# s = rθ Chapter 10: Rotation 10.1: What is physics?

Size: px
Start display at page:

Transcription

1 Chape : oaon Angula poson, velocy, acceleaon Consan angula acceleaon Angula and lnea quanes oaonal knec enegy oaonal nea Toque Newon s nd law o oaon Wok and oaonal knec enegy.: Wha s physcs? In pevous chapes we have dscussed he anslaonal moon In hs chape we wll dscuss he moon when objec un abou an axs (oaonal Moon) Vaables n oaonal moon ae analogous o hose o anslaonal moon wh ew changes We wll Dscuss he quanes n angula vaables (we wll ocus on he angle when objec oang) nd he angula poson, velocy, and acceleaon. Apply Newon second law bu nsead o oce and mass we wll use oque and oaonal nea. Apply enegy conceps o angula quanes lke wok knec enegy heoem.: oaonal vaables We wll ocus on oaon o a gd body abou a xed axs gd body: body ha can oae wh all s pas packed ogehe whou any change n s shape Fxed axs: oaon abou an axs ha does no move Fgue shows a gd body o abay shape n pue oaon abou he z- axs o a coodnae Sysem evey pon o he body moves n a ccle whose cene les on he axs o oaon (see he abay eeence lne), and evey pon moves hough he same angle dung a pacula me neval.: oaonal vaables: Consde a pacle on gd objec a pon p oaes hough an angle θ As objec oaes, he pon P make an Ac lengh s Angula poson θ s s θ n adans (ad.) o evoluon adans: ao beween he wo lengh s and dmensonless quany When s θ ad (دورة) Full ccle 36 π ad. evoluon whee π /7 3. we can conve beween ad. and degee om he coelaon: Degee ad. 36 π π θ (ad) θ (deg) θ?? 36

2 .: oaonal vaables Angula dsplacemen: Aveage angula speed: θ θ θ θ ωavg (ad/s) s - (ad.) As pacle moves om angula poson θ o θ.: oaonal vaables: Example Insananeous angula speed: dθ ω lm d (ad/s) s - Aveage angula ω ω ω α avg acceleaon: (ad/s²) s - Insananeous ω dω angula α lm (ad/s²) s acceleaon: d - All pacles o a gd objec oae a he same angula dsplacemen, speed and acceleaon. θ ω 7 ev/mn 9 6 cm θ.: oaonal vaables: Example A chld s op s spun wh angula acceleaon A, he op has angula velocy 5 ad/s, and a eeence lne on s a angula poson (θ ) θ ad. Fnd (a) angula velocy ω a he op a any me (b) angula poson θ a any me a) ω αd b) ω ω (5 ) d 5 ω 5 5 ω ωd θ θ 5 ( 5 3 θ θ ) d.3: ae angula quanes vecos? ω Angula velocy ω, s a veco can be wen as Fo oaon abou a xed axs, he decon o he angula velocy s along he axs o oaon. Use he gh hand ule o deemne decon. Also angula acceleaon α s a veco quany can be wen α havng same ules o decon and same ules o speedng up oaon o slowng down oaon Fo oaon couneclockwse (بعكس عقارب الساعة ( +ve ω Fo oaon clockwse (مع عقارب الساعة ( -ve ω

3 .: oaon wh consan angula acceleaon Fo oaonal moon wh consan oaonal acceleaon α The equaons o moon ae smla n o he equaon o moon n one dmenson (D); Only do he ollowng symbol eplacemen x θ v ω a α.: oaon wh consan angula acceleaon Lnea (D) Moon wh consan lnea acceleaon, a v v + a x ) x x x ( v + ) x + ( v + v x ( v + x x v) x v + a v v + a x oaonal Moon wh consan oaonal acceleaon, α ω ω + α θ θ + + ( ω ω θ θ + ω + α ( ω ω ) ω ω + α ).: oaon wh consan angula acceleaon: Example α.: oaon wh consan angula acceleaon: Example: connued om pevous slde α 3.5ad, s, ω. ad s,?, evoluons?, ω?.s ev. ad.75 ev. π ad. α 3.5ad, s, ω. ad?, evoluons?, ω? s,.s 3

