Design of Multistage Turbine

Size: px
Start display at page:

Download "Design of Multistage Turbine"

Transcription

1 Turbomachinery Lecture Notes Design of Multistage Turbine Damian Vogt Course MJ49 Nomenclature Subscripts Symbol Denotation Unit c Absolute velocity m/s c p Specific heat J/kgK h Enthalpy J/kg m& Mass flow rate kg/s p Pressure Pa r Radius m u Tangential velocity m/s v Specific volume m /kg w Relative velocity m/s z Number of stages - R Degree of reaction - R Gas constant J/kg/K T Temperature K W & Power J/s Y Radius ratio Y r s rh - Φ Flow coefficient - Ψ Loading coefficient - Ω Cross section m Absolute flow angle deg β Relative flow angle deg γ Isentropic coefficient - ε Turning deg ρ Density m /kg η Efficiency - ζ Loss coefficient - Rotational speed rad/s Total Inlet stator Outlet stator (inlet rotor) Outlet rotor n Normal s Shroud (tip) h Hub r Radial component x Axial component Engine inlet Engine outlet θ Tangential component

2 Turbomachinery Lecture Notes System Discretization Schematic representation inlet outlet W & It is assumed that the turbine consists of one or several stages stator rotor Stage denotations stator inlet rotor inlet rotor outlet Reference radius Stage velocity triangles stator rotor w u u c c w u c

3 Turbomachinery Lecture Notes Problem Statement The task is given to perform a preliminary design of a multistage turbine. It is thereby assumed that the following parameters are known Inlet pressure and temperature Outlet pressure Required power Furthermore the following limitations shall be made: Repetition and normal stages shall be valid. Zero exit swirl The expressions of the design parameters are given below for this special case wθ, R ( wθ, wθ, ) Eq. u u wθ, wθ, wθ, ψ u u Eq. c φ x u Eq. Note that the following relationship is valid ψ ( R) Eq. 4 Step : Determination of approximate flow parameters (isentropic expansion) As the geometry and design parameters of the turbine are not known a priori in this first step isentropic expansion shall be assumed. The efficiency is then calculated based on this first assumption and one or several iterations are performed thereafter. Determination of inlet specific volume RT v Eq. 5 p Determination of outlet specific volume Determination of change in enthalpy p γ v v Eq. 6 p γ γ p γ Δh s p v Eq. 7 γ p

4 Turbomachinery Lecture Notes Determination of mass flow rate c As c Δ h s Δhs and due to the assumption of normal repetition stages c c it follows that Δh s Δh s leading to W m Δ h s & Eq. 8 Step : Determination of inlet and outlet annular geometry Assume: uconst, implying that rconst The radius ratio Y is dependent on flow coefficient and mean radius and yields from the conservation of mass m& Ω ρ cn Ω ρ φ u Eq. 9 rs with Y and r h rm rh rs it follows that rm rh and Y Yrm rs leading to Y ( r ) 4 Y s rh πrm Y Ω π Eq. Substituting this expression into the conservation of mass above it follows that Y Y m & 4πrm ρ φ u 4πrm ρ φ Y Y Eq. By expressing m& A 4πr ρ φ m the radius ratio is obtained from A Y Eq. A Choose Rotational speed Flow coefficient phi Determine Y in appropriate range Note: Too short blades give bad efficiency Too long blades shall be avoided due to high mechanical loads

5 Turbomachinery Lecture Notes Step : Determination of number of stages The total change in enthalpy between inlet and outlet is distributed over an appropriate number of stages as follows z Δh ψ iu i i Eq. where z denotes the number of stages. Above the assumption of a normal repetition stage at constant radius has been made, thus Ψ i Ψ and u i u. In this first step the isentropic enthalpy change is regarded leading to Δh s z ψ u Eq. 4 The number of stages yields from the following expression z Δh Choose Loading coefficient s ψr Eq. 5 m Note: For the present special case of normal repetition stage at zero exit swirl the loading coefficient depends from the degree of reaction as ψ ( R). The choice of the loading coefficient has to be made such that the number of stages yields an integer number. In case the number of stages is non-integer it has to be rounded to the next higher integer

6 Turbomachinery Lecture Notes Step 4: Determination of stage efficiency Determination of loss coefficients and total-to-total stage efficiency as follows ( ) h h w c T T R N tt ζ ζ η Eq. 6 Firstly it is assumed that. For a normal repetition stage with zero exit swirl the stage efficiency then yields from T T ( ) ( ) ( φ ζ ψ φ ζ ψ η R N tt ) Eq. 7 In a first approximation the loss coefficients can be determined from Soderberg s correlation as follows *.6.4 ε ζ Eq. 8 where ε denotes the turning, which for stator and rotor respectively yields from φ ψ ε tan N Eq. 9 φ φ ψ β β ε tan tan R Eq.

7 Turbomachinery Lecture Notes Step 5: First iteration of flow parameters (polytropic expansion) With the knowledge of the approximate total-to-total efficiency the polytropic expansion between inlet and outlet can now be determined yielding the flow parameters at these stations more accurately. The change of enthalpy is now given by The outlet temperature yields from γ γ p γ Δh η tt p v Eq. γ p T Δh T Eq. c p, which allows us to determine the outlet specific volume by RT v Eq. p Finally the mass flow rate needs to be updated by the updated enthalpy difference as W m& Eq. 4 Δ h Step 6: Finalization of first iteration The finalization of the first iteration comprises the steps of determination of number of stages and loading factor. From the values obtained an updated polytropic efficiency can be determined, which could be used in another iteration step. This iteration process should be carried out until convergence is obtained. Criteria for obtaining convergence should be established by the user. Convergence could for example be measured by relating a number of parameters from two subsequent iteration steps. Usually one or two iterations will do if the change of state is close to the isentropic one.

