PEMP RMD510. M.S. Ramaiah School of Advanced Studies, Bengaluru

Size: px
Start display at page:

Download "PEMP RMD510. M.S. Ramaiah School of Advanced Studies, Bengaluru"

Transcription

1 Design of Axial Flow Compressor- Session delivered by: Prof. Q. H. Nagpurwala

2 Session Objectives To learn design procedure for axial compressor stages To calculate flow properties across the blade rows and to determine velocity triangles To determine number of stages To determine annulus area from inlet to exit

3 Multistage Axial Flow Compressor 3

4 Velocity Triangles Two-Dimensional Approach U : Peripheral velocity at the mean blade height in a tangential plane C a : axial component C w : whirl or tangential component 4

5 Compression Process on T-S Diagram 5

6 Euler Turbine Equation Work done per unit mass flow rate or Specific Work W U C U w w For U = U, and C a = C a = C a, we can write Also W U C a U C a C U(C C ) ( w w UC a ( tan α tan α ) UC a ( tan β tan β ) tan tan β tan α tan β () () 6

7 Euler Turbine Equation The input energy is absorbed usefully in raising the pressure, temperature and velocity of the air and wastefully in overcoming various frictional losses. W C p ΔT ΔT os UC ( a UC c ( tan β tanβ ) tan β tanβ a os p And, if C 3 = C UCa ΔT os ΔT s ( tan β tan β ) Total pressure ratio, R s η s c p ΔT os γ γ- ) s = stage isentropic efficiency 7 T o T 0 = inlet stagnation temperature

8 Work Done Factor Radial distribution of axial velocity is not constant along the height h of the blade. The velocity profile settles down in the fourth stage. Axial velocity distributions from first to fourth stage are shown in the figure. 8

9 Work Done Factor Work kdone Factor is the ratio of the actual work absorbing capacity of the stage to its ideal value as calculated from the Euler turbine equation. W UCa tan β tan β U U C a tan α C tan β a β U U C a tan α tan β For a given rotor blade, α and β are almost constant Hence, less work is done at the region where C a is high and the actual temperature rise is given by λuca ΔTos ΔTs ( tan β tan β ) c p is the work done factor, which is less than unity. Its value may range from at the first stage to about 0.85 at the fourth and subsequent stages. 9

10 Degree of Reaction Degree of Reaction, R, is defined das the ratio of the static enthalpy rise in the rotor to the static enthalpy rise in the whole stage. Also, Since C p R c p W ΔT ΔT ΔT A A A ΔT B ΔT A ΔT B T 0 s c p Ts cpδta ΔTB cpδts UC a tan β tan β UC a ( tanα tanα ) A UC ( tanα It can be shown that Ca R ( tanα tanα U a tanα : Static temperature rise in the rotor : Static temperature rise in the stator )- C C 0 )

11 Symmetrical Blading By adding equations () and () U C a tan α tan β tan α tan C a U U R tan β tan β U Ca Ca C a tan β β tan U U If R then tan β tan β C a From equation () & () It is assumed that = α β β β α This results in symmetrical velocity triangles across the rotor β Since cannot be, the degree of reaction achieved will be slightly different from 0.5

12 Un-symmetrical Blading R > 50% ; β > α R < 50% ; β < α If R > 0.5, then β > α and the velocity diagram is skewed ed to the right. The static enthalpy rise in the rotor exceeds that in the stator (this is also true for the static ti pressure rise). If R < 0.5, then β < α and the velocity diagram is skewed to the left. The stator enthalpy (and pressure) rise exceeds that in the rotor.

13 Polytropic Efficiency Small Stage or Polytropic Efficiency of Compressor Polytropic efficiency is the efficiency of a compressor stage operating between infinitesimal pressure differential P. It is used in comparing the performance of two compressors having the same pressure ratio but operating at different temperature levels. In multistage compressors, the polytropic efficiency is used in defining the isentropic efficiency of individual stages. 3

14 Polytropic Efficiency Relation between Polytropic Efficiency and Isentropic Efficiency of a compressor 0.9 p = 0.9 p Isentropic 0.8 p = efficiency, c p p = 0.7 c p p p Pressure ratio, p /p Variation of small stage (polytropic) efficiency of compressor with pressure ratio 4

15 Polytropic Index Pl Polytropic index id n is defined dsuch that n n or p n n p From consideration o of small stage efficiency e cy For ideal compression process Stage polytropic p efficiency can now be written as p T p p T T T ' n ln p p n ln T T p p p 5

16 Blade Loading Criteria De Haller Number V 0.7 for rotor V V C C for stator Lieblein s Diffusion Factor V D V V V w s c cos cos s tan tan cos c D for incompressible flow D > (at rotor tip) ; > 0.6 (at rotor hub) 6

17 Design Procedure. Make appropriate assumptions about the efficiency, tip speed, axial velocity and related parameters. Size the annulus at inlet and outlet of the compressor 3. Calculate the air angles required for each stage at the mean diameter 4. Choose a suitable vortex theory and calculate the air angles at various radii from root to tip 5. Check for blade stresses, rate of diffusion and Mach number levels 6. Choose incidence angles, solidity, blade thickness, etc. from cascade data. Estimate deviation angles. Calculate blade metal angles 7. Choose suitable aerofoil shape. Generate and stack blade sections from hub to tip 8. Evaluate the compressor performance through empirical relations or CFD analysis or experiments 7

18 Design of Axial Flow Compressor Task: To design an Axial Flow Compressor assuming that the compressor has no inlet guide vanes Design Data Sea level static conditions : p a =.0 bar, T a = 88 K Compressor pressure ratio : 4.5 Air mass flow rate : 0 kg/s 8

19 Design Process The complete design process for the compressor will encompass the following steps: Choice of rotational speed and annulus dimensions Determination of number of stages, using an assumed efficiency Calculation of the air angles for each stage at the mean radius Determination of the variation of the air angles from root to tip Investigation of compressibility effects Selection of compressor blading, using experimentally obtained cascade data Check on efficiency previously assumed, using the cascade data Estimation of off-design performance Rig testing 9

20 Design Process ( contd.) In practice, the process of design will be one of continued refinement, coupled with feedback from other groups such as: Designers of the combustion system Designers of turbine module Material specialists Mechanical designers Stress analysts Experts in rotor dynamics Experts in bearings and lubrication system Personnel responsible for fabrication and assembly 0

21 Rotational Speed and Annulus Dimensions Assume from previous experience Tip speed: U t = 350 m/s Axial velocity C a = 50 m/s and no IGV at inlet so that there will be no whirl component of velocity at inlet (see figure in next slide to understand the effect of IGV) Hub/tip diameter ratio ~ 0.4 to 0.6 at the entrance For a specified annulus area the tip radius will be a function of the hub-tip ratio For a fixed blade speed, the rotational speed will also be a function of hub-tip ratio Thus the designer has a wide range of solutions and must use engineering judgment to select the most promising one

22 Inlet Relative Mach Number

23 Mass Flow Continuity To satisfy continuity: r t a t r t a C r r r AC m r r t m r t r a t r r C πρ r t : Tip radius ; r r : Root M.S. Ramaiah School of Advanced Studies, Bengaluru 05 3