5 .6: Knec Enegy O oaon a collecon o n pacles oang abou a xed axs has a oaonal knec enegy o: n n K mv m ω v s he lnea speed o pacle K Iω whee I s he momen o nea o oaonal nea: (kg.m (o collecon o pacles) ) s he dsance om oaonal axs I m (J) Mahemacally, Smla n shape o lnea K wh he ollowng eplacemens I m, ω v.6: Knec Enegy O oaon: Example Sphees o mass m has I because, hey le on y-axs.6: Knec Enegy O oaon: Example: connued om pevous slde.7: Calculang he oaonal nea o collecon o pacles, we had: Fo an exended, gd objec: I I m dm o m mρv dm ρdv mσa dmσda mλl dmλdl I dm ρdv I m I ρ dv 5

6 .7: Calculang he oaonal nea: Example.7: Calculang he oaonal nea: Momens o nea o vaous objecs I CM : Momen o nea abou an axs o oaon hough he cene o mass Exended objec ; λdlλdx (L s on x-axs) and.7: Calculang he oaonal nea: Paallel axs heoem I I CM s known, he momen o nea hough a paallel axs o oaon a dsance h away om he cene o mass s: I ICM + Mh I I I CM + Mh L ML + M ML 3.8: Toque Fsnφ φ F Fcosφ φ Is angle beween F and decons.(نقطة ارتكاز) Consde a gd objec abou a pvo pon A oce s appled o he objec. Ths oce causes he objec o oae havng wha s called Toque τ. τ F snφ 6

7 Toque and Angula Acceleaon.8: Toque consde a pacle o mass m oang a bou a xed axs unde an nluence o appled oce F The componen F does no oque snce (an-paallel o ) he angen componen F has a oque τ F (sn 9 ) bu F ma and a α τ F m α τ Iα I moe han one oce appled o he objec τ τ ne Iα Newon s second law n oaon.8: Toque: Example Two oces T and T ae appled as shown Fo oaon couneclockwse (بعكس عقارب الساعة) +ve α Fo oaon مع عقارب ( clockwse -ve α (الساعة α? a? T?.8: Example: a unom dsk, wh mass M.5 kg and adus cm, mouned on a xed hozonal axle. A block wh mass m. kg hangs om a massless cod ha s wapped aound he m o he dsk. Fnd he acceleaon o he allng block, he angula acceleaon o he dsk, and he enson n he cod. The cod does no slp, and hee s no con a he axle. a wh I M (.5)(.).5kg. m a.8m, T 6N, and α ad.8: Example: A unom od o lengh L and mass M s aached as shown. The od s eleased om es n he hozonal poson. Wha ae he nal angula acceleaon o he od and he nal anslaonal acceleaon o s gh end? α? and a? * The ode wll move lke pendulum unde he eec o F g Mg Exended objec look a he CM soluon L τ F sn φ F ( ) Mg L bu τ Iα ( ) Mg τ ( L / ) Mg 3g α I / 3ML L a The anslaonal acceleaon s 7

8 .8: Wok and oaonal Knec Enegy Wok n lnea moon dw F ds W F s dw P F. v d Wok n oaonal moon dw F ds dw τdθ W τ P τω.8: Wok and oaonal Knec Enegy: Wok Knec Enegy heoem The wok-knec enegy heoem o lnea moon: W mv mv Exenal wok done on an objec changes s knec enegy and o oaonal moon: W Iω Iω K Exenal oaonal wok done on an objec changes s oaonal knec enegy.8: Wok and oaonal Knec Enegy: Example In pevous example o dsk, he dsk sa om es a me. Wha s s oaonal knec enegy K a.5 s? Fom pevous example we have I M (.5)(.).5kg. m a.8m, T 6N, and α ad K Iω We need o nd ω a.5s ω ω + α + (.5) 6 ad/s K Iω M.5 kg,adus cm, and m. kg (.5)(6) 9J.8: Wok and oaonal Knec Enegy: Example: connued om pevous slde K K W K ω + α K τ ( ) We need o nd τ and τ T (. )( 6 ). N.m K + ()(. 5) τ (.)(75) 9J M.5 kg,adus cm, and m. kg o 75ad 8

9 evew Lnea quanes have analogous angula counepas. evew Objec oang make boh lnea and angula quanes a same nsan hee s a elaon wh angula and lnea quanes Toque s he endency o a oce o oae an objec. The oal knec enegy o a oang objec has o nclude s oaonal knec enegy. 9

### 5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

5-1. We apply Newon s second law (specfcally, Eq. 5-). (a) We fnd he componen of he foce s ( ) ( ) F = ma = ma cos 0.0 = 1.00kg.00m/s cos 0.0 = 1.88N. (b) The y componen of he foce s ( ) ( ) F = ma = ma

