g f hen we hae he followng Pm Pm pojece eoluon of M: m m hm hm fm f f f Pm Pm Pm Pm P P M wh P m fm h : m hm : [ fm ]. gm (.)

3 MRIX COMPUIONS ON PROJCIV Poof. See [5] Popoon. Coolla.. Le M be an S-module and S fm f f f f f m S m m S m m S S M be a fne fee eoluon of M. Le bae m. hen (.) F be he ma of f n he canoncal m () If m and hee e a homomophm g : S S m uch ha g f hen we hae he followng fne fee eoluon of M: m m S m m h m hm fm S m S m m S m S M (.) f f wh h In a ma noaon f j fm : hm : [ fm ]. g m m G m he ma of g m and H j he ma of h n he canoncal bae j m m hen H m : m [ F G ] H :. m m m F () If m and hee e a homomophm : g S S uch ha g f hen we hae he followng fne peenaon of M: S S h h S M (.5) wh f h : h : [ f ]. g

4 CLUDI GLLGO In a ma noaon H : [ F G ] H :. f Poof. See [5] Coolla. Wh epec o abl feene he followng chaacezaon hold. heoem.. Le M be an S-module wh eac equence S f S f M ae equalen:. hen M ( M S) and he followng condon S () M abl fee. () M pojece. () M. () F ha a gh nee. () f ha a lef nee. Poof. See [5] heoem..5. Fnall egadng fee module we nclude below a ma conuce chaacezaon. Lemma.. Le S be a ng and M be a abl fee S-module gen b f f a mnmal peenaon S S M. Le g : S S uch ha g f. hen he followng condon ae equalen: S () M fee of dmenon. I () hee e a ma U GL ( S) uch ha UG whee G he ma of g n he canoncal bae. In uch cae he la column of U confom a ba fo M. Moeoe he f column of U confom he ma F of f n he canoncal bae.

5 MRIX COMPUIONS ON PROJCIV 5 () hee e a ma V GL ( S) uch ha he f column of V.e. V of GL ( S). Poof. See [5] Lemma..5. G concde wh G can be compleed o an neble ma Some defnon and elemena popee ae necea n wha follow. hee can alo be eewed n [7]. If S an aba ng S denoe he lef S-module of column of ze ; fo each f S-homomophm S S hee a ma aocaed o f n he canoncal bae of S and S denoed F : m( f ) and dpoed b column.e. F M ( S); moeoe f a S hen f ( a ) ( a F ). I aghfowad o how ha funcon m : HomS ( S S ) M ( S) bjece; and ha f g p S S a homomophm hen he ma of G gf n he canoncal bae m ( gf ) ( F ). hu f : S S an omophm f and onl f F GL ( S) and f C M ( S ) we hae ha column of C confom a ba of S f and onl f C GL ( S). When S commuae o when we conde gh module nead of lef module we hae ha f ( a) Fa and n uch cae he ma of a compoe homomophm gf gen b m ( gf ) m ( g) m( f ). Fuhe f S S : an omophm f and onl f F GL ( S); bede C GL ( S) f and onl f column confom a ba of S (ee Subecon. n [7]). Now le S be a ng; we a ha S afe he ank condon ( RC ) f fo an nege f S S an epmophm hen. Fuhemoe S an IBN ng (naan ba numbe) f fo an nege S S f and onl f. I well known ha RC mple IBN. Fom now on we wll aume ha all ng condeed n he peen pape ae RC. We hae he he followng elemena chaacezaon fo ( RC ) ng. f

6 6 CLUDI GLLGO Popoon.5. Le S be a ng. () S RC f and onl f gen an ma F M ( S) he followng condon hold: f F ha a gh nee hen. () S RC f and onl f gen an ma F M ( S) he followng condon hold: Poof. C.f. [7] Popoon. f F ha a lef nee hen.. Skew PBW enon In h econ we ecall he defnon of kew PBW (Poncaé- Bkhoff-W) eenon defned fl n [6] and we wll eew alo ome bac popee abou he polnomal nepeaon of h knd of noncommuae ng. wo pacula ubclae of hee eenon ae ecalled alo. Defnon.. Le R and be ng. We a ha a kew PBW eenon of R (alo called a σ -PBW eenon of R) f he followng condon hold: () R. () hee e fne elemen R-fee module wh ba uch ha a lef n α α α n n Mon( ) : { n n α ( α α ) N }. () Fo ee n and R { } hee e R {} c uch ha c R. (.)

7 MRIX COMPUIONS ON PROJCIV 7 () Fo ee j n hee e c j R { } uch ha j c j j R R Rn. (.) Unde hee condon we wll we σ( R). : n pacula cae of kew PBW eenon when all deaon δ ae zeo. nohe neeng cae when all σ ae bjece and he conan c j ae neble. We ecall he followng defnon (cf. [6]). Defnon.. Le be a kew PBW eenon. (a) qua-commuae f he condon () and () n Defnon. ae eplaced b ( ) Fo ee uch ha n and R { } hee e R {} c c. (.) ( ) Fo ee j n hee e c j R { } uch ha j c j j. (.) (b) bjece f σ bjece fo ee neble fo an < j n. n and c j emakable pope afe b kew PBW eenon peened below whch a he ame me aue u ha he algohm ued fnh. Popoon. (Hlbe Ba heoem). Le be a bjece kew PBW eenon of R. If R a lef (gh) Noehean ng hen alo a lef (gh) Noehean ng. Poof. See [] Coolla.. Snce he objec uded n he peen pape ae kew PBW eenon necea o guaanee he IBN and RC popee fo hee ng. Fo h we hae he followng mpoan fac:

8 8 CLUDI GLLGO heoem.. Le be a kew PBW eenon of a ng R. hen RC ( IBN ) f and onl f R RC ( IBN ). Poof. See [8] heoem.9. Remak.5. We deeloped he Göbne bae heo fo an bjece kew PBW eenon. Specfcall we eablhed a Buchbege algohm fo hee ng he compuaon of zge module a well a ome applcaon a membehp poblem calculaon of neecon quoen peenaon of a module compung fee eoluon he kenel and mage of an homomophm (ee Chape 5 and Chape 6 n [5] o [9]).. Compung he Inee of a Ma In h econ we wll peen an algohm ha deemne f a gen ecangula ma oe a bjece kew PBW eenon lef neble and n uch cae he algohm compue one of lef nee. mla algohm wll be conuced fo he gh de cae. We a wh he followng elemena fac abou lef neble mace. Popoon.. Le F be a ecangula ma of ze wh ene n a ng S. If F ha lef nee hen. Moeoe F ha a lef nee f and onl f he module geneaed b he ow of F concde wh S. Poof. he f aemen follow fom he fac ha we ae aumng he S RC (ee Popoon.5). Now uppoe ha F ha a lef nee L M ( S).e. LF. Defne he followng S-homomophm: I f : S S l : S S a ( a F ) b ( b L )

9 MRIX COMPUIONS ON PROJCIV 9 hen m ( f ) F and m ( l ) L. Whence m ( f l ) ( LF ) I I.e. f an epmophm. Hence Im( f ) S.e. he lef ubmodule geneaed b he ow of F concde wh he fee module S. Coneel uppoe ha he module geneaed b he ow of F concde wh S hen fo f defned a aboe hee e S a a uch ha f ( a ) e fo each and whee e e denoe he canoncal eco of S. hu f a [ a a a ] we hae [ a a a ] F a F() a F() e a F whee F ( j) denoe he j-h ow of F j. heefoe f L he ma whoe ow ae he eco a hen LF.e. F ha a lef nee. Coolla.. Le be a bjece kew PBW eenon and le F M ( ) be a ecangula ma oe. he algohm below deemne f F lef neble and n he poe cae compue a lef nee of F: I