8 Turbomachinery Lecture Notes Example: Design of Multistage Turbine in Excel sheet The above equations have been implemented in an Excel sheet, which is made available with the present document. The purpose of the Excel sheet is to recognize the effects of design choices on the resulting engine as well as on engine costs. Parameters that are open to choose are the following: Thermodynamic parameters: inlet pressure and temperature, outlet pressure and poser Engine parameters: engine rotational speed and mean radius Design parameters: flow coefficient and loading factor (note: as the assumptions of normal repetition stages and zero exit swirl has been made the degree of reaction is directly related to the loading coefficient) To recognize the impact of certain parameter choices on costs a simplified cost analysis has been included. The cost analysis covers the factors of engine purchasing, engine service and engine fuel costs. Output is provided in numerical and graphical format. Have fun! isentropic st iteration --> polytropic Cost analysis Parameter Unit p [Pa],E6 5,E5,E6 5,E5 base costs -,E6 T [K] 8, 58,6 8, 565, cost per stage -,E5 v [m/kg],,,, fuel cost per l P [J/s],E6,E6 fuel heating value J/l 4,E7 m dot [kg/s],4,4,7,7 Δh [kj/kg],6e5,6e5 gamma [-],4 cp [J/kgK] 4,5 R [J/kgK] 87 phi [-],5,5 n [rpm],e4,e4,e4,e4 fixed costs om [rad/s] 4,59 4,59 4,59 4,59 machine costs,6e6 rm [m],8,8,8,8 A [-],,5,4,4 runtime # years Y [-],,7,4,8 rh [m],7,5,68,47 service (per stage & year),e5 rs [m],9,8,9, service (period) 4,6E6 s [m],,56,,65 u [m/s] 5, 5, fuel run time [h] per year 7 psi [-],,8 total energy per year 8,7E z [-],8,8 total fuel costs per year 4,8E6 R, fuel (period) 4,8E7 stat rot eps [rad] 75,96 6,87 74,45, subtotal (var, period) 4,6E7 zeta [-],7,4,7, η tt [-],898,94 total costs (period) 4,96E7 Legend of parameters to choose thermodynamic parameters fluid properties engine parameters design parameters operating parameters

Introduction to Turbomachinery

Introduction to Turbomachinery 1. Coordinate System Introduction to Turbomachinery Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial 2. Radial

More information

Radial Compressors. Damian Vogt Course MJ2429. Nomenclature

Radial Compressors. Damian Vogt Course MJ2429. Nomenclature Turbomachinery Lecture Notes 1 007-10-04 Radial Compressors Damian Vogt Course MJ49 Nomenclature Subscripts Symbol Denotation Unit c Absolute velocity m/s h Enthalpy J/kg m& Mass flow rate kg/s r Radius

More information

Prof. Dr.-Ing. F.-K. Benra. ISE batchelor course

Prof. Dr.-Ing. F.-K. Benra. ISE batchelor course University Duisburg-Essen Campus Duisburg Faculty of engineering Science Department of Mechanical Engineering Examination: Fluid Machines Examiner: Prof. Dr.-Ing. F.-K. Benra Date of examination: 06.03.2006

More information

Prof. Dr.-Ing. F.-K. Benra. ISE Bachelor Course

Prof. Dr.-Ing. F.-K. Benra. ISE Bachelor Course University Duisburg-Essen Campus Duisburg Faculty of Engineering Science Examination: Fluid Machines Examiner: Prof. Dr.-Ing. F.-K. Benra Date of examination: 07.08.2006 Handling time: 120 Minutes ISE

More information

Small Scale Axial Turbine Preliminary Design and Modelling

Small Scale Axial Turbine Preliminary Design and Modelling Small Scale Axial Turbine Preliminary Design and Modelling Shadreck M. Situmbeko University of Botswana, Gaborone, Botswana; University of KwaZulu-Natal, Durban, RSA; Freddie L. Inambao University of KwaZulu-Natal,

More information

Design of Radial Turbines & Turbochargers

Design of Radial Turbines & Turbochargers RMD50 Design of Radial Turbines & Turbochargers Session delivered by: Prof. Q. H. Nagpurwala 4 @ M S Ramaiah School of Advanced Studies, Bengaluru Session Objective RMD50 To discuss the design of radial

More information

Axial Compressor Design Parameters

Axial Compressor Design Parameters Trbomachinery Lectre Notes 007-09-9 Axial Compressor Design Parameters Damian Vogt Corse MJ49 Nomenclatre Sbscripts Symbol Denotation Unit c Absolte velocity m/s h Enthalpy J/kg m& Mass flow rate kg/s

More information

Prof. Dr.-Ing. F.-K. Benra. ISE Bachelor Course

Prof. Dr.-Ing. F.-K. Benra. ISE Bachelor Course University Duisburg-Essen Campus Duisburg Faculty of Engineering Science Department of Mechanical Engineering Name Matr.- Nr. Examination: Fluid Machines Examiner: Prof. Dr.-Ing. F.-K. Benra Date of examination:

More information

Journal of Mechatronics, Electrical Power, and Vehicular Technology

Journal of Mechatronics, Electrical Power, and Vehicular Technology J. Mechatron. Electr. Power Veh. Technol 06 (2015) 39 8 Journal of Mechatronics, Electrical Power, and Vehicular Technology e-issn:2088-6985 p-issn: 2087-3379 www.mevjournal.com GEOMETRY ANALYSIS AND EFFECT