24 Compression Process on T-S Diagram 4

25 Rotational Speed At sea-level static conditions, T 0 =T= a = 88 K. Assuming no loss in intake, p 0 = p a =.0 bar. C T C a 50m / s ( C w 0 ) *.005 * K 3. 5 T 76.8 p p bar T * kg / m 0.87* rt.06*50 r r r r * r t r t The tip speed, U t, is related to r t by U t = r t N,, and hence if U t is chosen to be 350 m/s, then 350 N 5 r t

26 Variation of N with Radius Ratio r t and N are evaluated over a range of hub-tip ratios Results are given in the following table : r rt t r t m N rev s

27 Turbine Data We need to consider the turbine to which this compressor could be coupled. Let us say a turbine designed for this purpose has a speed of 50 rev/s and the outer radius of the turbine inlet is 0.39m Referring to the table above, a hub-tip ratio of 0.50 would give a compatible compressor tip radius of 0.6 m although the rotational speed is 46.3 rev/s. There was nothing sacrosanct about the choice of 350 m/s for the tip speed, and the design could be adjusted for a rotational speed of 50 rev/s. With the speed slightly altered, then U t = *0.6*5050 = m/s 7

28 Hub -Tip Radius Ratio For a simple engine of the type under consideration, there would be no merit in using a low hub-tip ratio; this would merely increase the mismatch between the compressor and turbine diameters, and also complicate both the mechanical and aerodynamic design of the first stage. On the other hand, using a high hub-tip ratio would unnecessarily increase the compressor diameter and weight. But it should be realized that the choice of 0.50 for hub-tip ratio is arbitrary, and merely provides a sensible starting point. Later considerations following detailed analysis could cause an adjustment, and a considerable amount of design optimization is called for. 8

29 Inlet Mach Number At this stage it is appropriate to check the Mach number relative to the rotor tip at inlet to the compressor. Assuming the axial velocity to be constant across the annulus, which will be the case where there are no inlet guide vanes, the relative velocity and V t U t C a V t = m/s a M t RT V a t.4*0.87 *000 * , 33.0m / s Thus, the relative Mach number at rotor tip is.65 and the first stage is transonic; this level of Mach number should not present any serious problem. 9

30 Annulus Dimensions at Exit Hub-tip ratio = 0.50 Tip radius = 0.6m Root radius = 0.3m Mean radius = 0.697m To estimate the annulus dimensions at exit from the compressor, it will be assumed that the mean radius is kept constant for all stages. Thecompressor delivery pressure, p 0 = 4.5*.0= 4.9 bar To estimate the compressor delivery temperature, it will be assumed that the polytropic efficiency of the compressor is Then T 0 n n p 0 T ( n ) * p0 n so that T 0 = 88.0 (4.5) = 45.5K 30

31 Annulus Dimensions at Exit ( contd.) Assuming that the air leaving the stator of the last stage has an axial velocity of 50 m/s and no swirl, the static temperature, pressure and density at exit can readily be calculated as follows: T K * 005. * γ γ T 443. p p0 49. T * ρ kg/m 0. 87* bar Please note: Suffix stands for inlet of the compressor and suffix stand for outlet of the compressor. Do not mix with the accompanying figure which is shown for a stage. 3

32 Annulus Dimensions at Exit ( contd.) The exit annulus area is thus given by A = 0/3.03*50 = m With r m = m, the blade height at exit, h, is given by h r r m * m 0.043m 3

33 Annulus Dimensions The radii at exit from the last stator are then r t = (0.043/) = m r r = (0.043/) = 0.49 m At this point we have established the rotational speed and the annulus dimensions at inlet and outlet, on the basis of a constant mean diameter. To summarise N = 50 rev/s r t = 0.6 m inlet U t = m/s r r = 0.3 m C a =50 m/s r t = m r m = m (constant) r r = 0.49 m outlet 33

34 Annulus Dimensions Casing Many stages Inlet 0.6 m Exit 0.697m 0.3 m Mean radius Hub Compressor Axis m 0.49m 34

35 Estimation of Number of Stages Assumed polytropic efficiency is The overall stagnation ti temperature t rise through h the compressor is = 64.5 K. The stage temperature rise T os can vary widely in different compressor designs, depending on the application and the importance or otherwise of low weight: values may vary from 0 to 30 K for subsonic stages and may be 45 K or high performance transonic stages. Rather choosing a value at random, T os can be estimated based on the mean blade speed. 35

36 Estimation of Number of Stages U =* * * 50 = 66.6 m/s We will adopt the simple design condition C a = C a = C a throughout the compressor, so the temperature rise is given by UC tan t U C C T a w w os cp cp tan With a purely axial velocity at entry to the first stage, in the absence of IGVs, U 66.6 tan C a C V a m / s cos cos U

37 Estimation of Number of Stages In order to estimate the maximum possible deflection in the rotor, we will apply the de Haller criterion V / V > 0.7. On this basis the minimum allowable value of V = 305.9*0.7 = 0 m/s, and the corresponding rotor blade outlet angle is given by C 50 cos a, V

38 Estimation of Number of Stages Using this deflection and neglecting the work-done factor for this crude estimate 66.6 *50(tan tan 47.0) T os 8K 3.005*0 A temperature rise of 8 K per stage implies 64.5/8 = 5.9 stages. It is likely that the compressor will require six or seven stages; and in view of fthe influence of fthe work-done kd factor, seven is more likely. l An attempt will, therefore, be made to design a seven-stage compressor. 38

39 Stage Temperature Rise With seven stages and an overall temperature rise of 64.5 K the average temperature rise is 3.5 K per stage. It is normal to design for a somewhat lower temperature rise in the first and last stages. A good starting point would be to assume T 0 0K for the first and last stages, leaving a requirement for remaining stages as T0 5K Having determined the rotational speed and annulus dimensions, and estimated the number of stages required, the next step is to evaluate the air angles for each stage at the mean radius. It will then be possible to check that the estimated number of stages is likely to result in an acceptable design. 39

40 Air Angles at Mean Radius Stage-by-stage design: From the velocity triangles, we get C tan w C a Cw For the first stage = 0 because there are no inlet guide vanes. C w C The stator outlet angle for each stage, 3, will be the inlet angle for the following rotor. Calculations of stage temperature rise are based on rotor considerations only, but care must be taken to ensure that the diffusion in the stator is kept to a reasonable level. The work-done factors will vary through the compressor and reasonable values for the seven stages would be 0.98 for the first stage, 0.93 for the second, 0.88 for the third and 0.83 for the remaining four stages. 40 w

41 Design of Stages & First stage nd and 3 rd stage with symmetric blading 7-stage axial compressor 4

42 Design of Stage Recalling the equation for the stage temperature rise in terms of change in whirl velocity ΔC w = C w -C w, we have 3 cpt0.005*0 * 0 C w 76.9 m s U 0.98* 66.6 / β Ca V Since C w = 0, C w = 76.9 m/s and hence tan β = U/C a = 66.6/50 =.7773 U β =

