MAGNETIC HEADS FOR HIGH COERCIVITY RECORDING MEDIA

Size: px
Start display at page:

Download "MAGNETIC HEADS FOR HIGH COERCIVITY RECORDING MEDIA"

Transcription

1 Journal of ptoelectronics and Advanced Materials Vol. 6, No. 3, September 4, p MAGNETIC HEADS FR HIGH CERCIVITY RECRDING MEDIA V. N. Samofalov *, E. I. Il ashenko a, A. Ramstad b, L.Z. Lub anu, T.H. Johansen c National Technical Universit Kharkov Poltechnical Institute, Frunze St., 6, Kharkov, Ukraine a Moscow State Universit, Vorob eovi Gori,9899 Moscow, Russia b Tandberg Storage, Kjelsåsveien 6, P.. Bo 96, Kjelsås, N-4 slo, Norwa c Universit of slo, Department of Phsics, Blindern, N-36 slo, Norwa The application of high coercive storage media would increase densit, realiabilit and lifetime for thermal deca of recording information. The sstems of permanent magnets generating strong magnetic fields are proposed to create the heads for recording on high coercive media (H C = 5-5 ke). n the basis of calculations made for different magnet sstems, the possibilit of dense longitudinal and perpendicular recording was grounded. (Received April 6, 4 accepted June, 4) Kewords: Permanent magnet, Stra field, Demagnetization, Giant anisotrop, Coercive force. Introduction At present, commercial application of high coercivit media for magnetic recording is complicated b the absence of recording heads capable to magnetize alternativel such highcoercive media. Finding a solution of the problem will allow to increase densit and reliabilit of recording information [,,3]. In the present work, for longitudinal and perpendicular information recording on high coercive media, we propose to use strong stra fields occurring at the edges of charged magnet surfaces with giant magnet anisotrop [4]. It was shown that such fields are attained in the sstems of hard magnetic materials based on rare-earth metals with uniaial anisotrop field H K > ke and coercive force H C > πm S (M S is the saturation magnetization of the magnet material). In Fig. a one of the magnet sstems generating strong magnetic fields is shown to illustrate the recording principle. The longitudinal field component H (,,z) is here given b H = M S + b + ln b + + ( + b) + ( b) b + + b + ( + a) ( + a) + ( b) + ( + b) b + + b + ( a) ( a) + ( b) + ( + b) () Shown in Fig. b is a surface plot of the field H (,) for the case b = a, and z =.a. As one sees, for points positioned near Y ais, the horizontal component of stra field takes large values H ~ ke, which is more than twice the magnet material induction value. With increasing distance from magnet surface, the component H decreases following to logarithmic law. The perpendicular component of the stra field H z is limited in magnitude b πm S, which is seen from Fig. showing H z () at = for z =.a,.a and.3a. * Corresponding author: Samofalov@kpi.kharkov.ua

2 9 V. N. Samofalov, E. I. Il ashenko, A. Ramstad, L. Z. Lub anu, T. H. Johansen (a) z M S (b) H (ke) YKE aa b b - -a a Fig. (a). The sstem of cored magnets generating the strong magnetic field; (b) Horizontal component H (,) calculated for points in the range -a < < a; < < b=a/ on the -plane at z =.a. A magnet material magnetization of M S = 75 G was taken for the calculations f( ) f( ) H z (ke) f( ) /a 3 Fig.. Calculated vertical component of stra field H z ( ) at = over the magnet sstem shown in Fig. a, for different distances z from the top surface: z/a =. curve, z/a =. curve, z/a =.3 curve 3. M S = 75 G was assumed for the calculations.. Eperimental test sstem In order to prove the eistence of such fields, a sstem like the one in Fig. a was made using SmCo 5 magnets. The sstem had dimensions 4 4 mm 3. The fields were measured using a giant magnetoresistive (GMR) effect sensor of size 3 mm and. µm thickness [5]. From the observed data plotted in Fig. 3 it is seen that measured H () is in good agreement with the fitted field profiles, which were calculated from eq. () assuming an M S of 75 G for the magnet material.

3 Magnetic heads for high coercivit recording media 93 8 H (ke) v. 4 3 ln.6. 4 H3( ) v,. /a.5 Fig. 3. Comparison of calculated (solid curves) and eperimentall measured (circles) values of the stra fields above magnet sstem for various /a. The upper curve corresponds to the case b >> a, and the bottom one to b = a/. M S = 75 G was assumed. 3. Head for longitudinal recording A novel head is constructed on the basis of the test sstem s abilit to generate concentrated magnetic field of high strength for the component H (). The principal scheme of the head is shown in Fig. 4a. The head consists of a pair of magnets magnetized anti-parallel, and a sstem for creating the sub-magnetizing field. The magnet size in Y direction is b. A non-magnetic laer with thickness δ is positioned between the magnets. This laer ecludes echange interaction, and thus, stabilizes the magnetic state in the magnets. The magnet size is c >> a in the direction of the z ais. The calculated H (, ) component at z =.a is plotted in Fig. 4b. For calculations, we assumed a residual magnetization of M = G for the magnet material, and a laer width of δ =.5. From the figure it is seen that the non-magnetic laer increases the recording area size and decreases the strength of strong field. So, this laer should be thin, satisfing the condition of /δ >. The scheme of the sub-magnetization sstem is shown on Fig. 4a. This sstem is necessar to generate the sub-magnetization field of same direction, i.e., according to magnetization the recording. The sub-magnetization sstem should provide magnetization of adjacent soft-magnetic laers in anti-parallel of neighboring magnets. The recording is carried out as follows: the head is positioned above the medium at such distance t, that longitudinal (or perpendicular) component of permanent magnet stra field being a bit lower than the field of nucleation H nuc (or coercive force H C ) of storage magnetic media. Then, sub-magnetisation sstem is switched on and creates an additional field H with the value corresponding to resulting field H + H > H nuc (or coercive force H C ). The additional field H should be high enough (-3 ke) to allow to optimize the recording on media with different coercive force. Additionall, the field should eceed the stra field H occurring at the interface of the medium where alternation of magnetization direction in storage medium takes place (the point of tpe, see Fig. 4a). This requirement is connected with the fact that H field direction on right hand from the point (Fig.4a) coincides with magnetization field of the magnets H. As a result, the total field H +H ma become higher than H C, and during further head movement, homogeneous medium magnetization will occur even if recorded signal is not given on the head. The possibilit to set the field H value in wide range permits to avoid rubbing out the information during the head movement. It is worth noting that in the case of a film variant of the head, one should produce nonmagnetic interlaer as well between soft-magnetic laers of sub-magnetization sstem and highcoercive magnets. Such the interlaer ecludes echange interaction between the laers and, consequentl, does not lead to decreased permeabilit of soft magnetic laer.