More information

ENERGY TRANSFER BETWEEN FLUID AND ROTOR. Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia

ENERGY TRANSFER BETWEEN FLUID AND ROTOR. Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia ENERGY TRANSFER BETWEEN FLUID AND ROTOR Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia Basic Laws and Equations Continuity Equation m m ρ mass

More information

Lecture-10 Tutorial -2 Solved Problems and Tutorial Problems On Three Dimensional flow in Axial Flow Compressor

Lecture-10 Tutorial -2 Solved Problems and Tutorial Problems On Three Dimensional flow in Axial Flow Compressor 1 Lecture-10 Tutorial -2 Solved Problems and Tutorial Problems On Three Dimensional flow in Axial Flow Compressor 2 Recap of simple 3-D flow theories (These are mainly used for design) Lect-10 1)Free Vortex

More information

Turbomachinery Aerodynamics Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Turbomachinery Aerodynamics Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Turbomachinery Aerodynamics Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Lecture No. # 26 Tutorial 4: 3D Flows in Axial Flow Turbines We

More information

MECA-H-402: Turbomachinery course Axial compressors

MECA-H-402: Turbomachinery course Axial compressors MECA-H-40: Turbomachinery course Axial compressors Pr. Patrick Hendrick Aero-Thermo-Mecanics Year 013-014 Contents List of figures iii 1 Axial compressors 1 1.1 Introduction...............................

More information

Lect-36. In this lecture... Tutorial on radial flow turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect-36. In this lecture... Tutorial on radial flow turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Lect- 36 1 In this lecture... Lect-36 Tutorial on radial flow turbines 2 Problem # 1 Lect-36 The rotor of an IFR turbine, which is designed to operate at the nominal condition, is 23.76 cm in diameter

More information

Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine

Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine IOP Conference Series: Materials Science and Engineering OPEN ACCESS Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine To cite this article: L Zhang et al 013 IOP

More information

Axial Flow and Radial Flow Gas Turbines

Axial Flow and Radial Flow Gas Turbines 7 Axial Flow and Radial Flow Gas Turbines 7.1 INTRODUCTION TO AXIAL FLOW TURBINES The axial flow gas turbine is used in almost all applications of gas turbine power plant. Development of the axial flow

More information

Lect 22. Radial Flow Turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect 22. Radial Flow Turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Lecture Lect Radial Flow Turbines Lect Radial inflow turbines, which look similar to centrifugal compressor, are considered suitable for application in small aircraft engines. In many applications a radial

More information

Turbomachinery Lecture Notes

Turbomachinery Lecture Notes Trbomachinery Lectre Notes KTH Corse MJ49/MJ41 Trbomachinery for Compressible Flids DRAFT version Compressors Damian M. Vogt KTH Heat and Power Technology Trbomachinery Lectre Notes 1 007-09-19 Axial Compressor

More information

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9 Preface page xv 1 Introduction to Gas-Turbine Engines...1 Definition 1 Advantages of Gas-Turbine Engines 1 Applications of Gas-Turbine Engines 3 The Gas Generator 3 Air Intake and Inlet Flow Passage 3

More information

STABILITY CONSIDERATIONS A SIMPLIFIED APPROACH

STABILITY CONSIDERATIONS A SIMPLIFIED APPROACH Proceedings of the First Middle East Turbomachinery Symposium February 13-16, 2011, Doha, Qatar STABILITY CONSIDERATIONS A SIMPLIFIED APPROACH Urs Baumann Head of Calculation and Development MAN Diesel

More information

Akshay Khadse, Lauren Blanchette, Mahmood Mohagheghi, Jayanta Kapat

Akshay Khadse, Lauren Blanchette, Mahmood Mohagheghi, Jayanta Kapat Impact of S-CO2 Properties on Centrifugal Compressor Impeller: Comparison of Two Loss Models for Mean Line Analyses The Supercritical CO2 Power Cycles Symposium 2016 Akshay Khadse, Lauren Blanchette, Mahmood

More information

In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor

In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor Lect- 3 In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor Centrifugal compressors Centrifugal compressors were used in the first

More information

Aerodynamics of Centrifugal Turbine Cascades

Aerodynamics of Centrifugal Turbine Cascades ASME ORC 2013 2nd International Seminar on ORC Power Systems October 7th-8th, Rotterdam, The Netherlands Aerodynamics of Centrifugal Turbine Cascades G. Persico, M. Pini, V. Dossena, and P. Gaetani Laboratorio

More information

EFFECT OF FORCED ROTATING VANELESS DIFFUSERS ON CENTRIFUGAL COMPRESSOR STAGE PERFORMANCE

EFFECT OF FORCED ROTATING VANELESS DIFFUSERS ON CENTRIFUGAL COMPRESSOR STAGE PERFORMANCE Journal of Engineering Science and Technology Vol. 6, No. 5 (2011) 558-574 School of Engineering, Taylor s University EFFECT OF FORCED ROTATING VANELESS DIFFUSERS ON CENTRIFUGAL COMPRESSOR STAGE PERFORMANCE

More information

Lect-33. In this lecture... Tutorial on centrifugal compressors. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect-33. In this lecture... Tutorial on centrifugal compressors. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Let- 33 In this leture... Let-33 utorial on entrifugal ompressors Problem # At the inlet of a entrifugal ompressor eye, the relative Mah number is to be limited to 0.97. he hub-tip radius ratio of the