### Chapter 3: Vectors and Two-Dimensional Motion

Chape 3: Vecos and Two-Dmensonal Moon Vecos: magnude and decon Negae o a eco: eese s decon Mulplng o ddng a eco b a scala Vecos n he same decon (eaed lke numbes) Geneal Veco Addon: Tangle mehod o addon

### L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3

elave moon L4:1 To appl Newon's laws we need measuemens made fom a 'fed,' neal efeence fame (unacceleaed, non-oang) n man applcaons, measuemens ae made moe smpl fom movng efeence fames We hen need a wa

### Course Outline. 1. MATLAB tutorial 2. Motion of systems that can be idealized as particles

Couse Oulne. MATLAB uoal. Moon of syses ha can be dealzed as pacles Descpon of oon, coodnae syses; Newon s laws; Calculang foces equed o nduce pescbed oon; Deng and solng equaons of oon 3. Conseaon laws

### Field due to a collection of N discrete point charges: r is in the direction from

Physcs 46 Fomula Shee Exam Coulomb s Law qq Felec = k ˆ (Fo example, f F s he elecc foce ha q exes on q, hen ˆ s a un veco n he decon fom q o q.) Elecc Feld elaed o he elecc foce by: Felec = qe (elecc

### Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

### Chapters 2 Kinematics. Position, Distance, Displacement

Chapers Knemacs Poson, Dsance, Dsplacemen Mechancs: Knemacs and Dynamcs. Knemacs deals wh moon, bu s no concerned wh he cause o moon. Dynamcs deals wh he relaonshp beween orce and moon. The word dsplacemen

### PHYS 1443 Section 001 Lecture #4

PHYS 1443 Secon 001 Lecure #4 Monda, June 5, 006 Moon n Two Dmensons Moon under consan acceleraon Projecle Moon Mamum ranges and heghs Reerence Frames and relae moon Newon s Laws o Moon Force Newon s Law

### Motion in Two Dimensions

Phys 1 Chaper 4 Moon n Two Dmensons adzyubenko@csub.edu hp://www.csub.edu/~adzyubenko 005, 014 A. Dzyubenko 004 Brooks/Cole 1 Dsplacemen as a Vecor The poson of an objec s descrbed by s poson ecor, r The

### Physics 1501 Lecture 19

Physcs 1501 ectue 19 Physcs 1501: ectue 19 Today s Agenda Announceents HW#7: due Oct. 1 Mdte 1: aveage 45 % Topcs otatonal Kneatcs otatonal Enegy Moents of Ineta Physcs 1501: ectue 19, Pg 1 Suay (wth copason

### Physics 207 Lecture 16

Physcs 07 Lectue 6 Goals: Lectue 6 Chapte Extend the patcle odel to gd-bodes Undestand the equlbu of an extended object. Analyze ollng oton Undestand otaton about a fxed axs. Eploy consevaton of angula

WORK POWER AND ENERGY Consevaive foce a) A foce is said o be consevaive if he wok done by i is independen of pah followed by he body b) Wok done by a consevaive foce fo a closed pah is zeo c) Wok done

### Displacement, Velocity, and Acceleration. (WHERE and WHEN?)

Dsplacemen, Velocy, and Acceleraon (WHERE and WHEN?) Mah resources Append A n your book! Symbols and meanng Algebra Geomery (olumes, ec.) Trgonomery Append A Logarhms Remnder You wll do well n hs class

### Dynamics of Rotational Motion

Dynamics of Rotational Motion Toque: the otational analogue of foce Toque = foce x moment am τ = l moment am = pependicula distance though which the foce acts a.k.a. leve am l l l l τ = l = sin φ = tan

### Physics 201 Lecture 15

Phscs 0 Lecue 5 l Goals Lecue 5 v Elo consevaon of oenu n D & D v Inouce oenu an Iulse Coens on oenu Consevaon l oe geneal han consevaon of echancal eneg l oenu Consevaon occus n sses wh no ne eenal foces

### Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate

ucs Nucleus Nucleus omaon cal supesauaon Mng o eucs, empeaue, ec. Pmay pacle Gowh Inegaon o uson-lme pacle gowh Nanopacles Agglomeaon eagglomeaon Agglomeae Sablsaon o he nanopacles agans agglomeaon! anspo

### PHY126 Summer Session I, 2008

PHY6 Summe Sesson I, 8 Most of nfomaton s avalable at: http://nngoup.phscs.sunsb.edu/~chak/phy6-8 ncludng the sllabus and lectue sldes. Read sllabus and watch fo mpotant announcements. Homewok assgnment

### Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1

Rotatonal Knematcs Rgd Object about a Fxed Axs Westen HS AP Physcs 1 Leanng Objectes What we know Unfom Ccula Moton q s Centpetal Acceleaton : Centpetal Foce: Non-unfom a F c c m F F F t m ma t What we

### Name of the Student:

Engneeng Mahemacs 05 SUBJEC NAME : Pobably & Random Pocess SUBJEC CODE : MA645 MAERIAL NAME : Fomula Maeal MAERIAL CODE : JM08AM007 REGULAION : R03 UPDAED ON : Febuay 05 (Scan he above QR code fo he dec

### 24-2: Electric Potential Energy. 24-1: What is physics

D. Iyad SAADEDDIN Chapte 4: Electc Potental Electc potental Enegy and Electc potental Calculatng the E-potental fom E-feld fo dffeent chage dstbutons Calculatng the E-feld fom E-potental Potental of a

### Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

Mh Csquee Go oe eco nd eco lgeb Dsplcemen nd poson n -D Aege nd nsnneous eloc n -D Aege nd nsnneous cceleon n -D Poecle moon Unfom ccle moon Rele eloc* The componens e he legs of he gh ngle whose hpoenuse

### Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can.

1 Cicula Moion Radians One evoluion is equivalen o 360 0 which is also equivalen o 2π adians. Theefoe we can say ha 360 = 2π adians, 180 = π adians, 90 = π 2 adians. Hence 1 adian = 360 2π Convesions Rule

### Physics 111 Lecture 11

Physcs 111 ectue 11 Angula Momentum SJ 8th Ed.: Chap 11.1 11.4 Recap and Ovevew Coss Poduct Revsted Toque Revsted Angula Momentum Angula Fom o Newton s Second aw Angula Momentum o a System o Patcles Angula

### PHYS PRACTICE EXAM 2

PHYS 1800 PRACTICE EXAM Pa I Muliple Choice Quesions [ ps each] Diecions: Cicle he one alenaive ha bes complees he saemen o answes he quesion. Unless ohewise saed, assume ideal condiions (no ai esisance,

### WebAssign HW Due 11:59PM Tuesday Clicker Information

WebAssgn HW Due 11:59PM Tuesday Clcker Inormaon Remnder: 90% aemp, 10% correc answer Clcker answers wll be a end o class sldes (onlne). Some days we wll do a lo o quesons, and ew ohers Each day o clcker

### Physics 1: Mechanics

Physcs : Mechancs Đào Ngọc Hạnh Tâm Offce: A.503, Emal: dnhtam@hcmu.edu.vn HCMIU, Vetnam Natonal Unvesty Acknowledgment: Sldes ae suppoted by Pof. Phan Bao Ngoc Contents of Physcs Pat A: Dynamcs of Mass

### 2 shear strain / L for small angle

Sac quaons F F M al Sess omal sess foce coss-seconal aea eage Shea Sess shea sess shea foce coss-seconal aea llowable Sess Faco of Safe F. S San falue Shea San falue san change n lengh ognal lengh Hooke

### N 1. Time points are determined by the

upplemena Mehods Geneaon of scan sgnals In hs secon we descbe n deal how scan sgnals fo 3D scannng wee geneaed. can geneaon was done n hee seps: Fs, he dve sgnal fo he peo-focusng elemen was geneaed o

### CHAPTER 10: LINEAR DISCRIMINATION

HAPER : LINEAR DISRIMINAION Dscmnan-based lassfcaon 3 In classfcaon h K classes ( k ) We defned dsmnan funcon g () = K hen gven an es eample e chose (pedced) s class label as f g () as he mamum among g

### ( ) () we define the interaction representation by the unitary transformation () = ()

Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

### Chapter Fifiteen. Surfaces Revisited

Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

### Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

Peenaon fo Theoecal Condened Mae Phyc n TU Beln Geen-Funcon and GW appoxmaon Xnzheng L Theoy Depamen FHI May.8h 2005 Elecon n old Oulne Toal enegy---well olved Sngle pacle excaon---unde developng The Geen

### Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Physcs A Chapte - Unvesal Gavtaton Fall 07 hese notes ae ve pages. A quck summay: he text boxes n the notes contan the esults that wll compse the toolbox o Chapte. hee ae thee sectons: the law o gavtaton,

### Chapter 6 Plane Motion of Rigid Bodies

Chpe 6 Pne oon of Rd ode 6. Equon of oon fo Rd bod. 6., 6., 6.3 Conde d bod ced upon b ee een foce,, 3,. We cn ume h he bod mde of e numbe n of pce of m Δm (,,, n). Conden f he moon of he m cene of he