43 Design of Stage ( contd.) tan U C C a w , C 76.9 tan w 0.53, 7. 4 C 50 a The velocity diagram for the first stage therefore appears as 0 43

44 Design of Stage ( contd.) The deflection in the rotor blades is β - β = , which is modest. The diffusion can readily be checked using the de Haller number as follows: V V C / cos / cos cos cos a C a This value of de Haller number indicates a relatively light aerodynamic loading, i.e, a low rate of diffusion. It is not necessary to calculate the diffusion factor at this stage, because the de Haller number gives an adequate preliminary check. After the pitch chord ratio (s/c) is determined from cascade data, the diffusion factor can be calculated readily from the known velocities. 44

45 Design of Stage ( contd.) At this point, it is convenient to calculate the pressure ratio of the stage (P 03 /P 0 ), the suffix outside the parentheses denoting the number of the stage; and then the pressure and temperature at exit which will also be the values at inlet tto the second stage. The isentropic efficiency of the stage is approximately equal to the polytropic efficiency of the compressor, which has been assumed to be 0.90, so we have: P P P * * bar 03 T K 03 45

46 Design of Stage ( contd.) We have finally to choose a value for the air angle at outlet from the stator row, 3,which will also be the direction of flow,, into the second stage. Here it is useful to consider the degree of reaction. For this first stage, with the prescribed axial inlet velocity, C 3 will not equal C (unless 3 is made zero) whereas our equations for R were derived on the assumption of this equality of inlet and outlet velocities. Nevertheless, C 3 will not differ markedly from C, and we can arrive at an approximate value of R by using equation Cw Cw 76.9 R U * 66.6 The degree of reaction is high, h but this is necessary with low hub-tip ratios to avoid a negative value at the root radius. We shall hope to be able to use 50 percent reaction stages from the third or fourth stage onwards, and an appropriate value of frr for the second stage may be about

47 Design of Stage For the second stage, T os = 5 K and = 0.93 and we can determine and using equations * 66. * 50 5 ( tan β 3 tan 005. * 0 tan tan β ) and from Ca R tan β tan UU β (tan * 66.6 tan tan.4883 tan ) 0 47

48 Design of Stage ( contd.) Solving these simultaneous equations we get 57.7 and Finally, using equations U C a 4.9 U tan α tan β tan α tan β C a.06 and 4.05 The whirl velocities at inlet and outlet are readily found from the velocity diagram, Cw Ca tan α 50 tan m/s Cw Ca tan α 50 tan m/s 48

49 Design of Stage ( contd.) The required change in whirl velocity is 0.3 m/s, compared with 76.9 m/s for the first stage; this is due to the higher stage temperature rise and the lower work-done factor. The fluid deflection in the rotor blades has increased to It appears that 3 for the first stage should be.06. This design gives a de Haller number for the second-stage rotor blades of cos57.70 /cos4.9 = 0.7, which is satisfactory. With the stator outlet angle for the first-stage stator now known, the de Hll Haller number for the first-stage t stator t would ldbe C cos C cos 3 cos 7.5 cos implying a small amount of diffusion. This is a consequence of the high degree of reaction in the first stage. 49

50 Design of Stage ( contd.) The velocity diagram for the second stage appears as shown in the Figure and the outlet pressure and temperature become P P P * * bar 03. T K 03 50

51 Design of Stage ( contd.) At this point we do not know 3 for the second stage, but it will be determined from the fact that it is equal to for the third stage. It is useful to point out that the degree of reaction is directly related to the shape of the velocity diagram. It is known that for 50 percent reaction the velocity diagram is symmetrical. Writing C wm = (C w +C w )/, degree of reaction can be rewritten in the form R = -(C wm /U). When C wm /U is small, and the corresponding reaction is high, the velocity diagram is highly skewed; the high degree of reaction in the first stage is a direct consequence of the decision to dispense with inlet guide vanes and use a purely axial inlet velocity. The degree of reaction is reduced in the second stage, and we would eventually like to achieve 50 percent reaction in the later stages where the hub-tip ratios are higher. 5

52 Design of Stage 3 Using a stage temperature rise of 5K and a work-done factor of 0.88, an attempt will be made to use a 50 percent reaction design for the third stage. Proceeding as before 3 ΔTosC p 5* 005. * 0 tan β tan β λuc 0. 88* 66. 6* 50 U 0. 5* * tan β tan β R C 50 Yielding 5.4 and 8.0. The corresponding value of the de Haller number is given by cos5.4/cos8.0 = a a This is rather low, but could be deemed satisfactory for a preliminary design. It is instructive, however, to investigate the possibilities available to the designer for reducing the diffusion. 5

53 Design of Stage 3 ( contd.) One possibility is to consider changing the degree of reaction, but it is found that the de Haller number is not strongly influenced by the degree of reaction chosen; as R had a value of = 0.70 for the second stage it might appear that a suitable value for the third stage might be between 0.70 and Repeating the above calculations for a range of R, however, shows that R = 0.55 results in a further decrease of the de Haller number to 0.706; For a specified axial ilvelocity, the required ddiffusion i increases with ihreaction. Ade Hll Haller number of 0.75 can be achieved for R = 0.40, but it is undesirable to use such a low degree of reaction. A more useful approach might be to accept a slightly lower temperature rise in the stage, and reducing ΔT os from 5 K to 4 K while keeping R = 0.50 gives tan β -tan β = Yielding β = 50.9, β = 8.63 and a de Haller number of 0.78, which is satisfactory for this preliminary design. Other methods of reducing the aerodynamic loading include increases in blade speed or axial velocity, which could readily be accommodated. 53

54 Design of Stage 3 ( contd.) With a stage temperature rise of 4 K, the performance of the third stage is then given by p p * p * T K bar From the symmetry of the velocity diagram α = β = 8.63 and α = β = The whirl velocities are given by C w =50 tan 8.63 = 8.9 m/s C w =50 tan 50.6 =84.7 m/s 54

55 Design of Stage 4, 5 and 6 A work-done factor of 0.83 is appropriate for all stages from the fourth onwards, and 50 percent reaction can be used. The design can be simplified by using the same mean diameter velocity diagrams for stages 4 to 6, although each blade will have a different length due to the continuous increase in density. The seventh and final stage can then be designed to give the required overall pressure ratio. It is not necessary to repeat all the calculations for stages 4-6, but it should be noted that the reduction in work-done factor to 0.83, combined with the desired stage temperature rise of 5K, results in an unacceptably low de Haller number of Reducing the stage temperature rise to 4 K increases the de Haller number to 0.705, which is considered to be just acceptable for the preliminary design. 55

56 Design of Stage 4, 5 and 6 ( contd.) Proceeding as bf before, tan 3 tan tan tan 4*.005* * 66.6* * * Yielding β = (= α )andβ = 7.7 (= α ). The performance of the three stages can be summarized below: stage p 0 (bar) T 0 (K) (p 03 /p 0 ) p 03 (bar) T 03 (K) p 03 -p 0 (bar)

57 Design of Stage 4, 5 and 6 ( contd.) It should be noted that although each stage is designed for the same temperature rise, the pressure ratio decreases with stage number; this is a direct consequence of the increasing inlet temperature as flow progresses through the compressor. The pressure rise, however, increases steadily. 57