More information

THE INFLUENCE OF WORKING FLUID CHARECTERISTIC PARAMETERS ON TURBINE PERFORMANCE FOR THE SMALL SCALE ORC SYSTEM

THE INFLUENCE OF WORKING FLUID CHARECTERISTIC PARAMETERS ON TURBINE PERFORMANCE FOR THE SMALL SCALE ORC SYSTEM Proceedings of the ASME 203 Fluids Engineering Division Summer Meeting FEDSM203 July 7-, 203, Incline Village, Nevada, USA FEDSM203-6348 THE INFLUENCE OF WORKING FLUID CHARECTERISTIC PARAMETERS ON TURBINE

More information

Theory of turbo machine Effect of Blade Configuration on Characteristics of Centrifugal machines. Unit 2 (Potters & Wiggert Sec

Theory of turbo machine Effect of Blade Configuration on Characteristics of Centrifugal machines. Unit 2 (Potters & Wiggert Sec Theory of turbo machine Effect of Blade Configuration on Characteristics of Centrifugal machines Unit (Potters & Wiggert Sec. 1..1, &-607) Expression relating Q, H, P developed by Rotary machines Rotary

More information

mywbut.com Hydraulic Turbines

mywbut.com Hydraulic Turbines Hydraulic Turbines Hydro-electric power accounts for up to 0% of the world s electrical generation. Hydraulic turbines come in a variety of shapes determined by the available head and a number of sizes

More information

PEMP RMD510. M.S. Ramaiah School of Advanced Studies, Bengaluru

PEMP RMD510. M.S. Ramaiah School of Advanced Studies, Bengaluru Design of Axial Flow Compressor- Session delivered by: Prof. Q. H. Nagpurwala Session Objectives To learn design procedure for axial compressor stages To calculate flow properties across the blade rows

More information

A UNIFORM APPROACH TO CONCEPTUAL DESIGN OF AXIAL TURBINE / COMPRESSOR FLOW PATH

A UNIFORM APPROACH TO CONCEPTUAL DESIGN OF AXIAL TURBINE / COMPRESSOR FLOW PATH The Future of Gas Turbine Technology rd International Conference - October 006, Brussels, Belgium A UNIFORM APPROACH TO CONCEPTUAL DESIGN OF AXIAL TURBINE / COMPRESSOR FLOW PATH Leonid Moroz, Yuri Govorushchenko,

More information

Efficiencies. Damian Vogt Course MJ2429. Nomenclature. Symbol Denotation Unit c Flow speed m/s c p. pressure c v. Specific heat at constant J/kgK

Efficiencies. Damian Vogt Course MJ2429. Nomenclature. Symbol Denotation Unit c Flow speed m/s c p. pressure c v. Specific heat at constant J/kgK Turbomachinery Lecture Notes 1 7-9-1 Efficiencies Damian Vogt Course MJ49 Nomenclature Subscrits Symbol Denotation Unit c Flow seed m/s c Secific heat at constant J/kgK ressure c v Secific heat at constant

More information

Conservation of Angular Momentum

Conservation of Angular Momentum 10 March 2017 Conservation of ngular Momentum Lecture 23 In the last class, we discussed about the conservation of angular momentum principle. Using RTT, the angular momentum principle was given as DHo

More information

Aerodynamic Performance 1. Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk.

Aerodynamic Performance 1. Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk. Aerodynamic Performance 1 1 Momentum Theory Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk. 1. The flow is perfect fluid, steady, and incompressible.

More information

3 Energy Exchange in Turbomachines

3 Energy Exchange in Turbomachines 3 Energy Exchange in Turbomachines Problem 1 The solved and unsolved examples of this chapter are meant to illustrate the various forms of velocity triangles and the variety of the turbomachines. In addition,

More information

Study of the Losses in Fluid Machinery with the Help of Entropy

Study of the Losses in Fluid Machinery with the Help of Entropy Study of the Losses in Fluid Machinery with the Help of Entropy Martin Böhle 1, Annika Fleder 1, Matthias Mohr 1 * SYMPOSIA ON ROTATING MACHINERY ISROMAC 16 International Symposium on Transport Phenomena

More information

Draft Paper-GT

Draft Paper-GT Proceedings of ASME Turbo Expo 2008 Power of Land, Sea, and Air June 9-13, 2008, Berlin, Germnay Draft Paper-GT2008-51033 Optimum design and sensitivity analysis of axial flow compressor with combination

More information

Modeling and Validation of the SR-30 Turbojet Engine

Modeling and Validation of the SR-30 Turbojet Engine Modeling and Validation of the SR-30 Turbojet Engine Thermal Energy Technology 6. Semester Group TE6-604 Aalborg University Title: Modeling and Validation of the SR-30 Turbojet Engine Semester: 6. Semester

More information

Theory of turbo machinery / Turbomaskinernas teori. Chapter 3

Theory of turbo machinery / Turbomaskinernas teori. Chapter 3 Theory of turbo achinery / Turboaskinernas teori Chapter 3 D cascades Let us first understand the facts and then we ay seek the causes. (Aristotle) D cascades High hub-tip ratio (of radii) negligible radial

More information

In this lecture... Radial flow turbines Types of radial flow turbines Thermodynamics and aerodynamics Losses in radial flow turbines

In this lecture... Radial flow turbines Types of radial flow turbines Thermodynamics and aerodynamics Losses in radial flow turbines Lect- 35 1 In this lecture... Radial flow turbines Types of radial flow turbines Thermodynamics and aerodynamics Losses in radial flow turbines Radial turbines Lect-35 Development of radial flow turbines

More information

Chapter 7 Steam Turbines MEE 325 Power Plants Engineering

Chapter 7 Steam Turbines MEE 325 Power Plants Engineering Chapter 7 Steam Turbines MEE 325 Power Plants Engineering Atikorn W. Mechanical Engineering Department King Mongkut s University of Technology Thonburi Introduction Steam turbine is an energy conversion

More information

Introduction to Fluid Machines (Lectures 49 to 53)

Introduction to Fluid Machines (Lectures 49 to 53) Introduction to Fluid Machines (Lectures 49 to 5) Q. Choose the crect answer (i) (ii) (iii) (iv) A hydraulic turbine rotates at N rpm operating under a net head H and having a discharge Q while developing

More information

Turbomachinery & Turbulence. Lecture 2: One dimensional thermodynamics.