4 94 V. N. Samofalov, E. I. Il ashenko, A. Ramstad, L. Z. Lub anu, T. H. Johansen (a) H (ke) (b) 5 a Y K E t h.5 /a /a. Fig. 4. (a) Scheme of the head for longitudinal recording. (b) Calculated stra field longitudinal component H (, ) in the area -.a < <.a, -.5a < < on the plane XY (z = ). For the calculations, M S = G and non-magnetic laer thickness δ =.5a were taken. It is epected that due to eistence of cores in sub-magnetization sstem which are positioned along with the magnets, the decrease of stra fields in recording point will occur. Preliminar evaluation calculations have shown that the decrease of the field would not be substantial, if the material of hardmagnetic laer possesses the giant value of uniaial magnetic anisotrop field. For eample, at such anisotrop field as for SmCo 5 with H C = 3 45 ke [6], the additional stra fields from cores would be much smaller and practicall do not change the magnetization direction in permanent magnets. Consequentl, the strong field in recording point will be preserved, and its non-homogeneous properties will not change as well. Note, that on designing the sub-magnetization sstem, the decreasing effect of the magnets on core permeabilit should be taken into consideration. It is seen from Fig. b that on the magnet edges in the points with coordinates = ± a, the field component H is directed opposite to H in the point and reaches large values. In the head with core, in these points the component H enforces but will remain lower than in the point. Under magnetization of cores in the moment of recording, the component H in point will enforce, and vice versa, in the points = ± a, it will decrease. So, undesirable recording in these points will be absent. The size of the remagnetisation area on the medium ma be estimated b [ ep{ ( H + H H )/ M } ( t / ]. 5 = a a. () nuc S ) H being demagnetization field in this area, t is the distance from the medium to the head. Note that the nucleation field depends not onl on magnetic parameters of medium material, but also on the remagnetisation area size and shape. B the magnitude, it ma eceed the medium coercive force. It is seen from equation () that the area size depends on magnet sizes a, nucleation field H nuc, submagnetization field H, and saturation magnetization of head permanent magnets. Varing these parameters, it is possible to optimize the recording process. So, to obtain small sized area ( <. µm), one should use the media with high coercive force H C ke and higher. n highcoercive media, it is possible to obtain the small sized area even using the heads with rather large magnet characteristic size a. This is one of advantages of the proposal method. It worth to be noted that at small distance from the medium a/t, the normal component of stra field H z πm s takes high magnitudes as well (see Fig. 4). The field of such value is able to magnetize the medium locall in normal direction. To eclude this, one should use the media with z > πm s. In addition, the media for longitudinal recording should have crstallographic teture with EA parallel to medium plane.

5 Magnetic heads for high coercivit recording media The head for perpendicular recording The principle scheme of the head for perpendicular recording is shown on Fig. 5a. It is distinguish from longitudinal recording head in that the magnetizations in the permanent magnets are directed contrar to each other. Such sstem would be stable and not demagnetized, if magnet coercive force is higher than magnetisation of the permanent magnets, C > 4πM s. So far as the component of strong force H z occurs near the point, for preserving the homogeneousl magnetized state in the magnets it is required that their material possesses the strong field of uniaial anisotrop k > ke. The head sub-magnetization sstem consists of a core and a magnetizing coil. For ecluding the echange interaction between the magnets as well between the magnets and soft laers it is necessar to create a thin non-magnetic interlaer. Under electrical current recording, the both head cores are magnetized in the same direction and generate an additional field. There is an optimal distance to the medium t (depending on characteristic sizes, and core width b) corresponding to maimum field strength in the point of recording. Estimation calculations indicates the possibilit to retain the submagnetization field over the medium = -3 ke and even higher. (a) a M S z Y K E h t (b) Fz( H ).5 z. 4 (ke) Fz( ) F3z( ) /b Fig. 5 (a) The scheme of the head for perpendicular recording. (b) The calculated stra field perpendicular component H z () for different distances from the medium; t =.b the upper curve; t =.b- the middle curve; t =.3b the lower curve. For the calculations, M S = G and c = b were taken. n Fig. 5b the calculated stra field components H z () over the head with sizes c = b for different distances to the medium (the upper curve z =.b, the middle curve z =.b, and the lower curve z =.3b) are shown. It s worth to note, that the field strength H z () is determined b the magnet sizes c and b, and independent on a size. 5. ther tpe of the recording head Using the strong fields occurring near the edges of charged surfaces in high-anisotrop magnets, it is possible to create other models of the heads as well. We consider onl single additional model: a head for point recording. A principle scheme for perpendicular point recording without submagnetization sstem is shown on Fig. 6a. Here the Z ais is perpendicular to XY plane. In the vicinit of, the component H Z takes high magnitudes, while near four points of and tpes, the strong field being caused b the component H X. The calculated field component H z (, ) for the points in the ranges -.h < <.h, -.h < <.h (h- magnet thickness), is shown on Fig. 6b. For the calculations we took M s = G and magnet sizes >> h. So far as for such the sstem, the field components H z depend on magnet thickness h, to attain the necessar field strength magnitudes under recording, the laer thicknesses have to be more µm.