10 CLUDI GLLGO lgohm fo he lef nee of a ma INPU: ecangula ma F M ( ). OUPU: ma L M ( ) afng LF I f e and n ohe cae. INIILIZION: IF < RURN IF le G : { g g } be a Göbne ba fo he lef ubmodule geneaed b ow of F and le { } e be he canoncal ba of. Ue he don algohm o ef f e G fo each. IF hee e ome e uch ha e G. RURN IF G le H M ( ) wh he pope G H F and conde K : [ k j ] M whee he k j ae uch ha e k g k g k g fo. hu I K G. RURN L : K H. ample.. Le σ( Q) defned hough he elaon. Gen he ma F

11 MRIX COMPUIONS ON PROJCIV we appl he aboe algohm n ode o ef f F ha a lef nee. Fo h we compue a Göbne ba of he lef module geneaed b he ow of F. Condeng he degle ode on Mon() wh and he OPRV ode on Mon( ) wh e > e a Göbne ba fo F { e e}. In conequence F ha a lef nee and fom calculaon obaned dung he poce of Buchbege algohm we hae ha L a lef nee fo F. Coolla.. Le F be a quae ma of ze wh ene n a ng S. hen F neble f and onl f he ow of F confom a ba of S. Poof. Le L M ( ) uch ha LF I FL. Fom LF I follow ha he ow of F geneae S. Le f and l be lke n he poof of Popoon.; nce FL I hen l f and heefoe S f a monomophm.e. Sz ( F ). hu he ow of F ae lneal ndependen and h complee he f mplcaon. Coneel nce he ow of F geneae S b Popoon. F ha a lef nee. Le L be a uch nee hen LF I. We hae FLF F h mple ha ( FL I ) F bu Sz ( F ) hen FL.e. F L. I

12 CLUDI GLLGO Coolla.5. Le be a bjece kew PBW eenon and F M ( ) a quae ma oe. he algohm below deemne whehe F neble and n he poe cae compue he nee of F: INPU: quae ma F M ( ). lgohm fo he nee of a quae ma OUPU: ma L M ( ) afng LF I FL f e and n ohe cae. INIILIZION: Ue he algohm n Coolla. o deemne f F lef neble. IF F no lef neble RURN LS Compue Sz ( F ) IF Sz ( F ) RURN LS Compue he mace H and K n he algohm of Coolla.. RURN L : K H. ample.6. Fo h eample we conde he adde analogue of he Wel algeba. Recall ha f k a feld hen k -algeba n ( q q n ) geneaed b n n and ubjec o he elaon: j j n j j j j j j q n whee q k {}. I no dffcul o how ha n ( q q n ) a bjece kew PBW eenon. We ake n q and ; q on Mon() we conde he degle ode and oe Mon( ) he OPRV ode wh e > e. Le F be he followng ma:

13 MRIX COMPUIONS ON PROJCIV F. We wan o check f column of F confom a ba fo and we know ha h ue f and onl f F neble. Ung he aboe algohm we a efng f F ha a lef nee; fo h pupoe we compue a Göbne ba of he lef -module geneaed b he ow of F.e. of he lef -module Im(F). Ung he Buchbege algohm fo module poble o how ha G { f f f } a Göbne ba e fo h module whee f e e f e and f e e e e. pplng he don 9 algohm we can check ha e G heefoe G. hu F ha no a lef nee and hence he column of F ae no a ba fo. Remak.7. If S a lef (o gh) Noehean ng hen ee epmophm α : S S an auomophm (ee Popoon. n []). h mple ha ee lef (o gh) Noehean ng WF (ee []). heefoe o e f F M ( S) neble enough o how ha F ha a gh o a lef nee. So n he aboe algohm when a bjece PBW eenon of a LGS ng no necea he compuaon of Sz S ( F ) o e whehe he ma neble would be uffcen o appl he algohm fo he lef nee gen n Coolla.. Now we wll conde he gh nee of a ecangula ma. We a wh he followng heoecal eul: Popoon.8. Le F be a ecangula ma of ze wh ene n he ng S. If F ha gh nee hen and he module of zge of he ubmodule geneaed b he ow of F zeo.e. Sz ( F ). In he ohe wod f F ha a gh nee hen he ow of F ae lneal ndependen.

14 CLUDI GLLGO Poof. o begn nce we ae aumng ha S RC (Popoon.5). Le L M ( S) uch ha FL. Conde he homomophm f and I l a n Popoon. hen f a monomophm. Hence ke ( f ).e. Sz ( F ). Popoon.9. Le F be a ecangula ma of ze wh ene n he ng S. If F ha gh nee hen. Moeoe F ha a gh nee f and onl f Sz ( F ) and Im ( F ) a ummand dec of S whee Im ( F ) denoe he module geneaed b he column of F.e. he module geneaed b he ow of F. Poof. o begn nce we ae aumng ha S RC (Popoon.5). Now le L M ( S) uch ha FL. Conde he homomophm f and l a n Popoon. hen l f.e. f a pl monomophm. hu S Im( f ) ke( l ) and Im ( f ) a dec ummand of S. Coneel le M be a ubmodule of ha S Im( f ) M. So gen I S S uch f S hee e unque elemen f Im( f ) and f M uch ha f f f. Defne he homomophm l S S : a l ( f ) h whee h S uch ha : f f ( h f ). B hpohe Sz ( F ) o f njece and we ge ha f l well defned. I no dffcul o how ha l an S-homomophm. Conequenl FL I.e. F ha a gh nee. l f and f : m( l ) S f L hen Remak.. If we had a compuaonal ool fo o check f a ubmodule of a fee module a ummand dec hen Popoon.9 would eablh an algohm o check he eence of a gh nee.

15 MRIX COMPUIONS ON PROJCIV 5 Followng [] and [5] conde a ma F : [ f ] M ( ) wh j whee a bjece kew PBW eenon endowed wh an noluon θ.e. a funcon θ : S S uch ha θ ( a b) θ( a) θ( b) θ ( ab) θ( b) θ( a) and θ fo all a b S. Noe ha θ ( ) and S hence θ an an-omophm of S. We defne ( F ) [ θ( f )]. ha f K M ( ) hen θ Obee : j θ ( FK ) θ( K ) θ( F ). (.) Popoon.. Le be a bjece kew PBW eenon endowed wh an noluon θ and le F : [ f ] M ( ) j wh. hen F ha a gh nee f and onl f fo each j e j whee G a Göbne ba of he lef -module geneaed b he column of θ ( F ) and { e j } j he canoncal ba of. Poof. G : [ g ] M ( ) a gh nee of F f and onl f j FG I and h equalen o a ha G e j f f f g j f f f g j j ; applng θ we oban e j θ( f ) θ( f ) ( ) ( ) θ f θ f θ( g j ) θ( gj ). θ( f ) θ( f )

16 6 CLUDI GLLGO hu G a gh nee of F f and onl f he canoncal eco of belong o he lef -module geneaed b he column of θ ( F ).e. e e θ( ). Le G be a Göbne ba of θ ( F ) hen G a F gh nee of F f and onl f fo each j e. G j Coolla.. Le be a bjece kew PBW eenon and F M ( ) be a ecangula ma oe. he algohm below deemne f F gh neble and n he poe cae compue he gh nee of F: lgohm fo he gh nee of a ma INPU: n noluon θ of ; a ecangula ma F M ( ). OUPU: ma H M ( ) afng FH I f e and n ohe cae. INIILIZION: IF < RURN IF le G : { g g } be a Göbne ba fo he lef ubmodule geneaed b column of θ ( F ) and le { } e j j be he canoncal ba of. Ue he don algohm o ef f e G fo each j. j IF hee e ome e j uch ha e j G. RURN IF G le J M ( ) wh he pope G J θ( F ) and conde K : [ k j ] M whee he k j ae uch ha e j k j g k j g kj g fo j. hu I K G. RURN H : θ( J ) θ( K ). Poof. pplng (.) we ge I K G K J θ( F ) θ( θ( K )) θ( θ( J )) θ( F ) θ( θ( J ) θ( K )) θ ( F ) θ( Fθ( J ) θ( K )) o I θ( Fθ( J ) θ( K )) θ( I ) and fom h we ge Fθ( J ) θ( K ). I