Turbomachinery & Turbulence. Lecture 2: One dimensional thermodynamics. Turbomachinery & Turbulence. Lecture 2: One dimensional thermodynamics. F. Ravelet Laboratoire DynFluid, Arts et Metiers-ParisTech February 3, 2016 Control volume Global balance equations in open systems

More information

Turbomachinery. Hasan Ozcan Assistant Professor. Mechanical Engineering Department Faculty of Engineering Karabuk University

Turbomachinery. Hasan Ozcan Assistant Professor. Mechanical Engineering Department Faculty of Engineering Karabuk University Turbomachinery Hasan Ozcan Assistant Professor Mechanical Engineering Department Faculty of Engineering Karabuk University Introduction Hasan Ozcan, Ph.D, (Assistant Professor) B.Sc :Erciyes University,

More information

Axial Flow Compressors and Fans

Axial Flow Compressors and Fans 5 Axial Flow Compressors and Fans 5.1 INTRODUCTION As mentioned in Chapter 4, the maximum pressure ratio achieved in centrifugal compressors is about 4:1 for simple machines (unless multi-staging is used)

More information

IMPLEMENTATION OF ONE-DIMENSIONAL CENTRIFUGAL COMPRESSOR DESIGN CODE

IMPLEMENTATION OF ONE-DIMENSIONAL CENTRIFUGAL COMPRESSOR DESIGN CODE Copyright 010 by ABCM IMPLEMENTATION OF ONE-DIMENSIONAL CENTRIFUGAL COMPRESSOR DESIGN CODE Elkin I. Gutiérrez Velásquez, elking@unifei.edu.br Marco A.R. Nascimento, marcoantonio@unifei.edu.br Universidade

More information

Simple, stable and reliable modeling of gas properties of organic working fluids in aerodynamic designs of turbomachinery for ORC and VCC

Simple, stable and reliable modeling of gas properties of organic working fluids in aerodynamic designs of turbomachinery for ORC and VCC IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Simple, stable and reliable modeling of gas properties of organic working fluids in aerodynamic designs of turbomachinery for

More information

Inverse Design of Centrifugal Compressor Stages Using a Meanline Approach

Inverse Design of Centrifugal Compressor Stages Using a Meanline Approach Rotating Machinery, 10: 75 84, 2004 Copyright c Taylor & Francis Inc. ISSN: 1023-621X print DOI: 10.1080/10236210490258106 Inverse Design of Centrifugal Compressor Stages Using a Meanline Approach Yuri

More information

Exercise 8 - Turbocompressors

Exercise 8 - Turbocompressors Exercise 8 - Turbocompressors A turbocompressor TC) or turbocharger is a mechanical device used in internal combustion engines to enhance their power output. The basic idea of a TC is to force additional

More information

Helsinki University of Technology Laboratory of Applied Thermodynamics/CFD-Group. MEMO No CFD/TERMO DATE: November 21, 1997

Helsinki University of Technology Laboratory of Applied Thermodynamics/CFD-Group. MEMO No CFD/TERMO DATE: November 21, 1997 Helsinki University of Technology Laboratory of Applied Thermodynamics/CFD-Group MEMO No CFD/TERMO-22-97 DATE: November 21, 1997 TITLE GRV-60 Impeller with airfoil-type and unvaned diffusor AUTHOR(S) Harri

More information

DESIGN OF A CENTRIFUGAL COMPRESSOR FOR NATURAL GAS

DESIGN OF A CENTRIFUGAL COMPRESSOR FOR NATURAL GAS DESIGN OF A CENTRIFUGAL COMPRESSOR FOR NATURAL GAS S. K. Kurauchi a, and J. R. Barbosa b a Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica Departamento de Turbomáquinas São José dos

More information

Theory and Applica0on of Gas Turbine Systems

Theory and Applica0on of Gas Turbine Systems Theory and Applica0on of Gas Turbine Systems Part IV: Axial and Radial Flow Turbines Munich Summer School at University of Applied Sciences Prof. Kim A. Shollenberger Introduc0on to Turbines Two basic

More information

Test turbine measurements and comparison with mean-line and throughflow calculations

Test turbine measurements and comparison with mean-line and throughflow calculations Test turbine measurements and comparison with mean-line and throughflow calculations NAVID MIKAILLIAN Master of Science Thesis KTH School of Industrial Engineering and Management Energy Technology EGI-2012-091MSC

More information

Mixing-Plane Method for Flutter Computation in Multi-stage Turbomachines

Mixing-Plane Method for Flutter Computation in Multi-stage Turbomachines 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 2009, Orlando, Florida AIAA 2009-862 Mixing-Plane Method for Flutter Computation in Multi-stage

More information

STEAM FLOW THROUGH A TWO-STAGE TURBINE WITH ROTOR DRUM ARRANGEMENT

STEAM FLOW THROUGH A TWO-STAGE TURBINE WITH ROTOR DRUM ARRANGEMENT Proceedings of 0 th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC0, April 5-9, 03, Lappeenranta, Finland STEAM FLOW THROUGH A TWO-STAGE TURBINE WITH ROTOR DRUM ARRANGEMENT M.