6 96 V. N. Samofalov, E. I. Il ashenko, A. Ramstad, L. Z. Lub anu, T. H. Johansen M S H z (ke) M S -.a /a -.a /a.a Fig. 6. The scheme of the head for point recording, a-the scheme of magnet sstem; b-the stra field perpendicular component H z (, ) calculated for points in the area -.a < <.a, -.a < <.a on the plane XY (z = ). M S = G was assumed for the calculations. 6. Conclusions The proposed sstem of recording on high-coercive media has a number of advantages in compared to previous ones, see e.g., [7,8]. Namel, using the proposed heads it is possible to generate strong magnetic stra fields H st > ke with ver high field gradients, up to e/nm. Since the strong field is localized in a narrow area, it opens the path to realization of super-dense recording. However, in our opinion, for realization of such sstem it is necessar to resolve a number of technical tasks. (i) First of all, it is necessar to master the technolog of preparing hard-magnetic laers needed to the magnetic heads. These laers should be snthesized on the basis of rare-earth materials, because the alone ma attain a uniaial anisotrop field eceeding ke. In addition, the technolog should provide the production of film laers with well defined easiest magnetization ais relative to its plane. (ii) For creation of media for longitudinal and perpendicular recording, it is also necessar to master the technolog of thin hard-magnetic laers with coercive force C = 5 ke and higher. It would be simpler to realize the proposed recording sstems, if the medium hard-magnetic laer has quite perfect magnetic and crstallographic structure. We suggest that, thin films based on Co-Pt, Co-Pd, Fe-Pt and also BaFe 9 will be convenient as such media, since the are more stable compared to rare-earth based materials. References [] R. Wood, IEEE Trans. Magnetics 36, 36 (). [] H. N. Bertram and M. Williams, IEEE Trans. Magnetics 36, 4 (). [3] H. Gavrila, V. Ionita, J. ptoelectron. Adv. Mater. 5(4), 99 (3). [4] V. N. Samofalov, A. G. Ravlik, D. P. Belozorov, B. A. Avramenko, Phs. Metals Metallograph 97(3), (4). [5] N. Jiang, K. Yamakawa, N. Honda, K. uchi, IEEE Trans. Magnetics 34, 339 (998). [6] E. A. Nesbitt, J. H. Wernick, Rare Earth Permanent Magnets, Academic Press, New York (973). [7] Y. Kanai, R. Matsubara, K. Fujiwara, N. Takahashi, IEEE Trans. Magnetics 38, (). [8] K. S. Kim, C. E. Lee, S. H. Lim, IEEE Trans. Magnetics 38, 3 ().

2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in an current or future media, including reprinting/republishing this material for advertising

More information

A HAND-HELD SENSOR FOR LOCAL MEASUREMENT OF MAGNETIC FIELD, INDUCTION AND ENERGY LOSSES

A HAND-HELD SENSOR FOR LOCAL MEASUREMENT OF MAGNETIC FIELD, INDUCTION AND ENERGY LOSSES A HAND-HELD SENSOR FOR LOCAL MEASUREMENT OF MAGNETIC FIELD, INDUCTION AND ENERGY LOSSES G. Krismanic, N. Baumgartinger and H. Pfützner Institute of Fundamentals and Theor of Electrical Engineering Bioelectricit

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

Symmetry Arguments and the Role They Play in Using Gauss Law

Symmetry Arguments and the Role They Play in Using Gauss Law Smmetr Arguments and the Role The la in Using Gauss Law K. M. Westerberg (9/2005) Smmetr plas a ver important role in science in general, and phsics in particular. Arguments based on smmetr can often simplif

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

Space frames. b) R z φ z. R x. Figure 1 Sign convention: a) Displacements; b) Reactions

Space frames. b) R z φ z. R x. Figure 1 Sign convention: a) Displacements; b) Reactions Lecture notes: Structural Analsis II Space frames I. asic concepts. The design of a building is generall accomplished b considering the structure as an assemblage of planar frames, each of which is designed

More information

Miniaturization of Electromagnetic Bandgap (EBG) Structures with High-permeability Magnetic Metal Sheet

Miniaturization of Electromagnetic Bandgap (EBG) Structures with High-permeability Magnetic Metal Sheet Miniaturization of Electromagnetic Bandgap (EBG) Structures with High-permeabilit Magnetic Metal Sheet Yoshitaka Toota, Kengo Iokibe, Ruji Koga Department of Communication Network Engineering, Okaama Universit,

More information

Module-16. Magnetic properties

Module-16. Magnetic properties Module-16 Magnetic properties Contents 1) Dia-, Para-, and Ferro-magnetism (Antiferro-magnetism and ferri-magnetism) 2) Influence of temperature on magnetic behavior 3) Domains and Hysteresis Introduction

More information

Experimental Study of the Field Structure of the Surface Electromagnetic Wave in an Anisotropically Conducting Tape

Experimental Study of the Field Structure of the Surface Electromagnetic Wave in an Anisotropically Conducting Tape ISSN -9, Journal of Communications Technolog and Electronics,, Vol. 58, No., pp. 8. Pleiades Publishing, Inc.,. Original Russian Tet R.B. Vaganov, I.P. Korshunov, E.N. Korshunova, A.D. Oleinikov,, published

More information

SHADOW AND BACKGROUND ORIENTED SCHLIEREN INVESTIGATION OF SHOCK WAVES IN GAS-DISCHARGE MEDIUM

SHADOW AND BACKGROUND ORIENTED SCHLIEREN INVESTIGATION OF SHOCK WAVES IN GAS-DISCHARGE MEDIUM SHADOW AND BACKGROUND ORIENTED SCHLIEREN INVESTIGATION OF SHOCK WAVES IN GAS-DISCHARGE MEDIUM J. JIN 1, I.V. MURSENKOVA 1,c, N. N. SYSOEV 1 and I.A. ZNAMENSKAYA 1 1 Department of Phsics, Lomonosov Moscow