17 MRIX COMPUIONS ON PROJCIV 7 ample.. Le u conde he ng ( ) Q σ wh. Ung he aboe algohm we wll compue a gh nee fo F poded ha e. Fo h we conde he noluon θ on gen b ( ) θ and ( ). θ Wh h noluon we hae ha ( ). θ hu ( ). θ F We a compung a Göbne ba fo he lef module geneaed b he column of ( ). F θ We ge ha { } e e G a Göbne ba fo ( ). F θ In h cae F ha a gh nee and J uch ha ( ). F J G θ Snce I G hen I K and ( ) J L θ : a gh nee fo F whee ( ). θ J o fnd noluon of kew PBW eenon a dffcul ak o he aboe algohm no paccal. econd algohm fo eng he eence and compung a gh nee of a ma ue he heo of

18 8 CLUDI GLLGO Göbne bae fo gh module deeloped n [5]. Fo h we wll made a mple adapaon of Popoon. and Coolla. fo gh ubmodule ung he gh noaon. Popoon.. Le F be a ecangula ma of ze wh ene n a ng S. If F ha gh nee hen. Moeoe F ha a gh nee f and onl f he gh module geneaed b he column of F concde wh S. Poof. he f aemen follow fom Popoon.5. Now uppoe ha F ha a gh nee and le L be a ma uch ha FL I. Defne he followng homomophm of gh fee S-module: f : S S l : S S a Fa b Lb hen m ( f ) F and m () l L. Whence m ( f l) FL.e. f an epmophm. heefoe Im( f ) S.e. he gh ubmodule geneae b column of F concde wh he fee module S. Coneel f Im( F ) S hen fo f defned a aboe hee e a a S uch ha f ( a ) e fo each and whee e e denoe he canoncal eco of. S hu f [ a a a ] j j j j I a we hae [ ] ( ) ( a a a F a F ) Fa j F j j j j aj e j whee ( j F ) denoe he j-h column of F j. So f L he ma whoe column ae he eco a j hen FL I.e. F ha a gh nee. hu condeng he eul abou Göbne bae fo gh module (ee [5]) we hae he followng alenae algohm fo eng he eence of a gh nee.

19 MRIX COMPUIONS ON PROJCIV 9 Coolla.5. Le be a bjece kew PBW eenon and F M ( ) be a ecangula ma oe. he algohm below deemne f F gh neble and n he poe cae compue a gh nee of F: lgohm fo he gh nee of a ma INPU: ecangula ma F M ( ). OUPU: ma L M ( ) afng FL I f e and n ohe cae. INIILIZION: IF < RURN IF le G : { g g } be a gh Göbne ba fo he gh ubmodule geneaed b column of F and le { } e j j be he canoncal ba of. Ue gh eon of don algohm o ef f e G fo each. IF hee e ome e j uch ha e j G. RURN IF G le H M ( ) wh he pope G FH and conde K : [ k j ] M whee he k j ae uch ha e j g k j g k j gkj fo. hu I GK. RURN L : HK. ample.6. Conde he ng σ( Q) wh and le F be he ma gen b F. pplng he gh eon of Buchbege algohm we hae ha a Göbne ba fo he gh module geneaed b he column of F G { e e }. Fom Coolla.5 we can how ha F ha a gh nee; moeoe one gh nee fo F gen b

20 CLUDI GLLGO L.. Compung he Pojece Dmenon Gen M an S-module and f f f f f f P P P P M (.) a pojece eoluon of M no dffcul o how ha f he malle nege uch Im ( f ) pojece hen doe no depend on he eoluon and pd(m) (c.f. [5] heoem..). heefoe we can conde a fee eoluon { f } whch we can calculae ung he ome of he applcaon of Göbne bae heo. Hence b heoem. we oban he followng algohm whch compue he pojece dmenon m of a module M gen b a fne e of geneao whee a bjece kew PBW eenon of a LGS ng R (lef Göbne oluble ee [5] and [9]) wh fne lef global dmenon. Noe ha lef Noehean (heoem.) and lgld ( ) < (ee []). Pojece dmenon of a module oe a bjece kew PBW eenon lgohm INPU: lgld( ) < M f f wh f k. OUPU: pd(m). INIILIZION: Compue a fee eoluon { f } of M :. WHIL lgld( ) DO: IF Im ( f ) pojece HN pd(m). LS. m k

21 MRIX COMPUIONS ON PROJCIV Obee ha n he peou algohm we no need o compue fne fee eoluon of M; an fee eoluon compued ung zge enough. Ne we peen anohe algohm fo compung he lef pojece m dmenon of a module M gen b a fne fee eoluon: f fm fm fm f f m m m M. (.) h algohm uppoed b Coolla.. Pojece dmenon of a module oe a bjece kew PBW eenon lgohm INPU: n -module M defned b a fne fee eoluon (.). OUPU: pd(m). INIILIZION: Se canoncal bae. j : m and H j : Fm wh F m he ma of f m n he WHIL j m DO: Sep. Check whehe o no H j adm a gh nee G j : (a) If no gh nee of (b) If hee e a gh nee Sep. j : j. () If j hen pd(m). () If j hen compue (.5). H e hen pd(m) j. j G of j () If j hen compue (.). H and j ample.. Le be he ng σ ( Q) whee. We wll calculae he pojece dmenon of he lef module M ( ) ( ) ( ) ( ). Fo h we ue he degle ode on Mon() wh

22 CLUDI GLLGO and he OP ode oe Mon( ) wh e > e. Ung Göbne bae poble o how ha a fee eoluon fo M gen b: F F F M whee F F F. In ode o appl he aboe algohm we a checkng whehe F [ ] ha a gh nee. aghfowad calculaon how ha a gh nee fo (.5): F G [ ] o we compue H 5 H M (.) whee H : and H :. o ef f H ha a gh nee we mu calculae a Göbne ba fo he gh module geneaed b he column of H. Snce he ng condeed a bjece kew PBW eenon we can ue he gh eon of Buchbege algohm. Fo h we conde he degle ode on Mon() wh and he OP ode oe Mon( ) wh e < e < e. pplng h algohm we oban he followng Göbne ba fo

23 MRIX COMPUIONS ON PROJCIV H G {( ) ( ) ( ) ( ) ( )}. Noe ha e no educble b G hu G and hence H doe no hae a gh nee. heefoe pd(m). Remak.. he aboe algohm can be ued fo eng f a gen module M pojece: We can compue pojece dmenon and hence M pojece f and onl f pd(m). 5. e fo Sabl-Feene heoem. ge a pocedue fo eng abl-feene fo a m module M gen b an eac equence f f M whee a bjece kew PBW eenon. e fo abl-feene lgohm INPU: M an -module wh eac equence f f M. OUPU: RU f M abl fee FLS ohewe. INIILIZION: Compue he ma F of f. IF F ha gh nee HN RURN RU LS RURN FLS ample 5.. Le σ( Q) wh. We wan o know f he lef -module M gen b M e e e e e e e e e e abl fee o no. o anwe h queon we a compung a fne peenaon of M. Condeng he degle ode on Mon() wh

24 CLUDI GLLGO he OP ode on Mon( ) wh e > e > e > e and ung he mehod eablhed n he peou econ we hae ha a em of geneao fo Sz(M) gen b S {( ) ( ) ( )}. heefoe we ge a followng fne peenaon fo M: F 6 F M (5.) whee F : and F :. pplng he mehod fo compung he zg module we hae ha Sz ( F ) o he peenaon obaned n (5.) become Fnall we mu o e f F 6 F M. F ha a gh nee. Fo h we calculae a Göbne ba fo he gh module geneaed b he column of F. Ung he OP ode on Mon( ) wh e > e > e a Göbne ba fo F gen b G { f } whee f he -h column of 7 F fo 6 and f 7 e e. Noe ha fo eample e G 6 o ha G. hu F ha no gh nee and hence M no abl fee.