### Relative and Circular Motion

Relaie and Cicula Moion a) Relaie moion b) Cenipeal acceleaion Mechanics Lecue 3 Slide 1 Mechanics Lecue 3 Slide 2 Time on Video Pelecue Looks like mosly eeyone hee has iewed enie pelecue GOOD! Thank you

### Physics 201 Lecture 18

Phsics 0 ectue 8 ectue 8 Goals: Define and anale toque ntoduce the coss poduct Relate otational dnamics to toque Discuss wok and wok eneg theoem with espect to otational motion Specif olling motion (cente

### Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

Moden Enegy Funconal fo Nucle and Nuclea Mae By: lbeo noosa Teas &M Unvesy REU Cycloon 008 Meno: D. Shalom Shlomo Oulne. Inoducon.. The many-body poblem and he aee-fock mehod. 3. Skyme neacon. 4. aee-fock

### 7/1/2008. Adhi Harmoko S. a c = v 2 /r. F c = m x a c = m x v 2 /r. Ontang Anting Moment of Inertia. Energy

7//008 Adh Haoko S Ontang Antng Moent of neta Enegy Passenge undego unfo ccula oton (ccula path at constant speed) Theefoe, thee ust be a: centpetal acceleaton, a c. Theefoe thee ust be a centpetal foce,

### UNIT 1 ONE-DIMENSIONAL MOTION GRAPHING AND MATHEMATICAL MODELING. Objectives

UNIT 1 ONE-DIMENSIONAL MOTION GRAPHING AND MATHEMATICAL MODELING Objeces To learn abou hree ways ha a physcs can descrbe moon along a sragh lne words, graphs, and mahemacal modelng. To acqure an nue undersandng

### CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

ps 57 Machne Leann School of EES Washnon Sae Unves ps 57 - Machne Leann Assume nsances of classes ae lneal sepaable Esmae paamees of lnea dscmnan If ( - -) > hen + Else - ps 57 - Machne Leann lassfcaon

### PHY121 Formula Sheet

HY Foula Sheet One Denson t t Equatons o oton l Δ t Δ d d d d a d + at t + at a + t + ½at² + a( - ) ojectle oton y cos θ sn θ gt ( cos θ) t y ( sn θ) t ½ gt y a a sn θ g sn θ g otatonal a a a + a t Ccula

### CHAPTER 2 Quick Quizzes

CHAPTER Quck Quzzes (a) 00 yd (b) 0 (c) 0 (a) False The car may be slowng down, so ha he drecon o s acceleraon s oppose he drecon o s elocy (b) True I he elocy s n he drecon chosen as negae, a pose acceleraon

### Rotary motion

ectue 8 RTARY TN F THE RGD BDY Notes: ectue 8 - Rgd bod Rgd bod: j const numbe of degees of feedom 6 3 tanslatonal + 3 ota motons m j m j Constants educe numbe of degees of feedom non-fee object: 6-p

### Lecture 5. Plane Wave Reflection and Transmission

Lecue 5 Plane Wave Reflecon and Tansmsson Incden wave: 1z E ( z) xˆ E (0) e 1 H ( z) yˆ E (0) e 1 Nomal Incdence (Revew) z 1 (,, ) E H S y (,, ) 1 1 1 Refleced wave: 1z E ( z) xˆ E E (0) e S H 1 1z H (

### Dynamics of Rigid Bodies

Dynamcs of Rgd Bodes A gd body s one n whch the dstances between consttuent patcles s constant thoughout the moton of the body,.e. t keeps ts shape. Thee ae two knds of gd body moton: 1. Tanslatonal Rectlnea

### Chapter 13 - Universal Gravitation

Chapte 3 - Unesal Gataton In Chapte 5 we studed Newton s thee laws of moton. In addton to these laws, Newton fomulated the law of unesal gataton. Ths law states that two masses ae attacted by a foce gen

### ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

ENGI 44 Avance alculus fo Engineeing Faculy of Engineeing an Applie cience Poblem e 9 oluions [Theoems of Gauss an okes]. A fla aea A is boune by he iangle whose veices ae he poins P(,, ), Q(,, ) an R(,,

### Mechanics Physics 151

Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

### COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER /2017

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER 1 016/017 PROGRAMME SUBJECT CODE : Foundaton n Engneeng : PHYF115 SUBJECT : Phscs 1 DATE : Septembe 016 DURATION :