More information

Exchange Coupled Composite Media for Perpendicular Magnetic Recording

Exchange Coupled Composite Media for Perpendicular Magnetic Recording BB-01 1 Exchange Coupled Composite Media for Perpendicular Magnetic Recording R. H. Victora, Fellow, IEEE, X. Shen Abstract Exchange coupled composite (ECC) media has been shown to possess several major

More information

SIMULATION OF A PMS MOTOR BY THE HELP OF TWO DIFFERENT DESIGN SOFTWARE TOOLS

SIMULATION OF A PMS MOTOR BY THE HELP OF TWO DIFFERENT DESIGN SOFTWARE TOOLS Bulletin of the Transilvania Universit of Braşov Series I: Engineering Sciences Vol. 6 (55) No. 1-213 SIMULATION OF A PMS MOTOR BY THE HELP OF TWO DIFFERENT DESIGN SOFTWARE TOOLS G. KOVÁCS 1 M. KUCZMANN

More information

Simplified Fast Multipole Methods for Micromagnetic Modeling

Simplified Fast Multipole Methods for Micromagnetic Modeling implified Fast Multipole Methods for Micromagnetic Modeling D. M. Apalkov and P. B.Visscher Department of Phsics and Astronom and MIT Center The Universit of Alabama This project was supported b F grants

More information

MAE 82 Engineering Mathematics

MAE 82 Engineering Mathematics Class otes : First Order Differential Equation on Linear AE 8 Engineering athematics Universe on Linear umerical Linearization on Linear Special Cases Analtical o General Solution Linear Analtical General

More information

SCIENCE CHINA Technological Sciences. Analysis on background magnetic field to generate eddy current by pulsed gradient of permanent-magnet MRI

SCIENCE CHINA Technological Sciences. Analysis on background magnetic field to generate eddy current by pulsed gradient of permanent-magnet MRI SCIENCE CINA Technological Sciences RESEARC PAPER April 010 Vol.53 No.4: 886 891 doi: 10.1007/s11431-010-010-6 Analsis on background magnetic field to generate edd current b pulsed gradient of permanent-magnet

More information

Laboratory and Rotating frames

Laboratory and Rotating frames Laborator and Rotating frames The coordinate sstem that we used for the previous eample (laborator frame) is reall pathetic. The whole sstem is spinning at ω o, which makes an kind of analsis impossible.

More information

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE CHAPER-III CONVECION IN A POROUS MEDIUM WIH EFFEC OF MAGNEIC FIELD, VARIABLE FLUID PROPERIES AND VARYING WALL EMPERAURE 3.1. INRODUCION Heat transer studies in porous media ind applications in several

More information

The details of the derivation of the equations of conics are com-

The details of the derivation of the equations of conics are com- Part 6 Conic sections Introduction Consider the double cone shown in the diagram, joined at the verte. These cones are right circular cones in the sense that slicing the double cones with planes at right-angles

More information

The approximation of piecewise linear membership functions and Łukasiewicz operators

The approximation of piecewise linear membership functions and Łukasiewicz operators Fuzz Sets and Sstems 54 25 275 286 www.elsevier.com/locate/fss The approimation of piecewise linear membership functions and Łukasiewicz operators József Dombi, Zsolt Gera Universit of Szeged, Institute

More information

Cubic and quartic functions

Cubic and quartic functions 3 Cubic and quartic functions 3A Epanding 3B Long division of polnomials 3C Polnomial values 3D The remainder and factor theorems 3E Factorising polnomials 3F Sum and difference of two cubes 3G Solving

More information

Strain Transformation and Rosette Gage Theory

Strain Transformation and Rosette Gage Theory Strain Transformation and Rosette Gage Theor It is often desired to measure the full state of strain on the surface of a part, that is to measure not onl the two etensional strains, and, but also the shear

More information

Algebra(2(Honors( Summer(Packet( ( ( Work(on(this(packet(during(the(summer.( ( ( There(will(be(an(in=class(quiz(on(the(material(the(

Algebra(2(Honors( Summer(Packet( ( ( Work(on(this(packet(during(the(summer.( ( ( There(will(be(an(in=class(quiz(on(the(material(the( Algebra((Honors( Summer(Packet( ( ( Work(on(this(packet(during(the(summer.( ( ( There(will(be(an(in=class(quiz(on(the(material(the( first(week(of(school.( ( ( Please(visit(the(CHS(website(to(view(answers(to(

More information

Effect of anisotropic spin absorption on the Hanle effect in lateral spin valves

Effect of anisotropic spin absorption on the Hanle effect in lateral spin valves SUPPLEMETARY IFORMATIO Effect of anisotropic spin absorption on the Hanle effect in lateral spin valves H. Idzuchi,*, Y. Fuuma,3, S. Taahashi 4,5, S. Maeawa 5,6 and Y. Otani,* Institute for Solid State

More information

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials CHAPTER 2 MAGNETISM Magnetism plays a crucial role in the development of memories for mass storage, and in sensors to name a few. Spintronics is an integration of the magnetic material with semiconductor

More information

TEPZZ A_T EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art.