25 MRIX COMPUIONS ON PROJCIV 5 Remak 5.. Fom heoem. f M a lef -module wh eac f f equence M S Im( f ) and M f : S S hen M ( M ) whee he homomophm of gh fee S-module nduced b he ma F. hu fo eng f M abl fee we can ue he eul of Subecon 5.6 n [5] and compung a Göbne ba fo he gh module geneaed b column of F. Ung he gh eon of he don algohm poble o check whehe S Im( F ). If h la equal hold hen M and M abl fee. Coolla. ge anohe pocedue fo eng abl-feene fo a m module M gen b a fne fee eoluon (.) wh S : Indeed f m and f m ha no lef nee hen M non abl fee; f f m ha a lef nee we compue hen he new fne fee eoluon (.) and we check f h m ha a lef nee. We can epea h pocedue unl (.5); f h ha no lef nee hen M no abl fee. If h ha a lef nee hen M abl fee. ample 5.. Le be he ng σ ( Q) whee and conde he lef module M ( ) ( ) ( ) ( ) gen n he ample.. we aw hee a fne peenaon fo M gen b: H 5 H M (5.) whee H : and H :.

26 6 CLUDI GLLGO In uch eample we howed ha M no a abl fee module. H ha no a gh nee hence 6. Compung Mnmal Peenaon m If M a abl fee module gen b he fne fee eoluon (.) wh S hen he Coolla. ge a pocedue fo compung a mnmal peenaon of M. In fac f m hen f m ha a lef nee (f no pd(m) m bu h mpoble nce M pojece). Hence we compue he new fne peenaon (.) and we wll epea he pocedue unl we ge a fne peenaon a n (.5) whch a mnmal peenaon of M. ample 6.. Le u conde agan he ng σ( Q) wh. Le M be he lef -module gen b peenaon Im( F ) whee F. Regadng he degle ode on Mon() wh and he OP ode oe Mon( ) wh e > e we hae ha Sz ( F ) geneaed b ( ). So he followng eac equence obaned: F F π M whee : [ ]. F Noe ha F ha a gh nee: G ; fom Coolla. we ge he followng fne peenaon fo M: hu h h M (6.)

27 MRIX COMPUIONS ON PROJCIV 7 wh H [ F G ] and [ f ]. ha h In ample.6 we howed H ha a gh nee; moeoe one gh nee fo H L. In conequence (6.) a mnmal peenaon fo M and M un ou o be a abl fee module. 7. Compung Fee Bae In [7] and [5] peened a ma conuce poof of a eul due Saffod abou abl fee module. heoem 7.. Le S be a ng. hen an abl fee S-module M wh ank( M ) ( S) fee wh dmenon equal o ank(m). Poof. See heoem n [7]. In he poof of uch affmaon he followng fac necea: Popoon 7.. Le S be a ng and : [ ] be an unmodula able column eco oe S hen hee e U ( S) uch ha U. e Poof. B compleene we nclude he poof of h fac (ee Popoon 8 n [5]). hee e elemen a a S uch ha : c ( ) Um ( S) wh : a. (7.)

28 CLUDI GLLGO 8 Conde he ma ( ); : S a a a (7.) hen ( ). Snce ha ( ) ( ) : S Um c hee e S b b uch ha b and hence ( ). b Le ( ) : b and ); ( : S (7.) hen ( ). Moeoe le ( ); : S (7.)

29 MRIX COMPUIONS ON PROJCIV 9 hen ( ). Fnall le : ( S); (7.5) hen e and U : ( S). Fo an effece calculaon of a ba of M we a eablhng an algohm fo o calculae he elemena ma U n he Popoon 7.: lgohm fo compung U n Popoon 7. INPU: n unmodula able column eco [ ] oe S. OUPU: n elemena ma U M ( S) uch ha U. DO:. Compue a a S uch ha (7.) hold.. Compue he ma gen n (7.).. Calculae he elemen b b S wh he pope ha b wh a fo.. Defne : ( ) b fo and compue he mace and gen n (7.)-(7.5). RURN: U :. We wll lluae below h algohm. ample 7.. Fo h eample we conde he quanum Wel algeba ( ). Recall h k -algeba geneaed b he aable J a b wh he elaon (dependng upon paamee a b k ): e

30 CLUDI GLLGO a b a a ab b b. When a b we hae ha ( J ) ( k) fo an feld k (ee [] fo moe popee). I no dffcul o how ha ( ) σ(k J a b [ ]). ake k Q a and b. hu he elaon n h ng ae gen b:. ( ( J )) wll denoe he goup geneaed b all elemena mace of ze oe ( J ). hen [ ] Le [ ] u uch ha u wheeb Umc ( ( J )). Moeoe he column eco [ ] ha a lef nee u [ ] o a able unmodula column. In h cae a a a and he ma gen b

31 MRIX COMPUIONS ON PROJCIV. Wh h elemena ma we ge [ ]. If we defne ( )( ) ( ) : : and we oban [ ]. Fnall f we defne ( ( )) J ( ( )) J and ( ( )) : J U hen we hae. e U

32 CLUDI GLLGO he poof of heoem 7. allow u o eablh an algohm o compue a ba fo M when M a abl fee module gen b a mnmal peenaon S f S f M (7.6) wh g : S S uch ha g f and ank( M ) ( S). S lgohm fo compung bae INPU: F m( ) uch ha F M f afe ( S). ha a gh nee G M and OUPU: ma U M ( S) uch ha UG [ I ] ; b Lemma. he e {( ) ( ) ( ) ( U U ) } a ba fo M whee ( U ) ( j) denoe he j-h column of U fo j. INIILIZION: V I. WHIL < DO:. Denoe b S he column eco gen b akng he la ene of he -h column of VG.. ppl he peou algohm o compue L ( S) uch ha L e. I. Defne he ma U : ( S) L fo > and U : L... RURN U : PUV whee P an adequae elemena ma. ample 7.. Le be he quanum Wel algeba ( ) J a b condeed n ample 7. wh k Q a and b. In ode o 6 lluae he peou algohm ake M Im( F ) whee

33 MRIX COMPUIONS ON PROJCIV. F Ung he algohm decbed n Coolla.5 he degle ode oe Mon() wh > and he OPRV ode on ( ) Mon 6 wh e e > poble o how ha F ha a gh nee gen b:. G Hence we hae he followng mnmal peenaon fo M: 6 π M F (7.7) whee π he canoncal pojecon. hu M a abl fee -module wh ank(m). Snce lkdm() (ee [] heoem.) hen ( ) and b he heoem 7. M fee wh dmenon equal o ank(m). We wll ue he peou algohm fo compung a ba of M.

34 CLUDI GLLGO Sep. Le 6 I V and he f column of VG.e. [ ] hen ( ) Um c 6 and [ ] u uch ha. u Noe ha [ ] all unmodula. pplng o he f algohm of he cuen econ we hae ha I 6 ( ) ( ) ( ) and

35 MRIX COMPUIONS ON PROJCIV 5. We can check ha : U ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 6 and. G U

36 CLUDI GLLGO 6 Sep. Make : U V and le be he column eco gen b akng he la fe ene of he nd column of ; VG.e. [ ]. Noe ha [ ] u afe u hu ( ). 5 Um c Moeoe [ ] unmodula wh [ ] u uch ha u and hence able. Ung he algohm a he begnnng of h econ we hae ha I 5 ( ) ( ) ( ) and.