### Mechanics Physics 151

Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

### Rotational Motion: Statics and Dynamics

Physics 07 Lectue 17 Goals: Lectue 17 Chapte 1 Define cente of mass Analyze olling motion Intoduce and analyze toque Undestand the equilibium dynamics of an extended object in esponse to foces Employ consevation

### Exam 3: Equation Summary

MAACHUETT INTITUTE OF TECHNOLOGY Depatment of Physics Physics 8. TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t = Exam 3: Equation ummay = Impulse: I F( t ) = p Toque: τ =,P dp F P τ =,P

### Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

### Spring 2002 Lecture #13

44-50 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallel-as Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the md-term

### SCIENCE CHINA Technological Sciences

SIENE HINA Technologcal Scences Acle Apl 4 Vol.57 No.4: 84 8 do:.7/s43-3-5448- The andom walkng mehod fo he seady lnea convecondffuson equaon wh axsymmec dsc bounday HEN Ka, SONG MengXuan & ZHANG Xng *

### 10/15/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

10/15/01 PHY 11 C Geneal Physcs I 11 AM-1:15 PM MWF Oln 101 Plan fo Lectue 14: Chapte 1 Statc equlbu 1. Balancng foces and toques; stablty. Cente of gavty. Wll dscuss elastcty n Lectue 15 (Chapte 15) 10/14/01

### Physics 1114: Unit 5 Hand-out Homework (Answers)

Physics 1114: Unit 5 Hand-out Homewok (Answes) Poblem set 1 1. The flywheel on an expeimental bus is otating at 420 RPM (evolutions pe minute). To find (a) the angula velocity in ad/s (adians/second),

### CHAPTER 13 LAGRANGIAN MECHANICS

CHAPTER 3 AGRANGIAN MECHANICS 3 Inoucon The usual way of usng newonan mechancs o solve a poblem n ynamcs s fs of all o aw a lage, clea agam of he sysem, usng a ule an a compass Then mak n he foces on he

### 1 Constant Real Rate C 1

Consan Real Rae. Real Rae of Inees Suppose you ae equally happy wh uns of he consumpon good oday o 5 uns of he consumpon good n peod s me. C 5 Tha means you ll be pepaed o gve up uns oday n eun fo 5 uns

### Chapter Finite Difference Method for Ordinary Differential Equations

Chape 8.7 Fne Dffeence Mehod fo Odnay Dffeenal Eqaons Afe eadng hs chape, yo shold be able o. Undesand wha he fne dffeence mehod s and how o se o solve poblems. Wha s he fne dffeence mehod? The fne dffeence

### ESS 265 Spring Quarter 2005 Kinetic Simulations

SS 65 Spng Quae 5 Knec Sulaon Lecue une 9 5 An aple of an lecoagnec Pacle Code A an eaple of a knec ulaon we wll ue a one denonal elecoagnec ulaon code called KMPO deeloped b Yohhau Oua and Hoh Mauoo.

### Homework 8: Rigid Body Dynamics Due Friday April 21, 2017

EN40: Dynacs and Vbraons Hoework 8: gd Body Dynacs Due Frday Aprl 1, 017 School of Engneerng Brown Unversy 1. The earh s roaon rae has been esaed o decrease so as o ncrease he lengh of a day a a rae of

### Example: MOSFET Amplifier Distortion

4/25/2011 Example MSFET Amplfer Dsoron 1/9 Example: MSFET Amplfer Dsoron Recall hs crcu from a prevous handou: ( ) = I ( ) D D d 15.0 V RD = 5K v ( ) = V v ( ) D o v( ) - K = 2 0.25 ma/v V = 2.0 V 40V.

### One-dimensional kinematics

Phscs 45 Fomula Sheet Eam 3 One-dmensonal knematcs Vectos dsplacement: Δ total dstance taveled aveage speed total tme Δ aveage veloct: vav t t Δ nstantaneous veloct: v lm Δ t v aveage acceleaton: aav t

### Remember: When an object falls due to gravity its potential energy decreases.

Chapte 5: lectc Potental As mentoned seveal tmes dung the uate Newton s law o gavty and Coulomb s law ae dentcal n the mathematcal om. So, most thngs that ae tue o gavty ae also tue o electostatcs! Hee

### Chapter Lagrangian Interpolation

Chaper 5.4 agrangan Inerpolaon Afer readng hs chaper you should be able o:. dere agrangan mehod of nerpolaon. sole problems usng agrangan mehod of nerpolaon and. use agrangan nerpolans o fnd deraes and