TEPZZ A_T EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art. (19) TEPZZ 988 79A_T (11) EP 2 988 279 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 13(4) EPC (43) Date of publication: 24.02.16 Bulletin 16/08 (21) Application number: 1478028.3

More information

Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course

Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course by Mark Jarrel (Cincinnati University), from Ibach and

More information

ECC Media Technology. 1. Introduction. 2. ECC Media. Shunji Takenoiri TuQiang Li Yoshiyuki Kuboki

ECC Media Technology. 1. Introduction. 2. ECC Media. Shunji Takenoiri TuQiang Li Yoshiyuki Kuboki ECC Media Technology Shunji Takenoiri TuQiang Li Yoshiyuki Kuboki 1. Introduction Two years have already elapsed since Fuji Electric began mass-producing perpendicular magnetic recording media, and now

More information

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve:

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve: .2 INITIAL-VALUE PROBLEMS 3.2 INITIAL-VALUE PROBLEMS REVIEW MATERIAL Normal form of a DE Solution of a DE Famil of solutions INTRODUCTION We are often interested in problems in which we seek a solution

More information

Wouldn t it be great if

Wouldn t it be great if IDEMA DISKCON Asia-Pacific 2009 Spin Torque MRAM with Perpendicular Magnetisation: A Scalable Path for Ultra-high Density Non-volatile Memory Dr. Randall Law Data Storage Institute Agency for Science Technology

More information

Giant Magnetoresistance

Giant Magnetoresistance Giant Magnetoresistance This is a phenomenon that produces a large change in the resistance of certain materials as a magnetic field is applied. It is described as Giant because the observed effect is

More information

Chapter 9 BIAXIAL SHEARING

Chapter 9 BIAXIAL SHEARING 9. DEFNTON Chapter 9 BAXAL SHEARNG As we have seen in the previous chapter, biaial (oblique) shearing produced b the shear forces and, appears in a bar onl accompanied b biaial bending (we ma discuss about

More information

Anisotropy Distributions in Patterned Magnetic Media

Anisotropy Distributions in Patterned Magnetic Media MINT Review & Workshop 24-25 Oct. 2006 Anisotropy Distributions in Patterned Magnetic Media Tom Thomson Hitachi San Jose Research Center Page 1 Acknowledgements Manfred Albrecht (Post-doc) Tom Albrecht

More information

220A Solutions. Assignment 5.

220A Solutions. Assignment 5. 4-40. Draw the free-bod diagram. 220A Solutions Assignment 5. - cos sin here are two stumbling points. he first is to resist the temptation to draw a force pointing down the inclined plane. he onl forces

More information

From Hall Effect to TMR

From Hall Effect to TMR From Hall Effect to TMR 1 Abstract This paper compares the century old Hall effect technology to xmr technologies, specifically TMR (Tunnel Magneto-Resistance) from Crocus Technology. It covers the various

More information

MICRO-SCALE NUMERICAL SIMULATION OF THE MAGNETIC RECORDING

MICRO-SCALE NUMERICAL SIMULATION OF THE MAGNETIC RECORDING Électrotechnique et électroénergétique MICRO-SCALE NUMERICAL SIMULATION OF THE MAGNETIC RECORDING ADELINA BORDIANU, VALENTIN IONIŢĂ, LUCIAN PETRESCU 1 Key words: Nanoparticles, Micro-scale magnetic characterization,

More information

Module 3, Section 4 Analytic Geometry II

Module 3, Section 4 Analytic Geometry II Principles of Mathematics 11 Section, Introduction 01 Introduction, Section Analtic Geometr II As the lesson titles show, this section etends what ou have learned about Analtic Geometr to several related

More information

01 Development of Hard Disk Drives

01 Development of Hard Disk Drives 01 Development of Hard Disk Drives Design Write / read operation MR / GMR heads Longitudinal / perpendicular recording Recording media Bit size Areal density Tri-lemma 11:00 10/February/2016 Wednesday

More information

Logic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 1 Gate Circuits and Boolean Equations

Logic and Computer Design Fundamentals. Chapter 2 Combinational Logic Circuits. Part 1 Gate Circuits and Boolean Equations Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part Gate Circuits and Boolean Equations Charles Kime & Thomas Kaminski 28 Pearson Education, Inc. (Hperlinks are active in

More information

Constants of Metal Rubber Material

Constants of Metal Rubber Material Constants of Metal Rubber Material Modern Applied Science; Vol. 8, No. 5; 014 ISSN 1913-1844 E-ISSN 1913-185 Published b Canadian Center of Science and Education Aleander Mikhailovich Ulanov 1 1 Samara

More information

σ = F/A. (1.2) σ xy σ yy σ zy , (1.3) σ xz σ yz σ zz The use of the opposite convention should cause no problem because σ ij = σ ji.

σ = F/A. (1.2) σ xy σ yy σ zy , (1.3) σ xz σ yz σ zz The use of the opposite convention should cause no problem because σ ij = σ ji. Cambridge Universit Press 978-0-521-88121-0 - Metal Forming: Mechanics Metallurg, Third Edition Ecerpt 1 Stress Strain An understing of stress strain is essential for analzing metal forming operations.

More information

Chapter 1 Prerequisites for Calculus

Chapter 1 Prerequisites for Calculus Section. Chapter Prerequisites for Calculus Section. Lines (pp. ) Quick Review.. + ( ) + () +. ( +). m. m ( ) ( ). (a) ( )? 6 (b) () ( )? 6. (a) 7? ( ) + 7 + Yes (b) ( ) + 9 No Yes No Section. Eercises.

More information

University of Waterloo Faculty of Science Math Preparedness Test September 2012

University of Waterloo Faculty of Science Math Preparedness Test September 2012 Universit of Waterloo Facult of Science Math Preparedness Test September 1 NAME: (Please Print) I.D.#: Instructions and Information for students: You have 75 minutes to complete the test. No aids are permitted.

More information

σ = F/A. (1.2) σ xy σ yy σ zx σ xz σ yz σ, (1.3) The use of the opposite convention should cause no problem because σ ij = σ ji.

σ = F/A. (1.2) σ xy σ yy σ zx σ xz σ yz σ, (1.3) The use of the opposite convention should cause no problem because σ ij = σ ji. Cambridge Universit Press 978-1-107-00452-8 - Metal Forming: Mechanics Metallurg, Fourth Edition Ecerpt 1 Stress Strain An understing of stress strain is essential for the analsis of metal forming operations.