37 MRIX COMPUIONS ON PROJCIV 7 Makng he epece calculaon we hae ha ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) : L and. 5 L e Defne ; : L U hen. G U U Fnall f hen : UG P

38 CLUDI GLLGO 8 whee. : U P U U hu a ba fo M gen b { ( ( )) ( ( )) U U π π ( ( )) ( ( ))} 6 5 U U π π wh () U denong he anpoe of -h ow of he ma U fo 5 6.e. ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) U ( ) ( )( ) U ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ). 6 5 U U

39 MRIX COMPUIONS ON PROJCIV 9 Refeence [] F. Chzak. Quada and D. Robez ffece algohm fo paamezng lnea conol em oe oe algeba ppl. lgeba ngg. Comm. Compu. 6(5) (5) []. Cluzeau and. Quada Facong and decompong a cla of lnea funconal em Ln. lg. and ppl. 8() (8) -8. [] P. Cohn Fee Ideal Rng and Localzaon n Geneal Rng Cambdge Une Pe 6. [] H. Fuja Global and Kull dmenon of quanum Wel algeba Jounal of lgeba 6() (999) 5-6. [5] C. Gallego Ma Mehod fo Pojece Module Oe σ -PBW enon Ph.D. he Unedad Naconal de Colomba Bogoá 5. [6] C. Gallego and O. Lezama Göbne bae fo deal of kew PBW eenon Comm. n lgeba 9() () [7] C. Gallego and O. Lezama Ma appoach o noncommuae abl fee module and Heme ng lgeba and Dcee Mahemac 8() () -9. [8] C. Gallego and O. Lezama d-heme ng and kew PBW eenon São Paulo Jounal of Mahemacal Scence (F onlne: 5 ugu 5) -. [9] C. Gallego and O. Lezama Pojece module and Göbne bae fo kew PBW eenon (o appea n lgebac and Smbolc Compuaon Mehod n Dnamcal Sem n he Spnge ee dance n Dela and Dnamc). [] J. Gago-Vaga Bae fo pojece module n n ( k ) J. Smb. Comp. 6 () []. Y. Lam See Poblem on Pojece Module Spnge Monogaph n Mahemac Spnge 6. []. Y. Lam Lecue on Module and Rng Spnge Gaduae e n Mahemac [] O. Lezama Ma and Göbne Mehod n Homologcal lgeba oe Commuae Polnomal Rng Lambe cademc Publhng. [] O. Lezama and M. Ree Some homologcal popee of kew PBW eenon Comm. n lgeba () -. [5]. Quada and D. Robez Compuaon of bae of fee module oe he Wel algeba J. Smb. Comp. (7) -. [6] J.. Saffod Module ucue of Wel algeba J. London Mah. Soc. 8 (978) 9-. g

ESS 265 Spring Quarter 2005 Kinetic Simulations

ESS 265 Spring Quarter 2005 Kinetic Simulations SS 65 Spng Quae 5 Knec Sulaon Lecue une 9 5 An aple of an lecoagnec Pacle Code A an eaple of a knec ulaon we wll ue a one denonal elecoagnec ulaon code called KMPO deeloped b Yohhau Oua and Hoh Mauoo.

More information

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function MACROECONOMIC THEORY T J KEHOE ECON 87 SPRING 5 PROBLEM SET # Conder an overlappng generaon economy le ha n queon 5 on problem e n whch conumer lve for perod The uly funcon of he conumer born n perod,

More information

Chapter 3: Vectors and Two-Dimensional Motion

Chapter 3: Vectors and Two-Dimensional Motion Chape 3: Vecos and Two-Dmensonal Moon Vecos: magnude and decon Negae o a eco: eese s decon Mulplng o ddng a eco b a scala Vecos n he same decon (eaed lke numbes) Geneal Veco Addon: Tangle mehod o addon

More information

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing Peenaon fo Theoecal Condened Mae Phyc n TU Beln Geen-Funcon and GW appoxmaon Xnzheng L Theoy Depamen FHI May.8h 2005 Elecon n old Oulne Toal enegy---well olved Sngle pacle excaon---unde developng The Geen

More information

Chapter 6 Plane Motion of Rigid Bodies

Chapter 6 Plane Motion of Rigid Bodies Chpe 6 Pne oon of Rd ode 6. Equon of oon fo Rd bod. 6., 6., 6.3 Conde d bod ced upon b ee een foce,, 3,. We cn ume h he bod mde of e numbe n of pce of m Δm (,,, n). Conden f he moon of he m cene of he

More information

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr. Moden Enegy Funconal fo Nucle and Nuclea Mae By: lbeo noosa Teas &M Unvesy REU Cycloon 008 Meno: D. Shalom Shlomo Oulne. Inoducon.. The many-body poblem and he aee-fock mehod. 3. Skyme neacon. 4. aee-fock

More information

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova The XIII Inenaonal Confeence Appled Sochasc Models and Daa Analyss (ASMDA-009) Jne 30-Jly 3, 009, Vlns, LITHUANIA ISBN 978-9955-8-463-5 L Sakalaskas, C Skadas and E K Zavadskas (Eds): ASMDA-009 Seleced

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Mau Lkelhood aon Beln Chen Depaen of Copue Scence & Infoaon ngneeng aonal Tawan oal Unvey Refeence:. he Alpaydn, Inoducon o Machne Leanng, Chape 4, MIT Pe, 4 Saple Sac and Populaon Paaee A Scheac Depcon

More information

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( ) 5-1. We apply Newon s second law (specfcally, Eq. 5-). (a) We fnd he componen of he foce s ( ) ( ) F = ma = ma cos 0.0 = 1.00kg.00m/s cos 0.0 = 1.88N. (b) The y componen of he foce s ( ) ( ) F = ma = ma

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION HAPER : LINEAR DISRIMINAION Dscmnan-based lassfcaon 3 In classfcaon h K classes ( k ) We defned dsmnan funcon g () = K hen gven an es eample e chose (pedced) s class label as f g () as he mamum among g

More information

Name of the Student:

Name of the Student: Engneeng Mahemacs 05 SUBJEC NAME : Pobably & Random Pocess SUBJEC CODE : MA645 MAERIAL NAME : Fomula Maeal MAERIAL CODE : JM08AM007 REGULAION : R03 UPDAED ON : Febuay 05 (Scan he above QR code fo he dec

More information

1 Constant Real Rate C 1

1 Constant Real Rate C 1 Consan Real Rae. Real Rae of Inees Suppose you ae equally happy wh uns of he consumpon good oday o 5 uns of he consumpon good n peod s me. C 5 Tha means you ll be pepaed o gve up uns oday n eun fo 5 uns

More information

Reinforcement learning

Reinforcement learning Lecue 3 Reinfocemen leaning Milos Hauskech milos@cs.pi.edu 539 Senno Squae Reinfocemen leaning We wan o lean he conol policy: : X A We see examples of x (bu oupus a ae no given) Insead of a we ge a feedback

More information

Physics 120 Spring 2007 Exam #1 April 20, Name

Physics 120 Spring 2007 Exam #1 April 20, Name Phc 0 Spng 007 E # pl 0, 007 Ne P Mulple Choce / 0 Poble # / 0 Poble # / 0 Poble # / 0 ol / 00 In eepng wh he Unon College polc on cdec hone, ued h ou wll nehe ccep no pode unuhozed nce n he copleon o

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED)

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED) FIRMS IN THE TWO-ERIO FRAMEWORK (CONTINUE) OCTOBER 26, 2 Model Sucue BASICS Tmelne of evens Sa of economc plannng hozon End of economc plannng hozon Noaon : capal used fo poducon n peod (decded upon n

More information

Rotations.