More information

Theory of turbomachinery. Chapter 1

Theory of turbomachinery. Chapter 1 Theory of turbomachinery Chater Introduction: Basic Princiles Take your choice of those that can best aid your action. (Shakeseare, Coriolanus) Introduction Definition Turbomachinery describes machines

More information

Steam and Gas Power Systems Prof. Ravi Kumar Department of Mechanical industrial engineering Indian Institute of Technology Roorkee

Steam and Gas Power Systems Prof. Ravi Kumar Department of Mechanical industrial engineering Indian Institute of Technology Roorkee Steam and Gas Power Systems Prof. Ravi Kumar Department of Mechanical industrial engineering Indian Institute of Technology Roorkee Module No # 06 Lecture No # 26 Impulse Reaction Steam Turbines Hello

More information

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Centrifugal Compressor Part I Good morning

More information

Direct Integration of Axial Turbomachinery Preliminary Aerodynamic Design Calculations in Engine Performance Component Models

Direct Integration of Axial Turbomachinery Preliminary Aerodynamic Design Calculations in Engine Performance Component Models Direct Integration of Axial Turbomachinery Preliminary Aerodynamic Design Calculations in I. Kolias, A. Alexiou, N. Aretakis, K. Mathioudakis Laboratory of Thermal Turbomachines, School of Mechanical Engineering

More information

One-Dimensional, Stage-By-Stage, Axial Compressor Performance Model

One-Dimensional, Stage-By-Stage, Axial Compressor Performance Model THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 E. 47 St., New York, N.Y. 10017 91-GT-192 ]^( The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings

More information

International ejournals

International ejournals Available online at www.internationalejournals.com International ejournals International ejournal of Mathematics and Engineering 170 (2012) 1603 1612 Design and Coupled Field Analysis of First Stage Gas

More information

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 ISSN 0976-6480 (Print) ISSN

More information

Introduction to Fluid Machines and Compressible Flow Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. # 24 Axial Flow Compressor Part I Good morning

More information

Preliminary design of a centrifugal turbine for ORC applications

Preliminary design of a centrifugal turbine for ORC applications ORC 2011 First International Seminar on ORC Power Systems TU Delft, The Netherlands, 22-23 September 2011 Preliminary design of a centrifugal turbine for ORC applications M. Pini 1, G. Persico 1, E. Casati

More information

(Refer Slide Time: 4:41)

(Refer Slide Time: 4:41) Fluid Machines. Professor Sankar Kumar Som. Department Of Mechanical Engineering. Indian Institute Of Technology Kharagpur. Lecture-30. Basic Principle and Energy Transfer in Centrifugal Compressor Part

More information

MODELLING OF SINGLE-PHASE FLOW IN THE STATOR CHANNELS OF SUBMERSIBLE AERATOR

MODELLING OF SINGLE-PHASE FLOW IN THE STATOR CHANNELS OF SUBMERSIBLE AERATOR Engineering MECHANICS, Vol. 21, 2014, No. 5, p. 289 298 289 MODELLING OF SINGLE-PHASE FLOW IN THE STATOR CHANNELS OF SUBMERSIBLE AERATOR Martin Bílek*, Jaroslav Štigler* The paper deals with the design

More information

A metastable wet steam turbine stage model

A metastable wet steam turbine stage model Nuclear Engineering and Design 16 (00) 113 119 www.elsevier.com/locate/nucengdes A metastable wet steam turbine stage Wageeh Sidrak Bassel *, Arivaldo Vicente Gomes Instituto de Pesquisas Energeticas e

More information

Lect-23. In this lecture... Tutorial on axial flow turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect-23. In this lecture... Tutorial on axial flow turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Lect- In this lecture... Lect- utoril on xil flow turbines Prof. Bhskr Roy, Prof. A M Prdeep, Deprtment of Aerospce, II Bomby Problem # Lect- A single stge gs turbine opertes t its design condition with

More information

In this lecture... Axial flow turbine Impulse and reaction turbine stages Work and stage dynamics Turbine blade cascade

In this lecture... Axial flow turbine Impulse and reaction turbine stages Work and stage dynamics Turbine blade cascade Lect- 0 1 Lect-0 In this lecture... Axial flow turbine Ipulse and reaction turbine stages Work and stage dynaics Turbine blade cascade Lect-0 Axial flow turbines Axial turbines like axial copressors usually

More information

Principles of Turbomachinery

Principles of Turbomachinery Principles of Turbomachinery To J. M. T. Principles of Turbomachinery R. K. Turton Lecturer in Mechanical Engineering Loughborough University of Technology London New York E. & F. N. Spon ISBN 978-94-010-9691-1

More information

Impact of Blade Quality on Maximum Efficiency of Low Head Hydraulic Turbine

Impact of Blade Quality on Maximum Efficiency of Low Head Hydraulic Turbine Mechanics and Mechanical Engineering Vol. 17, No. 3 2013) 269 284 c Lodz University of Technology Impact of Blade Quality on Maximum Efficiency of Low Head Hydraulic Turbine Romuald Puzyrewski Gdansk University