More information

3.1 Exponential Functions and Their Graphs

3.1 Exponential Functions and Their Graphs .1 Eponential Functions and Their Graphs Sllabus Objective: 9.1 The student will sketch the graph of a eponential, logistic, or logarithmic function. 9. The student will evaluate eponential or logarithmic

More information

8.4 Inverse Functions

8.4 Inverse Functions Section 8. Inverse Functions 803 8. Inverse Functions As we saw in the last section, in order to solve application problems involving eponential unctions, we will need to be able to solve eponential equations

More information

And similarly in the other directions, so the overall result is expressed compactly as,

And similarly in the other directions, so the overall result is expressed compactly as, SQEP Tutorial Session 5: T7S0 Relates to Knowledge & Skills.5,.8 Last Update: //3 Force on an element of area; Definition of principal stresses and strains; Definition of Tresca and Mises equivalent stresses;

More information

Stiffness and Strength Tailoring in Uniform Space-Filling Truss Structures

Stiffness and Strength Tailoring in Uniform Space-Filling Truss Structures NASA Technical Paper 3210 April 1992 Stiffness and Strength Tailoring in Uniform Space-Filling Truss Structures Mark S. Lake Summar This paper presents a deterministic procedure for tailoring the continuum

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures AB = BA = I,

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures AB = BA = I, FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 7 MATRICES II Inverse of a matri Sstems of linear equations Solution of sets of linear equations elimination methods 4

More information

Computer Vision & Digital Image Processing

Computer Vision & Digital Image Processing Computer Vision & Digital Image Processing Image Segmentation Dr. D. J. Jackson Lecture 6- Image segmentation Segmentation divides an image into its constituent parts or objects Level of subdivision depends

More information

Measurement And Testing. Handling And Storage. Quick Reference Specification Checklist

Measurement And Testing. Handling And Storage. Quick Reference Specification Checklist Design Guide Contents Introduction Manufacturing Methods Modern Magnet Materials Coatings Units Of Measure Design Considerations Permanent Magnet Stability Physical Characteristics And Machining Of Permanent

More information

Title. Author(s)Tamura, Shin-ichiro; Tanaka, Yukihiro; Maris, Humphr. CitationPHYSICAL REVIEW B, 60(4): Issue Date

Title. Author(s)Tamura, Shin-ichiro; Tanaka, Yukihiro; Maris, Humphr. CitationPHYSICAL REVIEW B, 60(4): Issue Date Title Phonon group velocit and thermal conduction in supe Author(s)Tamura, Shin-ichiro; Tanaka, Yukihiro; Maris, Humphr CitationPHYSICAL REVIEW B, 60(4): 2627-2630 Issue Date 1999-07-15 Doc URL http://hdl.handle.net/2115/5917

More information

Modelling of nanostructured magnetic network media

Modelling of nanostructured magnetic network media Modelling of nanostructured magnetic network media A. Boboc, I. Z. Rahman (zakia.rahman@ul.ie) and M. A. Rahman* Materials and urface cience Institute (MI) and Department of Physics, University of Limerick,

More information

Mechanics: Scalars and Vectors

Mechanics: Scalars and Vectors Mechanics: Scalars and Vectors Scalar Onl magnitude is associated with it Vector e.g., time, volume, densit, speed, energ, mass etc. Possess direction as well as magnitude Parallelogram law of addition

More information

Chapter 8 Notes SN AA U2C8

Chapter 8 Notes SN AA U2C8 Chapter 8 Notes SN AA U2C8 Name Period Section 8-: Eploring Eponential Models Section 8-2: Properties of Eponential Functions In Chapter 7, we used properties of eponents to determine roots and some of

More information

Chapter One. Chapter One

Chapter One. Chapter One Chapter One Chapter One CHAPTER ONE Hughes Hallett et al c 005, John Wile & Sons ConcepTests and Answers and Comments for Section.. Which of the following functions has its domain identical with its range?

More information

Assignment , 7.1, 7.2, 7.5, 7.11, 7.12, 7.15, TIR and FTIR

Assignment , 7.1, 7.2, 7.5, 7.11, 7.12, 7.15, TIR and FTIR LC45-summer, 1 1. 1.1, 7.1, 7., 7.5, 7.11, 7.1, 7.15, 7.1 1.1. TIR and FTIR a) B considering the electric field component in medium B in Figure 1. (b), eplain how ou can adjust the amount of transmitted

More information

VECTORS IN THREE DIMENSIONS

VECTORS IN THREE DIMENSIONS 1 CHAPTER 2. BASIC TRIGONOMETRY 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW VECTORS IN THREE DIMENSIONS 1 Vectors in Two Dimensions A vector is an object which has magnitude

More information

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011 Introduction to Differential Equations National Chiao Tung Universit Chun-Jen Tsai 9/14/011 Differential Equations Definition: An equation containing the derivatives of one or more dependent variables,

More information

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR)

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR) Ferromagnetism and Electronic Transport There are a number of effects that couple magnetization to electrical resistance. These include: Ordinary magnetoresistance (OMR) Anisotropic magnetoresistance (AMR)

More information

6.1 The Linear Elastic Model

6.1 The Linear Elastic Model Linear lasticit The simplest constitutive law or solid materials is the linear elastic law, which assumes a linear relationship between stress and engineering strain. This assumption turns out to be an

More information

Recall Discrete Distribution. 5.2 Continuous Random Variable. A probability histogram. Density Function 3/27/2012

Recall Discrete Distribution. 5.2 Continuous Random Variable. A probability histogram. Density Function 3/27/2012 3/7/ Recall Discrete Distribution 5. Continuous Random Variable For a discrete distribution, for eample Binomial distribution with n=5, and p=.4, the probabilit distribution is f().7776.59.3456.34.768.4.3

More information

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites ME 75 Lecture Effective Properties of Particulate and Unidirectional Composites Concepts from Elasticit Theor Statistical Homogeneit, Representative Volume Element, Composite Material Effective Stress-

More information

SOLUTIONS FOR THEORETICAL COMPETITION Theoretical Question 1 (10 points) 1A (3.5 points)

SOLUTIONS FOR THEORETICAL COMPETITION Theoretical Question 1 (10 points) 1A (3.5 points) II International Zhautkov Olmpiad/Theoretical Competition/Solutions Page 1/10 SOLUTIONS FOR THEORETICAL COMPETITION Theoretical Question 1 (10 points) 1A (.5 points) m v Mu m = + w + ( u w ) + mgr It is

More information

Influence of Size on the Properties of Materials

Influence of Size on the Properties of Materials Influence of Size on the Properties of Materials M. J. O Shea Kansas State University mjoshea@phys.ksu.edu If you cannot get the papers connected to this work, please e-mail me for a copy 1. General Introduction

More information

Chapter 14. Optical and Magnetic Materials. 경상대학교 Ceramic Design Lab.