Rotations. oons j.lbb@phscs.o.c.uk To s summ Fmes of efeence Invnce une nsfomons oon of wve funcon: -funcons Eule s ngles Emple: e e - - Angul momenum s oon geneo Genec nslons n Noehe s heoem Fmes of efeence Conse

More information

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series IAENG Inenaional Jounal of Applied Mahemaic, 4:, IJAM_4 7 Degee of Appoximaion of a Cla of Funcion by C, E, q Mean of Fouie Seie Hae Kihna Nigam and Kuum Shama Abac In hi pape, fo he fi ime, we inoduce

More information

Flow Decomposition and Large Deviations

Flow Decomposition and Large Deviations ounal of funconal analy 14 2367 (1995) acle no. 97 Flow Decompoon and Lage Devaon Ge ad Ben Aou and Fabenne Caell Laboaoe de Mode laon ochaque e aque Unvee Pa-Sud (Ba^. 425) 91-45 Oay Cedex Fance Receved

More information

An Approach to the Representation of Gradual Uncertainty Resolution in Stochastic Multiperiod Planning

An Approach to the Representation of Gradual Uncertainty Resolution in Stochastic Multiperiod Planning 9 h Euopean mpoum on Compue Aded oce Engneeng ECAE9 J. Jeow and J. hulle (Edo 009 Eleve B.V./Ld. All gh eeved. An Appoach o he epeenaon of Gadual Uncean eoluon n ochac ulpeod lannng Vcene co-amez a gnaco

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Weights of Markov Traces on Cyclotomic Hecke Algebras

Weights of Markov Traces on Cyclotomic Hecke Algebras Jounal of Algeba 238, 762775 2001 do:10.1006jab.2000.8636, avalable onlne a hp:www.dealbay.com on Weghs of Maov Taces on Cycloomc Hece Algebas Hebng Ru 1 Depamen of Mahemacs, Eas Chna Nomal Unesy, Shangha,

More information

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1 ps 57 Machne Leann School of EES Washnon Sae Unves ps 57 - Machne Leann Assume nsances of classes ae lneal sepaable Esmae paamees of lnea dscmnan If ( - -) > hen + Else - ps 57 - Machne Leann lassfcaon

More information

( ) ( ) ( ) ( ) ( ) ( ) j ( ) A. b) Theorem

( ) ( ) ( ) ( ) ( ) ( ) j ( ) A. b) Theorem b) Theoe The u of he eco pojecon of eco n ll uull pependcul (n he ene of he cl poduc) decon equl o he eco. ( ) n e e o The pojecon conue he eco coponen of he eco. poof. n e ( ) ( ) ( ) e e e e e e e e

More information

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim Korean J. Mah. 19 (2011), No. 3, pp. 263 272 GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS Youngwoo Ahn and Kae Km Absrac. In he paper [1], an explc correspondence beween ceran

More information

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8 Molecula Evoluion and hylogeny Baed on: Dubin e al Chape 8. hylogeneic Tee umpion banch inenal node leaf Topology T : bifucaing Leave - N Inenal node N+ N- Lengh { i } fo each banch hylogeneic ee Topology

More information

On the Quasi-Hyperbolic Kac-Moody Algebra QHA7 (2)

On the Quasi-Hyperbolic Kac-Moody Algebra QHA7 (2) Ieaoal Reeach Joual of Egeeg ad Techology (IRJET) e-issn: 9 - Volume: Iue: May- www.e.e -ISSN: 9-7 O he Qua-Hyebolc Kac-Moody lgeba QH7 () Uma Mahewa., Khave. S Deame of Mahemac Quad-E-Mllah Goveme College

More information

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3 elave moon L4:1 To appl Newon's laws we need measuemens made fom a 'fed,' neal efeence fame (unacceleaed, non-oang) n man applcaons, measuemens ae made moe smpl fom movng efeence fames We hen need a wa

More information

Cohen Macaulay Rings Associated with Digraphs

Cohen Macaulay Rings Associated with Digraphs JOURNAL OF ALGEBRA 206, 541554 1998 ARTICLE NO. JA987449 CohenMacaulay Rng Aocated wth Dgaph Kazufum Eto Depatment of Mathematc, Nppon Inttute of Technology, Satama, Japan Communcated by Cag Hunee Receved

More information

A. Inventory model. Why are we interested in it? What do we really study in such cases.

A. Inventory model. Why are we interested in it? What do we really study in such cases. Some general yem model.. Inenory model. Why are we nereed n? Wha do we really udy n uch cae. General raegy of machng wo dmlar procee, ay, machng a fa proce wh a low one. We need an nenory or a buffer or

More information

Information Fusion Kalman Smoother for Time-Varying Systems

Information Fusion Kalman Smoother for Time-Varying Systems Infoaon Fuon alan oohe fo Te-Vayng ye Xao-Jun un Z- Deng Abac-- Fo he lnea dcee e-ayng ochac conol ye wh uleno coloed eaueen noe hee dbued opal fuon alan oohe ae peened baed on he opal nfoaon fuon ule

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

s = rθ Chapter 10: Rotation 10.1: What is physics?

s = rθ Chapter 10: Rotation 10.1: What is physics? Chape : oaon Angula poson, velocy, acceleaon Consan angula acceleaon Angula and lnea quanes oaonal knec enegy oaonal nea Toque Newon s nd law o oaon Wok and oaonal knec enegy.: Wha s physcs? In pevous

More information

Support Vector Machines

Support Vector Machines Suppo Veco Machine CSL 3 ARIFICIAL INELLIGENCE SPRING 4 Suppo Veco Machine O, Kenel Machine Diciminan-baed mehod olean cla boundaie Suppo veco coni of eample cloe o bounday Kenel compue imilaiy beeen eample

More information

ScienceDirect. Behavior of Integral Curves of the Quasilinear Second Order Differential Equations. Alma Omerspahic *

ScienceDirect. Behavior of Integral Curves of the Quasilinear Second Order Differential Equations. Alma Omerspahic * Avalable onlne a wwwscencedeccom ScenceDec oceda Engneeng 69 4 85 86 4h DAAAM Inenaonal Smposum on Inellgen Manufacung and Auomaon Behavo of Inegal Cuves of he uaslnea Second Ode Dffeenal Equaons Alma

More information

Chebyshev Polynomial Solution of Nonlinear Fredholm-Volterra Integro- Differential Equations

Chebyshev Polynomial Solution of Nonlinear Fredholm-Volterra Integro- Differential Equations Çny Ünvee Fen-Edeby Füle Jounl of A nd Scence Sy : 5 y 6 Chebyhev Polynol Soluon of onlne Fedhol-Vole Inego- Dffeenl Equon Hndn ÇERDİK-YASA nd Ayşegül AKYÜZ-DAŞCIOĞU Abc In h ppe Chebyhev collocon ehod

More information

H = d d q 1 d d q N d d p 1 d d p N exp

H = d d q 1 d d q N d d p 1 d d p N exp 8333: Sacal Mechanc I roblem Se # 7 Soluon Fall 3 Canoncal Enemble Non-harmonc Ga: The Hamlonan for a ga of N non neracng parcle n a d dmenonal box ha he form H A p a The paron funcon gven by ZN T d d

More information

u(t) Figure 1. Open loop control system

u(t) Figure 1. Open loop control system Open loop conrol v cloed loop feedbac conrol The nex wo figure preen he rucure of open loop and feedbac conrol yem Figure how an open loop conrol yem whoe funcion i o caue he oupu y o follow he reference

More information

ˆ x ESTIMATOR. state vector estimate

ˆ x ESTIMATOR. state vector estimate hapte 9 ontolle Degn wo Independent Step: Feedback Degn ontol Law =- ame all tate ae acceble a lot of eno ae necea Degn of Etmato alo called an Obeve whch etmate the ente tate vecto gven the otpt and npt

More information

Reinforcement learning

Reinforcement learning CS 75 Mchine Lening Lecue b einfocemen lening Milos Huskech milos@cs.pi.edu 539 Senno Sque einfocemen lening We wn o len conol policy: : X A We see emples of bu oupus e no given Insed of we ge feedbck