58 Design of Stage 7 At entry to the final stage the pressure and temperature are bar and 49 K. The required compressor delivery pressure is 4.5*.0 = 4.9 bar. The pressure ratio of the seventh stage is thus given by p p The temperature rise required to give this pressure ratio can be determined from T os giving.8k T os The corresponding air angles, assuming 50 percent reaction, are then β = (= α ), β = 8.5 (= α ) with a satisfactory de Haller number of

59 Design of Stage 7 With a 50 percent reaction design used for the final stage, the fluid will leave the last stator with an angle α 3 = α = 8.5, whereas ideally the flow should be axial at entry to the combustion chamber. The flow can be straightened by incorporating vanes after the final compressor stage and these can form part of the necessary diffuser at entry to the combustion chamber. 59

60 Comments All the preliminary calculations have been carried out on the basis of a constant mean diameter. Another problem now arises: a sketch, approximately to scale, of the compressor and turbine annuli shows that the combustor will have an awkward shape, the required changes in flow direction causing additional pressure losses. 60

61 Comments A more satisfactory solution might be to design the compressor for a constant outer diameter. The use of a constant outer diameter results in the mean blade speed increasing with stage number, and this in turn implies that for a given temperature rise, ΔC w is reduced. The fluid deflection is correspondingly reduced with a beneficial increase in de Haller number. Alternatively, because of the higher blade speed, a higher temperature rise could be achieved in the later stages ; this might permit the required pressure ratio to be obtained in six stages rather than seven. Note that the simple equations derived on the basis of U = constant are then not valid, and it would be necessary to use the appropriate values of U and U ; the stage temperature rise would then be given by λ(u C w - U C w )/C p. Compressors which use constant inner diameter, constant mean diameter or constant outer diameter will all be found in service. 6

62 Comments The use of a constant inner diameter is often found in industrial i units, permitting the use of rotor discs of the same diameter, which lowers the cost. Constant outer diameter compressors are used where the minimum number of stages is required, and these are commonly found in aircraft engines. The compressor annulus of the Olympus 593 engine used in Concorde employs a combination of these approaches; the LP compressor annulus has a virtually constant inner diameter, while the HP compressor has a constant outer diameter. The accessories are packed around the HP compressor annulus and the engine when fully equipped is almost cylindrical in shape, with the compressor inlet and turbine exit diameters almost equal. In this application, frontal area is of critical importance because of the high h supersonic speed. 6

63 Olympus 593 Mk 60 Engine Concorde aircraft Compressor: Axial 7 high pr. stages; 7 low pr. stages Turbine: low pr. stage; high pr. stage Weight: 380 kg Length: 7.m Diameter:.m Thrust: 70kN 63

64 Session Summary The design procedure for multistage compressor is explained. The calculation of annulus area and importance of hub and tip flares are explained. Detailed procedures for estimation of number of stages and blade velocity triangles are presented. 64

Design of Radial Turbines & Turbochargers

Design of Radial Turbines & Turbochargers RMD50 Design of Radial Turbines & Turbochargers Session delivered by: Prof. Q. H. Nagpurwala 4 @ M S Ramaiah School of Advanced Studies, Bengaluru Session Objective RMD50 To discuss the design of radial

More information

Introduction to Turbomachinery

Introduction to Turbomachinery 1. Coordinate System Introduction to Turbomachinery Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial 2. Radial

More information

Turbomachinery Aerodynamics Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Turbomachinery Aerodynamics Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Turbomachinery Aerodynamics Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Lecture No. # 26 Tutorial 4: 3D Flows in Axial Flow Turbines We

More information

Axial Flow Compressors and Fans

Axial Flow Compressors and Fans 5 Axial Flow Compressors and Fans 5.1 INTRODUCTION As mentioned in Chapter 4, the maximum pressure ratio achieved in centrifugal compressors is about 4:1 for simple machines (unless multi-staging is used)

More information

Prof. Dr.-Ing. F.-K. Benra. ISE Bachelor Course

Prof. Dr.-Ing. F.-K. Benra. ISE Bachelor Course University Duisburg-Essen Campus Duisburg Faculty of Engineering Science Examination: Fluid Machines Examiner: Prof. Dr.-Ing. F.-K. Benra Date of examination: 07.08.2006 Handling time: 120 Minutes ISE

More information

Stator Blade Motor Motor Housing

Stator Blade Motor Motor Housing The internal workings of a Ducted Fan The rotor velocity vectors and blade angles After looking at EDFs from a pure axial change of momentum position we must now address the question how the fan is shaped

More information

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9 Preface page xv 1 Introduction to Gas-Turbine Engines...1 Definition 1 Advantages of Gas-Turbine Engines 1 Applications of Gas-Turbine Engines 3 The Gas Generator 3 Air Intake and Inlet Flow Passage 3

More information

Axial Flow and Radial Flow Gas Turbines

Axial Flow and Radial Flow Gas Turbines 7 Axial Flow and Radial Flow Gas Turbines 7.1 INTRODUCTION TO AXIAL FLOW TURBINES The axial flow gas turbine is used in almost all applications of gas turbine power plant. Development of the axial flow

More information

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us Problems of Practices Of Fluid Mechanics Compressible Fluid Flow Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India) Supported By: Purvi Bhooshan

More information

Prof. Dr.-Ing. F.-K. Benra. ISE batchelor course

Prof. Dr.-Ing. F.-K. Benra. ISE batchelor course University Duisburg-Essen Campus Duisburg Faculty of engineering Science Department of Mechanical Engineering Examination: Fluid Machines Examiner: Prof. Dr.-Ing. F.-K. Benra Date of examination: 06.03.2006

More information

Introduction to Fluid Machines and Compressible Flow Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. # 24 Axial Flow Compressor Part I Good morning

More information

Prof. Dr.-Ing. F.-K. Benra. ISE Bachelor Course

Prof. Dr.-Ing. F.-K. Benra. ISE Bachelor Course University Duisburg-Essen Campus Duisburg Faculty of Engineering Science Department of Mechanical Engineering Name Matr.- Nr. Examination: Fluid Machines Examiner: Prof. Dr.-Ing. F.-K. Benra Date of examination:

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, IIT Bombay Module No. # 01 Lecture No. # 08 Cycle Components and Component

More information

Lect-36. In this lecture... Tutorial on radial flow turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect-36. In this lecture... Tutorial on radial flow turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Lect- 36 1 In this lecture... Lect-36 Tutorial on radial flow turbines 2 Problem # 1 Lect-36 The rotor of an IFR turbine, which is designed to operate at the nominal condition, is 23.76 cm in diameter

More information

MECA-H-402: Turbomachinery course Axial compressors

MECA-H-402: Turbomachinery course Axial compressors MECA-H-40: Turbomachinery course Axial compressors Pr. Patrick Hendrick Aero-Thermo-Mecanics Year 013-014 Contents List of figures iii 1 Axial compressors 1 1.1 Introduction...............................