Chapter 14. Optical and Magnetic Materials. 경상대학교 Ceramic Design Lab. Chapter 14 Optical and Magnetic Materials Magnetic field strength = H H = Ni/l (amp-turns/m) N = # turns i = current, amps l = conductor length B = Magnetic Induction or Magnetic flux density (Wb/m 2 )

More information

The Fusion of Parametric and Non-Parametric Hypothesis Tests

The Fusion of Parametric and Non-Parametric Hypothesis Tests The Fusion of arametric and Non-arametric pothesis Tests aul Frank Singer, h.d. Ratheon Co. EO/E1/A173.O. Bo 902 El Segundo, CA 90245 310-647-2643 FSinger@ratheon.com Abstract: This paper considers the

More information

6.4 graphs OF logarithmic FUnCTIOnS

6.4 graphs OF logarithmic FUnCTIOnS SECTION 6. graphs of logarithmic functions 9 9 learning ObjeCTIveS In this section, ou will: Identif the domain of a logarithmic function. Graph logarithmic functions. 6. graphs OF logarithmic FUnCTIOnS

More information

Chapter 1 Coordinates, points and lines

Chapter 1 Coordinates, points and lines Cambridge Universit Press 978--36-6000-7 Cambridge International AS and A Level Mathematics: Pure Mathematics Coursebook Hugh Neill, Douglas Quadling, Julian Gilbe Ecerpt Chapter Coordinates, points and

More information

Comparisons of Linear Characteristic for Shape of Stator Teeth of Hall Effect Torque Sensor

Comparisons of Linear Characteristic for Shape of Stator Teeth of Hall Effect Torque Sensor Journal of Magnetics 17(4), 285-290 (2012) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2012.17.4.285 Comparisons of Linear Characteristic for Shape of Stator Teeth of

More information

STATUS OF THE VEPP-2000 COLLIDER PROJECT

STATUS OF THE VEPP-2000 COLLIDER PROJECT STATUS OF THE VEPP-000 COLLIDER PROJECT Yu.M. Shatunov for the VEPP-000 Team Budker Institute of Nuclear Phsics, 630090, Novosibirsk, Russia Abstract The VEPP-000 collider which is now under construction

More information

Supplementary Figure S1 The magneto-optical images of Gd24Fe66.5Co9.5

Supplementary Figure S1 The magneto-optical images of Gd24Fe66.5Co9.5 Supplementary Figure S1 The magneto-optical images of Gd24Fe66.5Co9.5 continuous film obtained after the action of a sequence of the N right-handed (σ+ σ+) σ+ and left-handed (σ σ ) σ circularly-polarized

More information

Characterization of Heat-Assisted Magnetic Recording Channels

Characterization of Heat-Assisted Magnetic Recording Channels DIMACS Series in Discrete Mathematics and Theoretical Computer Science Volume 73, 2007 Characterization of Heat-Assisted Magnetic Recording Channels Rathnakumar Radhakrishnan, Bane Vasić, Fatih Erden,

More information

10.2 The Unit Circle: Cosine and Sine

10.2 The Unit Circle: Cosine and Sine 0. The Unit Circle: Cosine and Sine 77 0. The Unit Circle: Cosine and Sine In Section 0.., we introduced circular motion and derived a formula which describes the linear velocit of an object moving on

More information

3.1 Graphing Quadratic Functions. Quadratic functions are of the form.

3.1 Graphing Quadratic Functions. Quadratic functions are of the form. 3.1 Graphing Quadratic Functions A. Quadratic Functions Completing the Square Quadratic functions are of the form. 3. It is easiest to graph quadratic functions when the are in the form using transformations.

More information

Homogenization Approaches for Laminated Magnetic Cores using the Example of Transient 3D Transformer Modeling

Homogenization Approaches for Laminated Magnetic Cores using the Example of Transient 3D Transformer Modeling Homogeniation Approaches for Laminated Magnetic Cores using the Eample of Transient 3D Transformer Modeling H.Neuert *1, J. Ziske 1, T. Heimpold 1,and R. Disselnkötter 2 1 Technische Universität Dresden,

More information

A Generalized HSPICE* Macro-Model for Pseudo-Spin-Valve GMR Memory Bits

A Generalized HSPICE* Macro-Model for Pseudo-Spin-Valve GMR Memory Bits A Generalized HSPICE* Macro-Model for Pseudo-Spin-Valve GMR Memory Bits by Bodhisattva Das William C. Black, Jr. Department of Electrical and Computer Engineering, Iowa State University (Work sponsored

More information

8 Differential Calculus 1 Introduction

8 Differential Calculus 1 Introduction 8 Differential Calculus Introduction The ideas that are the basis for calculus have been with us for a ver long time. Between 5 BC and 5 BC, Greek mathematicians were working on problems that would find

More information

Computational Simulation of Bray-Liebhafsky (BL) Oscillating Chemical Reaction

Computational Simulation of Bray-Liebhafsky (BL) Oscillating Chemical Reaction Portugaliae Electrochimica Acta 26/4 (2008) 349-360 PORTUGALIAE ELECTROCHIMICA ACTA Computational Simulation of Bra-Liebhafsk (BL) Oscillating Chemical Reaction Jie Ren, Jin Zhang Gao *, Wu Yang Chemistr