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

Matrix reconstruction with the local max norm

Matrix reconstruction with the local max norm Marx reconrucon wh he local max norm Rna oygel Deparmen of Sac Sanford Unvery rnafb@anfordedu Nahan Srebro Toyoa Technologcal Inue a Chcago na@cedu Rulan Salakhudnov Dep of Sac and Dep of Compuer Scence

More information

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION Inenaional Jounal of Science, Technology & Managemen Volume No 04, Special Issue No. 0, Mach 205 ISSN (online): 2394-537 STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE

More information

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f TAMKANG JOURNAL OF MATHEMATIS Volume 33, Numbe 4, Wine 2002 ON THE OUNDEDNESS OF A GENERALIED FRATIONAL INTEGRAL ON GENERALIED MORREY SPAES ERIDANI Absac. In his pape we exend Nakai's esul on he boundedness

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002 Mmm lkelhood eme of phylogey BIO 9S/ S 90B/ MH 90B/ S 90B Iodco o Bofomc pl 00 Ovevew of he pobblc ppoch o phylogey o k ee ccodg o he lkelhood d ee whee d e e of eqece d ee by ee wh leve fo he eqece. he

More information

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security 1 Geneal Non-Abiage Model I. Paial Diffeenial Equaion fo Picing A. aded Undelying Secuiy 1. Dynamics of he Asse Given by: a. ds = µ (S, )d + σ (S, )dz b. he asse can be eihe a sock, o a cuency, an index,

More information

PHY2053 Summer C 2013 Exam 1 Solutions

PHY2053 Summer C 2013 Exam 1 Solutions PHY053 Sue C 03 E Soluon. The foce G on o G G The onl cobnon h e '/ = doubln.. The peed of lh le 8fulon c 86,8 le 60 n 60n h 4h d 4d fonh.80 fulon/ fonh 3. The dnce eled fo he ene p,, 36 (75n h 45 The

More information

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard Complex Analysis R.G. Halbud R.Halbud@ucl.ac.uk Depamen of Mahemaics Univesiy College London 202 The shoes pah beween wo uhs in he eal domain passes hough he complex domain. J. Hadamad Chape The fis fundamenal

More information

arxiv: v1 [math.pr] 4 Jul 2014

arxiv: v1 [math.pr] 4 Jul 2014 Mean-feld ochac dffeenal equaon and aocaed PDE Rane Buckdahn 1,3, Juan L 2, Shge Peng 3, Cahene Rane 1 1 Laoaoe de Mahémaque LMBA, CNRS-UMR 6205, Unveé de Beagne Occdenale, 6, avenue Vco-le-Gogeu, CS 93837,

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

Exam 1. Sept. 22, 8:00-9:30 PM EE 129. Material: Chapters 1-8 Labs 1-3

Exam 1. Sept. 22, 8:00-9:30 PM EE 129. Material: Chapters 1-8 Labs 1-3 Eam ept., 8:00-9:30 PM EE 9 Mateal: Chapte -8 Lab -3 tandadzaton and Calbaton: Ttaton: ue of tandadzed oluton to detemne the concentaton of an unknown. Rele on a eacton of known tochomet, a oluton wth

More information

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings.

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings. T H S PA G E D E CLA SSFED AW E O 2958 RS u blc Recod Key fo maon Ma n AR MATEREL COMM ND D cumen Type Call N u b e 03 V 7 Rcvd Rel 98 / 0 ndexe D 38 Eneed Dae RS l umbe 0 0 4 2 3 5 6 C D QC d Dac A cesson

More information

N 1. Time points are determined by the

N 1. Time points are determined by the upplemena Mehods Geneaon of scan sgnals In hs secon we descbe n deal how scan sgnals fo 3D scannng wee geneaed. can geneaon was done n hee seps: Fs, he dve sgnal fo he peo-focusng elemen was geneaed o

More information

X-Ray Notes, Part III

X-Ray Notes, Part III oll 6 X-y oe 3: Pe X-Ry oe, P III oe Deeo Coe oupu o x-y ye h look lke h: We efe ue of que lhly ffee efo h ue y ovk: Co: C ΔS S Sl o oe Ro: SR S Co o oe Ro: CR ΔS C SR Pevouly, we ee he SR fo ye hv pxel

More information

Simulation of Non-normal Autocorrelated Variables

Simulation of Non-normal Autocorrelated Variables Jounal of Moden Appled Sascal Mehods Volume 5 Issue Acle 5 --005 Smulaon of Non-nomal Auocoelaed Vaables HT Holgesson Jönöpng Inenaonal Busness School Sweden homasholgesson@bshse Follow hs and addonal

More information

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration Mh Csquee Go oe eco nd eco lgeb Dsplcemen nd poson n -D Aege nd nsnneous eloc n -D Aege nd nsnneous cceleon n -D Poecle moon Unfom ccle moon Rele eloc* The componens e he legs of he gh ngle whose hpoenuse

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

A note on characterization related to distributional properties of random translation, contraction and dilation of generalized order statistics

A note on characterization related to distributional properties of random translation, contraction and dilation of generalized order statistics PobSa Foum, Volume 6, July 213, Pages 35 41 ISSN 974-3235 PobSa Foum is an e-jounal. Fo eails please visi www.pobsa.og.in A noe on chaaceizaion elae o isibuional popeies of anom anslaion, conacion an ilaion

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes] ENGI 44 Avance alculus fo Engineeing Faculy of Engineeing an Applie cience Poblem e 9 oluions [Theoems of Gauss an okes]. A fla aea A is boune by he iangle whose veices ae he poins P(,, ), Q(,, ) an R(,,

More information

CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE

CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE Fameal Joal of Mahemaic a Mahemaical Sciece Vol. 7 Ie 07 Page 5- Thi pape i aailable olie a hp://.fi.com/ Pblihe olie Jaa 0 07 CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE Caolo

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

6.302 Feedback Systems Recitation : Phase-locked Loops Prof. Joel L. Dawson

6.302 Feedback Systems Recitation : Phase-locked Loops Prof. Joel L. Dawson 6.32 Feedback Syem Phae-locked loop are a foundaional building block for analog circui deign, paricularly for communicaion circui. They provide a good example yem for hi cla becaue hey are an excellen

More information

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s MÜHENDİSLİK MEKANİĞİ. HAFTA İMPULS- MMENTUM-ÇARPIŞMA Linea oenu of a paicle: The sybol L denoes he linea oenu and is defined as he ass ies he elociy of a paicle. L ÖRNEK : THE LINEAR IMPULSE-MMENTUM RELATIN

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

PHYS 1443 Section 001 Lecture #4

PHYS 1443 Section 001 Lecture #4 PHYS 1443 Secon 001 Lecure #4 Monda, June 5, 006 Moon n Two Dmensons Moon under consan acceleraon Projecle Moon Mamum ranges and heghs Reerence Frames and relae moon Newon s Laws o Moon Force Newon s Law

More information

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Fundamenal Jounal of Mahemaical Phsics Vol 3 Issue 013 Pages 55-6 Published online a hp://wwwfdincom/ MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Univesias

More information

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example C 188: Aificial Inelligence Fall 2007 epesening Knowledge ecue 17: ayes Nes III 10/25/2007 an Klein UC ekeley Popeies of Ns Independence? ayes nes: pecify complex join disibuions using simple local condiional

More information

Comparison of Differences between Power Means 1

Comparison of Differences between Power Means 1 In. Journal of Mah. Analyss, Vol. 7, 203, no., 5-55 Comparson of Dfferences beween Power Means Chang-An Tan, Guanghua Sh and Fe Zuo College of Mahemacs and Informaon Scence Henan Normal Unversy, 453007,

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Notes on the stability of dynamic systems and the use of Eigen Values.