More information

Lect 22. Radial Flow Turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect 22. Radial Flow Turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Lecture Lect Radial Flow Turbines Lect Radial inflow turbines, which look similar to centrifugal compressor, are considered suitable for application in small aircraft engines. In many applications a radial

More information

Lecture-10 Tutorial -2 Solved Problems and Tutorial Problems On Three Dimensional flow in Axial Flow Compressor

Lecture-10 Tutorial -2 Solved Problems and Tutorial Problems On Three Dimensional flow in Axial Flow Compressor 1 Lecture-10 Tutorial -2 Solved Problems and Tutorial Problems On Three Dimensional flow in Axial Flow Compressor 2 Recap of simple 3-D flow theories (These are mainly used for design) Lect-10 1)Free Vortex

More information

International Journal of Research in Advent Technology Available Online at:

International Journal of Research in Advent Technology Available Online at: A COMPUTER PROGRAMMED DESIGN OPTIMISATION AND ANALYSIS OF COMPRESSOR IMPELLER G. Naga Malleshwar Rao 1, Dr. S.L.V. Prasad 2, Dr. S. Sudhakarbabu 3 1, 2 Professor of Mechanical Engineering, Shri Shirdi

More information

Design of Multistage Turbine

Design of Multistage Turbine Turbomachinery Lecture Notes 7-9-4 Design of Multistage Turbine Damian Vogt Course MJ49 Nomenclature Subscripts Symbol Denotation Unit c Absolute velocity m/s c p Specific heat J/kgK h Enthalpy J/kg m&

More information

In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor

In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor Lect- 3 In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor Centrifugal compressors Centrifugal compressors were used in the first

More information

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii Contents 1 Working Principles... 1 1.1 Definition of a Turbomachine... 1 1.2 Examples of Axial Turbomachines... 2 1.2.1 Axial Hydraulic Turbine... 2 1.2.2 Axial Pump... 4 1.3 Mean Line Analysis... 5 1.4

More information

Radial Compressors. Damian Vogt Course MJ2429. Nomenclature

Radial Compressors. Damian Vogt Course MJ2429. Nomenclature Turbomachinery Lecture Notes 1 007-10-04 Radial Compressors Damian Vogt Course MJ49 Nomenclature Subscripts Symbol Denotation Unit c Absolute velocity m/s h Enthalpy J/kg m& Mass flow rate kg/s r Radius

More information

Chapter three. Two-dimensional Cascades. Laith Batarseh

Chapter three. Two-dimensional Cascades. Laith Batarseh Chapter three Two-dimensional Cascades Laith Batarseh Turbo cascades The linear cascade of blades comprises a number of identical blades, equally spaced and parallel to one another cascade tunnel low-speed,

More information

Theory and Applica0on of Gas Turbine Systems

Theory and Applica0on of Gas Turbine Systems Theory and Applica0on of Gas Turbine Systems Part IV: Axial and Radial Flow Turbines Munich Summer School at University of Applied Sciences Prof. Kim A. Shollenberger Introduc0on to Turbines Two basic

More information

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Centrifugal Compressor Part I Good morning

More information

3. Write a detailed note on the following thrust vector control methods:

3. Write a detailed note on the following thrust vector control methods: Code No: R05322103 Set No. 1 1. Starting from the first principles and with the help of neatly drawn velocity triangles obtain the following relationship: Ψ = 2 Φ (tan β 2 + tan β 3 ) where Ψ is the blade

More information

Lect-33. In this lecture... Tutorial on centrifugal compressors. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect-33. In this lecture... Tutorial on centrifugal compressors. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Let- 33 In this leture... Let-33 utorial on entrifugal ompressors Problem # At the inlet of a entrifugal ompressor eye, the relative Mah number is to be limited to 0.97. he hub-tip radius ratio of the

More information

In this lecture... Radial flow turbines Types of radial flow turbines Thermodynamics and aerodynamics Losses in radial flow turbines

In this lecture... Radial flow turbines Types of radial flow turbines Thermodynamics and aerodynamics Losses in radial flow turbines Lect- 35 1 In this lecture... Radial flow turbines Types of radial flow turbines Thermodynamics and aerodynamics Losses in radial flow turbines Radial turbines Lect-35 Development of radial flow turbines

More information

Turbine Blade Design of a Micro Gas Turbine

Turbine Blade Design of a Micro Gas Turbine Turbine Blade Design of a Micro Gas Turbine Bhagawat Yedla Vellore Institute of Technlogy, Vellore 632014, India Sanchit Nawal Vellore Institute of Technlogy, Vellore 632014, India Shreehari Murali Vellore

More information

mywbut.com Hydraulic Turbines

mywbut.com Hydraulic Turbines Hydraulic Turbines Hydro-electric power accounts for up to 0% of the world s electrical generation. Hydraulic turbines come in a variety of shapes determined by the available head and a number of sizes

More information

Two Dimensional Design of Axial Compressor An Enhanced Version of LUAX-C

Two Dimensional Design of Axial Compressor An Enhanced Version of LUAX-C Two Dimensional Design of Axial Compressor An Enhanced Version of LUAX-C Daniele Perrotti Thesis for the Degree of Master of Science Division of Thermal Power Engineering Department of Energy Sciences

More information

Turbomachinery. Hasan Ozcan Assistant Professor. Mechanical Engineering Department Faculty of Engineering Karabuk University

Turbomachinery. Hasan Ozcan Assistant Professor. Mechanical Engineering Department Faculty of Engineering Karabuk University Turbomachinery Hasan Ozcan Assistant Professor Mechanical Engineering Department Faculty of Engineering Karabuk University Introduction Hasan Ozcan, Ph.D, (Assistant Professor) B.Sc :Erciyes University,

More information

Contents. Preface... xvii

Contents. Preface... xvii Contents Preface... xvii CHAPTER 1 Idealized Flow Machines...1 1.1 Conservation Equations... 1 1.1.1 Conservation of mass... 2 1.1.2 Conservation of momentum... 3 1.1.3 Conservation of energy... 3 1.2

More information

Theory of turbo machinery. Chapter 3

Theory of turbo machinery. Chapter 3 Theory of turbo machinery Chapter 3 D cascades Let us first understand the facts and then we may seek the causes. (Aristotle) D cascades High hub-tip ratio (of radii) negligible radial velocities D cascades

More information

Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 09 Introduction to Reaction Type of Hydraulic

More information

EFFECT OF FORCED ROTATING VANELESS DIFFUSERS ON CENTRIFUGAL COMPRESSOR STAGE PERFORMANCE

EFFECT OF FORCED ROTATING VANELESS DIFFUSERS ON CENTRIFUGAL COMPRESSOR STAGE PERFORMANCE Journal of Engineering Science and Technology Vol. 6, No. 5 (2011) 558-574 School of Engineering, Taylor s University EFFECT OF FORCED ROTATING VANELESS DIFFUSERS ON CENTRIFUGAL COMPRESSOR STAGE PERFORMANCE

More information

Lecture with Numerical Examples of Ramjet, Pulsejet and Scramjet

Lecture with Numerical Examples of Ramjet, Pulsejet and Scramjet Lecture 41 1 Lecture with Numerical Examples of Ramjet, Pulsejet and Scramjet 2 Problem-1 Ramjet A ramjet is flying at Mach 1.818 at an altitude 16.750 km altitude (Pa = 9.122 kpa, Ta= - 56.5 0 C = 216.5

More information

Unified Propulsion Quiz May 7, 2004

Unified Propulsion Quiz May 7, 2004 Unified Propulsion Quiz May 7, 2004 Closed Book no notes other than the equation sheet provided with the exam Calculators allowed. Put your name on each page of the exam. Read all questions carefully.