### Review. Physics 231 fall 2007

Reew Physcs 3 all 7 Man ssues Knematcs - moton wth constant acceleaton D moton, D pojectle moton, otatonal moton Dynamcs (oces) Enegy (knetc and potental) (tanslatonal o otatonal moton when detals ae not

.) α 0.450 ω o 0 and ω 8.00 ω αt + ω o o t ω ω o α HO 9 Solution 8.00 0 0.450 7.8 b.) ω ω o + αδθ o Δθ ω 8.00 0 ω o α 0.450 7. o Δθ 7. ev.3 ev π.) ω o.50, α 0.300, Δθ 3.50 ev π 7π ev ω ω o + αδθ o ω ω

### Reflection and Refraction

Chape 1 Reflecon and Refacon We ae now neesed n eplong wha happens when a plane wave avelng n one medum encounes an neface (bounday) wh anohe medum. Undesandng hs phenomenon allows us o undesand hngs lke:

### Radial Motion of Two Mutually Attracting Particles

Radal Moon of Two Muually Aacng Pacles Cal E. Mungan, U.S. Naval Academy, Annapols, MD A pa of masses o oppose-sgn chages eleased fom es wll move decly owad each ohe unde he acon of he nvesedsance-squaed

### 10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current :

. A. IUITS Synopss : GOWTH OF UNT IN IUIT : d. When swch S s closed a =; = d. A me, curren = e 3. The consan / has dmensons of me and s called he nducve me consan ( τ ) of he crcu. 4. = τ; =.63, n one

### Density Matrix Description of NMR BCMB/CHEM 8190

Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon Alernae approach o second order specra: ask abou x magnezaon nsead of energes and ranson probables. If we say wh one bass se, properes vary

### ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

MÜHENDİSLİK MEKANİĞİ. HAFTA İMPULS- MMENTUM-ÇARPIŞMA Linea oenu of a paicle: The sybol L denoes he linea oenu and is defined as he ass ies he elociy of a paicle. L ÖRNEK : THE LINEAR IMPULSE-MMENTUM RELATIN

### Pendulum Dynamics. = Ft tangential direction (2) radial direction (1)

Pendulum Dynams Consder a smple pendulum wh a massless arm of lengh L and a pon mass, m, a he end of he arm. Assumng ha he fron n he sysem s proporonal o he negave of he angenal veloy, Newon s seond law

### Physics 1A (a) Fall 2010: FINAL Version A 1. Comments:

Physics A (a) Fall 00: FINAL Vesion A Name o Initials: Couse 3-digit Code Comments: Closed book. No wok needs to be shown fo multiple-choice questions.. A helicopte is taveling at 60 m/s at a constant

### Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

Rotational Motion & Angula Momentum Rotational Motion Evey quantity that we have studied with tanslational motion has a otational countepat TRANSLATIONAL ROTATIONAL Displacement x Angula Position Velocity

### Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

Linea and angula analogs Linea Rotation x position x displacement v velocity a T tangential acceleation Vectos in otational motion Use the ight hand ule to detemine diection of the vecto! Don t foget centipetal

### 19 The Born-Oppenheimer Approximation

9 The Bon-Oppenheme Appoxmaton The full nonelatvstc Hamltonan fo a molecule s gven by (n a.u.) Ĥ = A M A A A, Z A + A + >j j (883) Lets ewte the Hamltonan to emphasze the goal as Ĥ = + A A A, >j j M A

### Rotations.

oons j.lbb@phscs.o.c.uk To s summ Fmes of efeence Invnce une nsfomons oon of wve funcon: -funcons Eule s ngles Emple: e e - - Angul momenum s oon geneo Genec nslons n Noehe s heoem Fmes of efeence Conse

### Mechanics Physics 151

Mechancs Physcs 5 Lecure 0 Canoncal Transformaons (Chaper 9) Wha We Dd Las Tme Hamlon s Prncple n he Hamlonan formalsm Dervaon was smple δi δ Addonal end-pon consrans pq H( q, p, ) d 0 δ q ( ) δq ( ) δ

### Physics 207 Lecture 13

Physics 07 Lecue 3 Physics 07, Lecue 3, Oc. 8 Agenda: Chape 9, finish, Chape 0 Sa Chape 9: Moenu and Collision Ipulse Cene of ass Chape 0: oaional Kineaics oaional Enegy Moens of Ineia Paallel axis heoe