Notes on the stability of dynamic systems and the use of Eigen Values. Noes on he sabl of dnamc ssems and he use of Egen Values. Source: Macro II course noes, Dr. Davd Bessler s Tme Seres course noes, zarads (999) Ineremporal Macroeconomcs chaper 4 & Techncal ppend, and Hamlon

More information

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts Onlne Appendx for Sraegc safey socs n supply chans wh evolvng forecass Tor Schoenmeyr Sephen C. Graves Opsolar, Inc. 332 Hunwood Avenue Hayward, CA 94544 A. P. Sloan School of Managemen Massachuses Insue

More information

Consider a Binary antipodal system which produces data of δ (t)

Consider a Binary antipodal system which produces data of δ (t) Modulaion Polem PSK: (inay Phae-hi keying) Conide a inay anipodal yem whih podue daa o δ ( o + δ ( o inay and epeively. Thi daa i paed o pule haping ile and he oupu o he pule haping ile i muliplied y o(

More information

Field due to a collection of N discrete point charges: r is in the direction from

Field due to a collection of N discrete point charges: r is in the direction from Physcs 46 Fomula Shee Exam Coulomb s Law qq Felec = k ˆ (Fo example, f F s he elecc foce ha q exes on q, hen ˆ s a un veco n he decon fom q o q.) Elecc Feld elaed o he elecc foce by: Felec = qe (elecc

More information

Exponential and Logarithmic Equations and Properties of Logarithms. Properties. Properties. log. Exponential. Logarithmic.

Exponential and Logarithmic Equations and Properties of Logarithms. Properties. Properties. log. Exponential. Logarithmic. Eponenial and Logaihmic Equaions and Popeies of Logaihms Popeies Eponenial a a s = a +s a /a s = a -s (a ) s = a s a b = (ab) Logaihmic log s = log + logs log/s = log - logs log s = s log log a b = loga

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

Computer Propagation Analysis Tools

Computer Propagation Analysis Tools Compue Popagaion Analysis Tools. Compue Popagaion Analysis Tools Inoducion By now you ae pobably geing he idea ha pedicing eceived signal sengh is a eally impoan as in he design of a wieless communicaion

More information

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff Laplace ransfom: -ranslaion rule 8.03, Haynes Miller and Jeremy Orloff Inroducory example Consider he sysem ẋ + 3x = f(, where f is he inpu and x he response. We know is uni impulse response is 0 for

More information

Optimal control of Goursat-Darboux systems in domains with curvilinear boundaries

Optimal control of Goursat-Darboux systems in domains with curvilinear boundaries Opmal conol of Goua-Daboux yem n doman wh cuvlnea boundae S. A. Belba Mahemac Depamen Unvey of Alabama Tucalooa, AL. 35487-0350. USA. e-mal: SBELBAS@G.AS.UA.EDU Abac. We deve neceay condon fo opmaly n

More information

2/20/2013. EE 101 Midterm 2 Review

2/20/2013. EE 101 Midterm 2 Review //3 EE Mderm eew //3 Volage-mplfer Model The npu ressance s he equalen ressance see when lookng no he npu ermnals of he amplfer. o s he oupu ressance. I causes he oupu olage o decrease as he load ressance

More information

A Demand System for Input Factors when there are Technological Changes in Production

A Demand System for Input Factors when there are Technological Changes in Production A Demand Syem for Inpu Facor when here are Technologcal Change n Producon Movaon Due o (e.g.) echnologcal change here mgh no be a aonary relaonhp for he co hare of each npu facor. When emang demand yem

More information

Chapter Lagrangian Interpolation

Chapter Lagrangian Interpolation Chaper 5.4 agrangan Inerpolaon Afer readng hs chaper you should be able o:. dere agrangan mehod of nerpolaon. sole problems usng agrangan mehod of nerpolaon and. use agrangan nerpolans o fnd deraes and

More information

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs)

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs) USOD 005 uecal Sudy of Lage-aea An-Reonan Reflecng Opcal Wavegude (ARROW Vecal-Cavy Seconduco Opcal Aplfe (VCSOA anhu Chen Su Fung Yu School of Eleccal and Eleconc Engneeng Conen Inoducon Vecal Cavy Seconduco

More information

c- : r - C ' ',. A a \ V

c- : r - C ' ',. A a \ V HS PAGE DECLASSFED AW EO 2958 c C \ V A A a HS PAGE DECLASSFED AW EO 2958 HS PAGE DECLASSFED AW EO 2958 = N! [! D!! * J!! [ c 9 c 6 j C v C! ( «! Y y Y ^ L! J ( ) J! J ~ n + ~ L a Y C + J " J 7 = [ " S!

More information

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov) Algorihm and Daa Srucure 2011/ Week Soluion (Tue 15h - Fri 18h No) 1. Queion: e are gien 11/16 / 15/20 8/13 0/ 1/ / 11/1 / / To queion: (a) Find a pair of ube X, Y V uch ha f(x, Y) = f(v X, Y). (b) Find

More information

Physics 201, Lecture 5

Physics 201, Lecture 5 Phsics 1 Lecue 5 Tod s Topics n Moion in D (Chp 4.1-4.3): n D Kinemicl Quniies (sec. 4.1) n D Kinemics wih Consn Acceleion (sec. 4.) n D Pojecile (Sec 4.3) n Epeced fom Peiew: n Displcemen eloci cceleion

More information

Control Systems. Mathematical Modeling of Control Systems.

Control Systems. Mathematical Modeling of Control Systems. Conrol Syem Mahemacal Modelng of Conrol Syem chbum@eoulech.ac.kr Oulne Mahemacal model and model ype. Tranfer funcon model Syem pole and zero Chbum Lee -Seoulech Conrol Syem Mahemacal Model Model are key

More information

Let s treat the problem of the response of a system to an applied external force. Again,

Let s treat the problem of the response of a system to an applied external force. Again, Page 33 QUANTUM LNEAR RESPONSE FUNCTON Le s rea he problem of he response of a sysem o an appled exernal force. Agan, H() H f () A H + V () Exernal agen acng on nernal varable Hamlonan for equlbrum sysem

More information

2 shear strain / L for small angle

2 shear strain / L for small angle Sac quaons F F M al Sess omal sess foce coss-seconal aea eage Shea Sess shea sess shea foce coss-seconal aea llowable Sess Faco of Safe F. S San falue Shea San falue san change n lengh ognal lengh Hooke

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Available online through ISSN

Available online through  ISSN Intenational eseach Jounal of Pue Algeba -() 01 98-0 Available online though wwwjpainfo ISSN 8 907 SOE ESULTS ON THE GOUP INVESE OF BLOCK ATIX OVE IGHT OE DOAINS Hanyu Zhang* Goup of athematical Jidong

More information

THE EQUIVALENCE OF GRAM-SCHMIDT AND QR FACTORIZATION (page 227) Gram-Schmidt provides another way to compute a QR decomposition: n

THE EQUIVALENCE OF GRAM-SCHMIDT AND QR FACTORIZATION (page 227) Gram-Schmidt provides another way to compute a QR decomposition: n HE EQUIVAENCE OF GRA-SCHID AND QR FACORIZAION (page 7 Ga-Schdt podes anothe way to copute a QR decoposton: n gen ectos,, K, R, Ga-Schdt detenes scalas j such that o + + + [ ] [ ] hs s a QR factozaton of

More information

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent oucms Couga Gas Mchal Kazha (6.657) Ifomao abou h Sma (6.757) hav b pos ol: hp://www.cs.hu.u/~msha Tch Spcs: o M o Tusay afoo. o Two paps scuss ach w. o Vos fo w s caa paps u by Thusay vg. Oul Rvw of Sps

More information

Signals and Systems Linear Time-Invariant (LTI) Systems

Signals and Systems Linear Time-Invariant (LTI) Systems Signals and Sysems Linear Time-Invarian (LTI) Sysems Chang-Su Kim Discree-Time LTI Sysems Represening Signals in Terms of Impulses Sifing propery 0 x[ n] x[ k] [ n k] k x[ 2] [ n 2] x[ 1] [ n1] x[0] [

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information