More information

SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow

SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow 1. Consider subsonic Rayleigh flow of air with a Mach number of 0.92. Heat is now transferred to the fluid and the Mach number increases to 0.95.

More information

Interface Effects Between a Moving Supersonic Blade Cascade and a Downstream Diffuser Cascade

Interface Effects Between a Moving Supersonic Blade Cascade and a Downstream Diffuser Cascade 73-GT-23 $3.00 PER COPY $1.00 TO ASME MEMBERS The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings of the Society or of its Divisions or Sections,

More information

Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine

Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine IOP Conference Series: Materials Science and Engineering OPEN ACCESS Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine To cite this article: L Zhang et al 013 IOP

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Module No. #01 Lecture No. # 07 Jet Engine Cycles For Aircraft propulsion

More information

Mathematical Modelling of the Turbomachine Flow Path Elements

Mathematical Modelling of the Turbomachine Flow Path Elements Mathematical Modelling of the Turbomachine Flow Path Elements .1 Equations of State The equation of state can be written in different forms depending on the independent variables taken. Numerical algorithms

More information

Turbomachinery Aerodynamics Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Turbomachinery Aerodynamics Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Turbomachinery Aerodynamics Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Lecture No. # 40 CFD for Turbomachinery: 2D and 3D Blade Generation

More information

Radial Equilibrium Example

Radial Equilibrium Example An Internet Book on Fluid Dynamics Radial Equilibrium Example For the purposes of this example of a radial equilibrium solution, the flow through the pump impeller is subdivided into streamtubes, as shown

More information

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 07 Analysis of Force on the Bucket of Pelton

More information

OPTIMIZATION OF AXIAL COMPRESSOR STAGE USING NSGA-II TECHNIQUE

OPTIMIZATION OF AXIAL COMPRESSOR STAGE USING NSGA-II TECHNIQUE OPTIMIZATION OF AXIAL COMPRESSOR STAGE USING NSGA-II TECHNIQUE G. Chaitanya, J. Suresh Kumar 2 and K. Srinivas Department of Mechanical Engineering, R.V.R. and J.C. College of Engineering, Guntur, A. P.,

More information

(Refer Slide Time: 4:41)

(Refer Slide Time: 4:41) Fluid Machines. Professor Sankar Kumar Som. Department Of Mechanical Engineering. Indian Institute Of Technology Kharagpur. Lecture-30. Basic Principle and Energy Transfer in Centrifugal Compressor Part

More information

IX. COMPRESSIBLE FLOW. ρ = P

IX. COMPRESSIBLE FLOW. ρ = P IX. COMPRESSIBLE FLOW Compressible flow is the study of fluids flowing at speeds comparable to the local speed of sound. This occurs when fluid speeds are about 30% or more of the local acoustic velocity.

More information

COMPUTATIONAL METHOD

COMPUTATIONAL METHOD Multi Objective Design Optimization of Rocket Engine Turbopump Turbine Naoki Tani, Akira Oyama and Nobuhiro Yamanishi tani.naoki@jaxa.jp Japan Aerospace Exploration Agency JAXA is now planning to develop

More information

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE Polymers Research Journal ISSN: 195-50 Volume 6, Number 01 Nova Science Publishers, Inc. THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE E. Poursaeidi, M. Mohammadi and S. S. Khamesi University

More information

LARGE EDDY SIMULATION OF FLOW OVER NOZZLE GUIDE VANE OF A TRANSONIC HIGH PRESSURE TURBINE

LARGE EDDY SIMULATION OF FLOW OVER NOZZLE GUIDE VANE OF A TRANSONIC HIGH PRESSURE TURBINE 20 th Annual CFD Symposium, August 09-10, 2018, Bangalore LARGE EDDY SIMULATION OF FLOW OVER NOZZLE GUIDE VANE OF A TRANSONIC HIGH PRESSURE TURBINE Bharathan R D, Manigandan P, Vishal Tandon, Sharad Kapil,

More information

Chapter Two. Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency. Laith Batarseh

Chapter Two. Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency. Laith Batarseh Chapter Two Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency Laith Batarseh The equation of continuity Most analyses in this book are limited to one-dimensional steady flows where the velocity

More information

Modeling and Validation of the SR-30 Turbojet Engine

Modeling and Validation of the SR-30 Turbojet Engine Modeling and Validation of the SR-30 Turbojet Engine Thermal Energy Technology 6. Semester Group TE6-604 Aalborg University Title: Modeling and Validation of the SR-30 Turbojet Engine Semester: 6. Semester

More information

One-Dimensional Isentropic Flow

One-Dimensional Isentropic Flow Cairo University Second Year Faculty of Engineering Gas Dynamics AER 201B Aerospace Department Sheet (1) 2011-2012 One-Dimensional Isentropic Flow 1. Assuming the flow of a perfect gas in an adiabatic,

More information

Journal of Mechatronics, Electrical Power, and Vehicular Technology

Journal of Mechatronics, Electrical Power, and Vehicular Technology J. Mechatron. Electr. Power Veh. Technol 06 (2015) 39 8 Journal of Mechatronics, Electrical Power, and Vehicular Technology e-issn:2088-6985 p-issn: 2087-3379 www.mevjournal.com GEOMETRY ANALYSIS AND EFFECT

More information

Numerical Analysis of Partial Admission in Axial Turbines. Narmin Baagherzadeh Hushmandi

Numerical Analysis of Partial Admission in Axial Turbines. Narmin Baagherzadeh Hushmandi Numerical Analysis of Partial Admission in Axial Turbines Narmin Baagherzadeh Hushmandi Doctoral Thesis 2010 II Doctoral Thesis Report / Narmin B. Hushmandi 2009 ABSTRACT Numerical analysis of partial

More information

CHARACTERIZING THE PERFORMANCE OF THE SR-30 TURBOJET ENGINE

CHARACTERIZING THE PERFORMANCE OF THE SR-30 TURBOJET ENGINE 003-1397 CHARACTERIZING THE PERFORMANCE OF THE SR-30 TURBOJET ENGINE T. Witkowski, S. White, C. Ortiz Dueñas, P. Strykowski, T. Simon University of Minnesota Introduction What?!! exclaimed one student.