More information

Prof. Dr. Rishi Raj Design of an Impulse Turbine Blades Hasan-1

Prof. Dr. Rishi Raj Design of an Impulse Turbine Blades Hasan-1 Prof. Dr. Rishi Raj Design of an Impulse Turbine Blades Hasan-1 The main purpose of this project, design of an impulse turbine is to understand the concept of turbine blades by defining and designing the

More information

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us Problems of Practices Of Fluid Mechanics Compressible Fluid Flow Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India) Supported By: Purvi Bhooshan

More information

DESIGN OF THE PRIMARY LIQUID-METAL PUMP OF THE MYRRHA RESEARCH REACTOR

DESIGN OF THE PRIMARY LIQUID-METAL PUMP OF THE MYRRHA RESEARCH REACTOR Proceedings of 0 th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC0, April 5-9, 203, Lappeenranta, Finland DESIGN OF THE PRIMARY LIQUID-METAL PUMP OF THE MYRRHA RESEARCH REACTOR

More information

Wind Turbine Blade Analysis using the Blade Element Momentum Method. Version 1.0

Wind Turbine Blade Analysis using the Blade Element Momentum Method. Version 1.0 using the Blade Element Momentum Method. Version 1.0 Grant Ingram December 13, 2005 Copyright c) 2005 Grant Ingram, All Rights Reserved. 1 Contents 1 Introduction 5 2 Blade Element Momentum Theory 5 3

More information

Chapter three. Two-dimensional Cascades. Laith Batarseh

Chapter three. Two-dimensional Cascades. Laith Batarseh Chapter three Two-dimensional Cascades Laith Batarseh Turbo cascades The linear cascade of blades comprises a number of identical blades, equally spaced and parallel to one another cascade tunnel low-speed,

More information

Two Dimensional Design of Axial Compressor An Enhanced Version of LUAX-C

Two Dimensional Design of Axial Compressor An Enhanced Version of LUAX-C Two Dimensional Design of Axial Compressor An Enhanced Version of LUAX-C Daniele Perrotti Thesis for the Degree of Master of Science Division of Thermal Power Engineering Department of Energy Sciences

More information

(Refer Slide Time: 0:57)

(Refer Slide Time: 0:57) Fluid Dynamics And Turbo Machines. Professor Dr Dhiman Chatterjee. Department Of Mechanical Engineering. Indian Institute Of Technology Madras. Part B. Module-2. Lecture-4. Representation of Turbo Machines

More information

Contents. Preface... xvii

Contents. Preface... xvii Contents Preface... xvii CHAPTER 1 Idealized Flow Machines...1 1.1 Conservation Equations... 1 1.1.1 Conservation of mass... 2 1.1.2 Conservation of momentum... 3 1.1.3 Conservation of energy... 3 1.2

More information

Radial Equilibrium Example

Radial Equilibrium Example An Internet Book on Fluid Dynamics Radial Equilibrium Example For the purposes of this example of a radial equilibrium solution, the flow through the pump impeller is subdivided into streamtubes, as shown

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, IIT Bombay Module No. # 01 Lecture No. # 08 Cycle Components and Component

More information

REVERSE ENGINEERING OF A MICRO TURBOJET ENGINE. Onur Tuncer and Ramiz 0mür İçke Istanbul Technical University Istanbul, Turkey

REVERSE ENGINEERING OF A MICRO TURBOJET ENGINE. Onur Tuncer and Ramiz 0mür İçke Istanbul Technical University Istanbul, Turkey 6. ANKARA INTERNATIONAL AEROSPACE CONFERENCE 14-16 September 2011 - METU, Ankara TURKEY REVERSE ENGINEERING OF A MICRO TURBOJET ENGINE Onur Tuncer and Ramiz 0mür İçke Istanbul Technical University Istanbul,

More information

ANALYSIS AND DEVELOPMENT OF A TURBIVO COMPRESSOR FOR MVR APPLICATIONS. Abstract 1. INTRODUCTION

ANALYSIS AND DEVELOPMENT OF A TURBIVO COMPRESSOR FOR MVR APPLICATIONS. Abstract 1. INTRODUCTION 1275, Page 1 ANALYSIS AND DEVELOPMENT OF A TURBIVO COMPRESSOR FOR MVR APPLICATIONS Elias BOULAWZ KSAYER, Denis CLODIC Center for Energy and Processes, Ecole des Mines de Paris 60, boulevard Saint Michel

More information

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE Polymers Research Journal ISSN: 195-50 Volume 6, Number 01 Nova Science Publishers, Inc. THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE E. Poursaeidi, M. Mohammadi and S. S. Khamesi University

More information

Centrifugal Machines Table of Contents

Centrifugal Machines Table of Contents NLNG Course 017 Table of Contents 1 Introduction and Basic Principles... 1.1 Hydraulic Machines... 1.... 1.3 Pump Geometry... 1.4 Pump Blade Geometry...3 1.5 Diffusers...5 1.6 Pump Losses...6 1.7 Example

More information

Design and CFD Analysis of a Curtis Turbine Stage

Design and CFD Analysis of a Curtis Turbine Stage PROCEEDINGS OF ECOS 016 - THE 9 TH INTERNATIONAL CONFERENCEON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS JUNE 19-3, 016, PORTOROŽ, SLOVENIA Abstract Design and

More information

Radial Turbine with Pitch-controlled Guide Vanes for Wave Energy Conversion

Radial Turbine with Pitch-controlled Guide Vanes for Wave Energy Conversion Radial Turbine with Pitch-controlled Guide Vanes for Wave Energy Conversion M. Takao 1, M. Suzuki, T. Setoguchi 3, B. Pereiras and F. Castro 1 Department of Mechanical Engineering, Matsue College of Technology,