### THE PHYSICS BEHIND THE SODACONSTRUCTOR. by Jeckyll

THE PHYSICS BEHIND THE SODACONSTRUCTOR b Jeckll THE PHYSICS BEHIND THE SODACONSTRUCTOR - b Jeckll /3 CONTENTS. INTRODUCTION 5. UNITS OF MEASUREMENT 7 3. DETERMINATION OF THE PHYSICAL CONSTANTS ADOPTED

### _ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

C C A 55NED n R 5 0 9 b c c \ { s AS EC 2 5? 9 Con 0 \ 0265 o + s ^! 4 y!! {! w Y n < R > s s = ~ C c [ + * c n j R c C / e A / = + j ) d /! Y 6 ] s v * ^ / ) v } > { ± n S = S w c s y c C { ~! > R = n

Hoizontal Cicula Motion 1. A paticle of mass m is tied to a light sting and otated with a speed v along a cicula path of adius. If T is tension in the sting and mg is gavitational foce on the paticle then,

### Exam 3: Equation Summary

MAACHUETT INTITUTE OF TECHNOLOGY Depatment of Physics Physics 8. TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t = Exam 3: Equation ummay = Impulse: I F( t ) = p Toque: τ =,P dp F P τ =,P

### Response of MDOF systems

Response of MDOF syses Degree of freedo DOF: he nu nuber of ndependen coordnaes requred o deerne copleely he posons of all pars of a syse a any nsan of e. wo DOF syses hree DOF syses he noral ode analyss

### 8. HAMILTONIAN MECHANICS

8. HAMILTONIAN MECHANICS In ode o poceed fom he classcal fomulaon of Maxwell's elecodynamcs o he quanum mechancal descpon a new mahemacal language wll be needed. In he pevous secons he elecomagnec feld

### EN221 - Fall HW # 7 Solutions

EN221 - Fall2008 - HW # 7 Soluions Pof. Vivek Shenoy 1.) Show ha he fomulae φ v ( φ + φ L)v (1) u v ( u + u L)v (2) can be pu ino he alenaive foms φ φ v v + φv na (3) u u v v + u(v n)a (4) (a) Using v

### 1. A body will remain in a state of rest, or of uniform motion in a straight line unless it

Pncples of Dnamcs: Newton's Laws of moton. : Foce Analss 1. A bod wll eman n a state of est, o of unfom moton n a staght lne unless t s acted b etenal foces to change ts state.. The ate of change of momentum

### Scattering at an Interface: Oblique Incidence

Course Insrucor Dr. Raymond C. Rumpf Offce: A 337 Phone: (915) 747 6958 E Mal: rcrumpf@uep.edu EE 4347 Appled Elecromagnecs Topc 3g Scaerng a an Inerface: Oblque Incdence Scaerng These Oblque noes may

### Two Coupled Oscillators / Normal Modes

Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

### Simple Harmonic Mo/on. Mandlebrot Set (image courtesy of Wikipedia)

Simple Hamonic Mo/on Mandlebot Set (image coutesy of Wikipedia) Oscilla/ons Oscilla/on the mo/on of an object that egulaly epeats itself, back and foth, ove the same path. We say that mo/on is peiodic,

### Physics 120 Spring 2007 Exam #1 April 20, Name

Phc 0 Spng 007 E # pl 0, 007 Ne P Mulple Choce / 0 Poble # / 0 Poble # / 0 Poble # / 0 ol / 00 In eepng wh he Unon College polc on cdec hone, ued h ou wll nehe ccep no pode unuhozed nce n he copleon o

### From Newton to Einstein. Mid-Term Test, 12a.m. Thur. 13 th Nov Duration: 50 minutes. There are 20 marks in Section A and 30 in Section B.

Fom Newton to Einstein Mid-Tem Test, a.m. Thu. 3 th Nov. 008 Duation: 50 minutes. Thee ae 0 maks in Section A and 30 in Section B. Use g = 0 ms in numeical calculations. You ma use the following epessions

### Section 26 The Laws of Rotational Motion

Physics 24A Class Notes Section 26 The Laws of otational Motion What do objects do and why do they do it? They otate and we have established the quantities needed to descibe this motion. We now need to

### Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

### Rotation: All around us: wheels, skaters, ballet, gymnasts, helicopter, rotors, mobile engines, CD disks, Atomic world: electrons spin, orbit.

Chape 0 Spn an bal n Ran: All aun us: wheels, skaes, balle, gynass, helcpe, s, ble engnes, CD sks, Ac wl: elecns spn, b. Unese: planes spn an bng he sun, galaxes spn, Chape 4 kneacs Chape 0 ynacs 0. Se

### m1 m2 M 2 = M -1 L 3 T -2

GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of