More information

3 Energy Exchange in Turbomachines

3 Energy Exchange in Turbomachines 3 Energy Exchange in Turbomachines Problem 1 The solved and unsolved examples of this chapter are meant to illustrate the various forms of velocity triangles and the variety of the turbomachines. In addition,

More information

One-Dimensional, Stage-By-Stage, Axial Compressor Performance Model

One-Dimensional, Stage-By-Stage, Axial Compressor Performance Model THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 E. 47 St., New York, N.Y. 10017 91-GT-192 ]^( The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings

More information

Effects of the Leakage Flow Tangential Velocity in Shrouded Axial Compressor Cascades *

Effects of the Leakage Flow Tangential Velocity in Shrouded Axial Compressor Cascades * TSINGHUA SCIENCE AND TECHNOLOGY ISSNll1007-0214ll21/21llpp105-110 Volume 14, Number S2, December 2009 Effects of the Leakage Flow Tangential Velocity in Shrouded Axial Compressor Cascades * KIM Jinwook

More information

P 1 P * 1 T P * 1 T 1 T * 1. s 1 P 1

P 1 P * 1 T P * 1 T 1 T * 1. s 1 P 1 ME 131B Fluid Mechanics Solutions to Week Three Problem Session: Isentropic Flow II (1/26/98) 1. From an energy view point, (a) a nozzle is a device that converts static enthalpy into kinetic energy. (b)

More information

Dr. S. Ramachandran Prof. R. Devaraj. Mr. YVS. Karthick AIR WALK PUBLICATIONS

Dr. S. Ramachandran Prof. R. Devaraj. Mr. YVS. Karthick AIR WALK PUBLICATIONS Fluid Machinery As per Revised Syllabus of Leading Universities including APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY Dr. S. Ramachandran Prof. R. Devaraj Professors School of Mechanical Engineering Sathyabama

More information

ENERGY TRANSFER BETWEEN FLUID AND ROTOR. Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia

ENERGY TRANSFER BETWEEN FLUID AND ROTOR. Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia ENERGY TRANSFER BETWEEN FLUID AND ROTOR Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia Basic Laws and Equations Continuity Equation m m ρ mass

More information

Preliminary design of a centrifugal turbine for ORC applications

Preliminary design of a centrifugal turbine for ORC applications ORC 2011 First International Seminar on ORC Power Systems TU Delft, The Netherlands, 22-23 September 2011 Preliminary design of a centrifugal turbine for ORC applications M. Pini 1, G. Persico 1, E. Casati

More information

The Turbofan cycle. Chapter Turbofan thrust

The Turbofan cycle. Chapter Turbofan thrust Chapter 5 The Turbofan cycle 5. Turbofan thrust Figure 5. illustrates two generic turbofan engine designs. The upper figure shows a modern high bypass ratio engine designed for long distance cruise at

More information

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions.

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions. We RoU No. 700095 Candidate should write his/her Roll No. here. Total No. of Questions : 7 No. of Printed Pages : 7 SEM-2017(03HI MECHANICAL ENGINEERING Paper II Time ; 3 Hours ] [ Total Marks : 0 Instructions

More information

Draft Paper-GT

Draft Paper-GT Proceedings of ASME Turbo Expo 2008 Power of Land, Sea, and Air June 9-13, 2008, Berlin, Germnay Draft Paper-GT2008-51033 Optimum design and sensitivity analysis of axial flow compressor with combination

More information

Small Scale Axial Turbine Preliminary Design and Modelling

Small Scale Axial Turbine Preliminary Design and Modelling Small Scale Axial Turbine Preliminary Design and Modelling Shadreck M. Situmbeko University of Botswana, Gaborone, Botswana; University of KwaZulu-Natal, Durban, RSA; Freddie L. Inambao University of KwaZulu-Natal,

More information

CFD approach for design optimization and validation for axial flow hydraulic turbine

CFD approach for design optimization and validation for axial flow hydraulic turbine Indian Journal of Engineering & Materials Sciences Vol. 16, August 009, pp. 9-36 CFD approach for design optimization and validation for axial flow hydraulic turbine Vishnu Prasad, V K Gahlot* & P Krishnamachar

More information

THE EXPERIENCE OF HIGH PRESSURE RATIO SINGLE STAGE HPT DESIGNING

THE EXPERIENCE OF HIGH PRESSURE RATIO SINGLE STAGE HPT DESIGNING 28 T INTERNATIONAL CONGRESS OF TE AERONAUTICAL SCIENCES TE EXPERIENCE OF IG PRESSURE RATIO SINGLE STAGE PT DESIGNING V.D. Venediktov, V.G Krupa, S.V. Rudenko, A.D. Nepomnyashchiy, V.K. Sichev, A.A. Shvirev

More information

Aerodynamics of Centrifugal Turbine Cascades

Aerodynamics of Centrifugal Turbine Cascades ASME ORC 2013 2nd International Seminar on ORC Power Systems October 7th-8th, Rotterdam, The Netherlands Aerodynamics of Centrifugal Turbine Cascades G. Persico, M. Pini, V. Dossena, and P. Gaetani Laboratorio

More information

Numerical Investigation of Fluid Flows over a Rotor-Stator(Stage) in an Axial Flow Compressor Stage

Numerical Investigation of Fluid Flows over a Rotor-Stator(Stage) in an Axial Flow Compressor Stage Numerical Investigation of Fluid Flows over a Rotor-Stator(Stage) in an Axial Flow Compressor Stage Mr Vamsi Krishna Chowduru, Mr A Sai Kumar, Dr Madhu, Mr T Mahendar M.Tech (Thermal Engineering), MLR

More information

Introduction to Fluid Machines (Lectures 49 to 53)

Introduction to Fluid Machines (Lectures 49 to 53) Introduction to Fluid Machines (Lectures 49 to 5) Q. Choose the crect answer (i) (ii) (iii) (iv) A hydraulic turbine rotates at N rpm operating under a net head H and having a discharge Q while developing

More information

DESIGN OF A CENTRIFUGAL COMPRESSOR FOR NATURAL GAS

DESIGN OF A CENTRIFUGAL COMPRESSOR FOR NATURAL GAS DESIGN OF A CENTRIFUGAL COMPRESSOR FOR NATURAL GAS S. K. Kurauchi a, and J. R. Barbosa b a Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica Departamento de Turbomáquinas São José dos

More information

(Refer Slide Time: 0:57)

(Refer Slide Time: 0:57) Fluid Dynamics And Turbo Machines. Professor Dr Dhiman Chatterjee. Department Of Mechanical Engineering. Indian Institute Of Technology Madras. Part B. Module-2. Lecture-4. Representation of Turbo Machines

More information

Journal of Robotics and Mechanical Engineering Research

Journal of Robotics and Mechanical Engineering Research Journal of Robotics and Mechanical Engineering Research Performance nalysis of Cold Sections of High BYPSS Ratio Turbofan eroengine hmed F. El-sayed *, Mohamed S. Emeara and Mohamed K. Fayed Department

More information

Turbomachinery Flow Physics and Dynamic Performance

Turbomachinery Flow Physics and Dynamic Performance Turbomachinery Flow Physics and Dynamic Performance Bearbeitet von Meinhard T Schobeiri 1. Auflage 2004. Buch. XXI, 522 S. Hardcover ISBN 978 3 540 22368 9 Format (B x L): 15,5 x 23,5 cm Gewicht: 2070