More information

Centrifugal pumps - characteristics

Centrifugal pumps - characteristics University of Ljubljana Faculty of mechanical engineering Askerceva 6 1000 Ljubljana, Slovenija telefon: 01 477 1 00 faks: 01 51 85 67 www.fs.uni-lj.si e-mail: dekanat@fs.uni-lj.si Laboratory for Heat

More information

Generally, there exists an optimum tip-speed-ratio, λ that maximized C p. The exact λ depends on the individual wind turbine design

Generally, there exists an optimum tip-speed-ratio, λ that maximized C p. The exact λ depends on the individual wind turbine design Summary Chapter 6-End 1 Wind Turbine Control The control system on a wind turbine is designed to: 1. seek the highest efficiency of operation that maximizes the coefficient of power, C p, 2. ensure safe

More information

Answers to questions in each section should be tied together and handed in separately.

Answers to questions in each section should be tied together and handed in separately. EGT0 ENGINEERING TRIPOS PART IA Wednesday 4 June 014 9 to 1 Paper 1 MECHANICAL ENGINEERING Answer all questions. The approximate number of marks allocated to each part of a question is indicated in the

More information

Dynamic centrifugal compressor model for system simulation

Dynamic centrifugal compressor model for system simulation Journal of Power Sources xxx (2005) xxx xxx Dynamic centrifugal compressor model for system simulation Wei Jiang, Jamil Khan, Roger A. Dougal Department of Mechanical Engineering, University of South Carolina,

More information

Improved Model for Meanline Analysis of Centrifugal Compressors with a Large Tip Clearance

Improved Model for Meanline Analysis of Centrifugal Compressors with a Large Tip Clearance Improved Model for Meanline Analysis of Centrifugal Compressors with a Large Tip Clearance Andrey Sherbina 1, Ivan Klimov 2 and Leonid Moroz 3 SoftInWay Inc., 1500 District Avenue, Burlington, MA, 01803,

More information

Stator Blade Motor Motor Housing

Stator Blade Motor Motor Housing The internal workings of a Ducted Fan The rotor velocity vectors and blade angles After looking at EDFs from a pure axial change of momentum position we must now address the question how the fan is shaped

More information

A METHOD FOR CALCULATION OF FORCES ACTING ON AIR COOLED GAS TURBINE BLADES BASED ON THE AERODYNAMIC THEORY

A METHOD FOR CALCULATION OF FORCES ACTING ON AIR COOLED GAS TURBINE BLADES BASED ON THE AERODYNAMIC THEORY THERMAL SCIENCE: Year 013, Vol. 17, No., pp. 547-554 547 A METHOD OR CALCULATION O ORCES ACTING ON AIR COOLED GAS TURBINE BLADES BASED ON THE AERODYNAMIC THEORY Introduction by Vojin R. GRKOVI] aculty

More information

Non-Dimensional Aerodynamic Design of Centrifugal Compressor for Small Scale Samkit V Shah 1 Prof. Nilesh R.Sheth 2 Prof. Samip P.

Non-Dimensional Aerodynamic Design of Centrifugal Compressor for Small Scale Samkit V Shah 1 Prof. Nilesh R.Sheth 2 Prof. Samip P. IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online): 2321-0613 Non-Dimensional Aerodynamic Design of Centrifugal Compressor for Small Scale Samkit V

More information

Effects of the Leakage Flow Tangential Velocity in Shrouded Axial Compressor Cascades *

Effects of the Leakage Flow Tangential Velocity in Shrouded Axial Compressor Cascades * TSINGHUA SCIENCE AND TECHNOLOGY ISSNll1007-0214ll21/21llpp105-110 Volume 14, Number S2, December 2009 Effects of the Leakage Flow Tangential Velocity in Shrouded Axial Compressor Cascades * KIM Jinwook

More information

(Refer Slide Time: 0:45)

(Refer Slide Time: 0:45) (Refer Slide Time: 0:45) Fluid Machines. Professor Sankar Kumar Som. Department Of Mechanical Engineering. Indian Institute Of Technology Kharagpur. Lecture-3. Impulse and Reaction Machines: Introductory

More information

Aeroacoustic and Aerodynamics of Swirling Flows*

Aeroacoustic and Aerodynamics of Swirling Flows* Aeroacoustic and Aerodynamics of Swirling Flows* Hafiz M. Atassi University of Notre Dame * supported by ONR grant and OAIAC OVERVIEW OF PRESENTATION Disturbances in Swirling Flows Normal Mode Analysis

More information

CHARACTERIZING THE PERFORMANCE OF THE SR-30 TURBOJET ENGINE

CHARACTERIZING THE PERFORMANCE OF THE SR-30 TURBOJET ENGINE 003-1397 CHARACTERIZING THE PERFORMANCE OF THE SR-30 TURBOJET ENGINE T. Witkowski, S. White, C. Ortiz Dueñas, P. Strykowski, T. Simon University of Minnesota Introduction What?!! exclaimed one student.

More information

Axial-Flow Compressor Performance Prediction in Design and Off-Design Conditions through 1-D and 3-D Modeling and Experimental Study

Axial-Flow Compressor Performance Prediction in Design and Off-Design Conditions through 1-D and 3-D Modeling and Experimental Study Journal of Applied Fluid Mechanics, Vol. 9, No. 5, pp. 2149-2160, 2016. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. DOI: 10.18869/acadpub.jafm.68.236.25222 Axial-Flow Compressor

More information