More information

Propellers and Ducted Fans

Propellers and Ducted Fans Propellers and Ducted Fans Session delivered by: Prof. Q. H. Nagpurwala 1 To help protect your privacy, PowerPoint prevented this external picture from being automatically downloaded. To download and display

More information

Dynamic centrifugal compressor model for system simulation

Dynamic centrifugal compressor model for system simulation Journal of Power Sources xxx (2005) xxx xxx Dynamic centrifugal compressor model for system simulation Wei Jiang, Jamil Khan, Roger A. Dougal Department of Mechanical Engineering, University of South Carolina,

More information

The Effect of Diameter Ratio on the Performance of a Low, Stagger Axial-Compressor Stage

The Effect of Diameter Ratio on the Performance of a Low, Stagger Axial-Compressor Stage ... i96o.~ ~ ~ ~,~"~; -,, " R. & M. No. 3151 (15,023) A.R.C. Technical Report MINISTRY OF AVIATION AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA The Effect of Diameter Ratio on the Performance of

More information

Simulation of Condensing Compressible Flows

Simulation of Condensing Compressible Flows Simulation of Condensing Compressible Flows Maximilian Wendenburg Outline Physical Aspects Transonic Flows and Experiments Condensation Fundamentals Practical Effects Modeling and Simulation Equations,

More information

equation 4.1 INTRODUCTION

equation 4.1 INTRODUCTION 4 The momentum equation 4.1 INTRODUCTION It is often important to determine the force produced on a solid body by fluid flowing steadily over or through it. For example, there is the force exerted on a

More information

Review of Fundamentals - Fluid Mechanics

Review of Fundamentals - Fluid Mechanics Review of Fundamentals - Fluid Mechanics Introduction Properties of Compressible Fluid Flow Basics of One-Dimensional Gas Dynamics Nozzle Operating Characteristics Characteristics of Shock Wave A gas turbine

More information

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives Chapter 17 COMPRESSIBLE FLOW For the most part, we have limited our consideration so far to flows for which density variations and thus compressibility effects are negligible. In this chapter we lift this

More information

Shock and Expansion Waves

Shock and Expansion Waves Chapter For the solution of the Euler equations to represent adequately a given large-reynolds-number flow, we need to consider in general the existence of discontinuity surfaces, across which the fluid

More information

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 1 Introduction to Fluid Machines Well, good

More information

Chapter Four Hydraulic Machines

Chapter Four Hydraulic Machines Contents 1- Introduction. 2- Pumps. Chapter Four Hydraulic Machines (لفرع الميكانيك العام فقط ( Turbines. -3 4- Cavitation in hydraulic machines. 5- Examples. 6- Problems; sheet No. 4 (Pumps) 7- Problems;

More information

Propulsion Thermodynamics

Propulsion Thermodynamics Chapter 1 Propulsion Thermodynamics 1.1 Introduction The Figure below shows a cross-section of a Pratt and Whitney JT9D-7 high bypass ratio turbofan engine. The engine is depicted without any inlet, nacelle

More information

Principles of Turbomachinery

Principles of Turbomachinery Principles of Turbomachinery To J. M. T. Principles of Turbomachinery R. K. Turton Lecturer in Mechanical Engineering Loughborough University of Technology London New York E. & F. N. Spon ISBN 978-94-010-9691-1

More information

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303 Introduction to Chemical Engineering Thermodynamics Chapter 7 1 Thermodynamics of flow is based on mass, energy and entropy balances Fluid mechanics encompasses the above balances and conservation of momentum

More information

IMPLEMENTATION OF ONE-DIMENSIONAL CENTRIFUGAL COMPRESSOR DESIGN CODE

IMPLEMENTATION OF ONE-DIMENSIONAL CENTRIFUGAL COMPRESSOR DESIGN CODE Copyright 010 by ABCM IMPLEMENTATION OF ONE-DIMENSIONAL CENTRIFUGAL COMPRESSOR DESIGN CODE Elkin I. Gutiérrez Velásquez, elking@unifei.edu.br Marco A.R. Nascimento, marcoantonio@unifei.edu.br Universidade

More information

Theory of turbo machine Effect of Blade Configuration on Characteristics of Centrifugal machines. Unit 2 (Potters & Wiggert Sec

Theory of turbo machine Effect of Blade Configuration on Characteristics of Centrifugal machines. Unit 2 (Potters & Wiggert Sec Theory of turbo machine Effect of Blade Configuration on Characteristics of Centrifugal machines Unit (Potters & Wiggert Sec. 1..1, &-607) Expression relating Q, H, P developed by Rotary machines Rotary

More information

Akshay Khadse, Lauren Blanchette, Mahmood Mohagheghi, Jayanta Kapat

Akshay Khadse, Lauren Blanchette, Mahmood Mohagheghi, Jayanta Kapat Impact of S-CO2 Properties on Centrifugal Compressor Impeller: Comparison of Two Loss Models for Mean Line Analyses The Supercritical CO2 Power Cycles Symposium 2016 Akshay Khadse, Lauren Blanchette, Mahmood

More information

Lecture-2. One-dimensional Compressible Fluid Flow in Variable Area

Lecture-2. One-dimensional Compressible Fluid Flow in Variable Area Lecture-2 One-dimensional Compressible Fluid Flow in Variable Area Summary of Results(Cont..) In isoenergetic-isentropic flow, an increase in velocity always corresponds to a Mach number increase and vice

More information

Chapter 7 Steam Turbines MEE 325 Power Plants Engineering

Chapter 7 Steam Turbines MEE 325 Power Plants Engineering Chapter 7 Steam Turbines MEE 325 Power Plants Engineering Atikorn W. Mechanical Engineering Department King Mongkut s University of Technology Thonburi Introduction Steam turbine is an energy conversion

More information

INFLUENCE OF ROTATING STALL AND SURGE IN THE DESIGN OF A SMALL GAS TURBINE ENGINE WITH AXIAL FLOW COMPRESSOR

INFLUENCE OF ROTATING STALL AND SURGE IN THE DESIGN OF A SMALL GAS TURBINE ENGINE WITH AXIAL FLOW COMPRESSOR Proceedings of the th Brazilian Congress of Thermal Sciences and Engineering ENCIT 6 Braz. Soc. of Mechanical Sciences and Engineering ABCM, Curitiba, Brazil, Dec. 5-8, 6 Paper CIT6-96 INFLUENCE OF ROTATING

More information

Axial-Flow Compressor Performance Prediction in Design and Off-Design Conditions through 1-D and 3-D Modeling and Experimental Study

Axial-Flow Compressor Performance Prediction in Design and Off-Design Conditions through 1-D and 3-D Modeling and Experimental Study Journal of Applied Fluid Mechanics, Vol. 9, No. 5, pp. 2149-2160, 2016. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. DOI: 10.18869/acadpub.jafm.68.236.25222 Axial-Flow Compressor

More information

the Position df an -Equivalent

the Position df an -Equivalent C.P. No. 426 I y - C.P. No. 426 1. r.;i,~~~j,:j~+..~~~xj~ (19,987) (1 W-7) A.R.C. Technical Report EL, g3, A.R.C. Technical Report r MINISTRY OF SUPPLY AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS An Experiment

More information