More information

BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS

BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS Koung-Heog LEE 1, Subhash C GOEL 2 And Bozidar STOJADINOVIC 3 SUMMARY Full restrained beam-to-column connections in steel moment resisting frames have been

More information

Vibrational Power Flow Considerations Arising From Multi-Dimensional Isolators. Abstract

Vibrational Power Flow Considerations Arising From Multi-Dimensional Isolators. Abstract Vibrational Power Flow Considerations Arising From Multi-Dimensional Isolators Rajendra Singh and Seungbo Kim The Ohio State Universit Columbus, OH 4321-117, USA Abstract Much of the vibration isolation

More information

Physica C 468 (2008) Contents lists available at ScienceDirect. Physica C. journal homepage:

Physica C 468 (2008) Contents lists available at ScienceDirect. Physica C. journal homepage: Physica C 468 (2008) 1036 1040 Contents lists available at ScienceDirect Physica C journal homepage: www.elsevier.com/locate/physc A V shaped superconducting levitation module for lift and guidance of

More information

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals Math Summar of Important Algebra & Trigonometr Concepts Chapter & Appendi D, Stewart, Calculus Earl Transcendentals Function a rule that assigns to each element in a set D eactl one element, called f (

More information

2. Supports which resist forces in two directions. Fig Hinge. Rough Surface. Fig Rocker. Roller. Frictionless Surface

2. Supports which resist forces in two directions. Fig Hinge. Rough Surface. Fig Rocker. Roller. Frictionless Surface 4. Structural Equilibrium 4.1 ntroduction n statics, it becomes convenient to ignore the small deformation and displacement. We pretend that the materials used are rigid, having the propert or infinite

More information

Stability Analysis of a Geometrically Imperfect Structure using a Random Field Model

Stability Analysis of a Geometrically Imperfect Structure using a Random Field Model Stabilit Analsis of a Geometricall Imperfect Structure using a Random Field Model JAN VALEŠ, ZDENĚK KALA Department of Structural Mechanics Brno Universit of Technolog, Facult of Civil Engineering Veveří

More information

Flow through a Variable Permeability Brinkman Porous Core

Flow through a Variable Permeability Brinkman Porous Core Journal of Applied Mathematics and Phsics, 06, 4, 766-778 Published Online April 06 in SciRes http://wwwscirporg/journal/jamp http://dxdoiorg/0436/jamp0644087 Flow through a Variable Permeabilit Brinman

More information

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f APPENDIX C Additional Topics in Differential Equations APPENDIX C. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Chapter 6, ou studied applications

More information

Simultaneous Orthogonal Rotations Angle

Simultaneous Orthogonal Rotations Angle ELEKTROTEHNIŠKI VESTNIK 8(1-2): -11, 2011 ENGLISH EDITION Simultaneous Orthogonal Rotations Angle Sašo Tomažič 1, Sara Stančin 2 Facult of Electrical Engineering, Universit of Ljubljana 1 E-mail: saso.tomaic@fe.uni-lj.si

More information

PHYSICS 5054/21. Published

PHYSICS 5054/21. Published Cambridge International Examinations Cambridge Ordinary Level PHYSICS 5054/21 Paper 2 Theory May/June 2016 MARK SCHEME Maximum Mark: 75 Published This mark scheme is published as an aid to teachers and

More information

Chapter 13 Principles of Electromechanics

Chapter 13 Principles of Electromechanics Chapter 13 Principles of Electromechanics Jaesung Jang Electrostatics B-H Magnetization Curves & Magnetic Hysteresis 1 Electrostatics & Magnetic Flux The force on a stationary charge q in an electric field

More information

HALL EFFECT AND MAGNETORESISTANCE MEASUREMENTS ON PERMALLOY Py THIN FILMS AND Py/Cu/Py MULTILAYERS

HALL EFFECT AND MAGNETORESISTANCE MEASUREMENTS ON PERMALLOY Py THIN FILMS AND Py/Cu/Py MULTILAYERS Journal of Optoelectronics and Advanced Materials, Vol. 4, No. 1, March 2002, p. 79-84 HALL EFFECT AND MAGNETORESISTANCE MEASUREMENTS ON PERMALLOY Py THIN FILMS AND Py/Cu/Py MULTILAYERS M. Volmer, J. Neamtu

More information

Electrical to mechanical - such as motors, loudspeakers, charged particle deflection.

Electrical to mechanical - such as motors, loudspeakers, charged particle deflection. 1.0 Introduction Magnets are an important part of our daily lives, serving as essential components in everything from electric motors, loudspeakers, computers, compact disc players, microwave ovens and

More information

4 Strain true strain engineering strain plane strain strain transformation formulae

4 Strain true strain engineering strain plane strain strain transformation formulae 4 Strain The concept of strain is introduced in this Chapter. The approimation to the true strain of the engineering strain is discussed. The practical case of two dimensional plane strain is discussed,

More information

Normalization and Zero-Point Energy The amplitude A 2 in Eq can be found from the normalizing equation, 1106 CHAPTER 39 MORE ABOUT MATTER WAVES

Normalization and Zero-Point Energy The amplitude A 2 in Eq can be found from the normalizing equation, 1106 CHAPTER 39 MORE ABOUT MATTER WAVES 116 CHAPTER 39 MORE ABOUT MATTER WAVES Fig. 39-4 A dot plot of the radial probabilit densit P(r) for the hdrogen atom in a quantum state with a relativel large principal quantum number namel, n 45 and

More information

Planar Hall Effect in Magnetite (100) Films

Planar Hall Effect in Magnetite (100) Films Planar Hall Effect in Magnetite (100) Films Xuesong Jin, Rafael Ramos*, Y. Zhou, C. McEvoy and I.V. Shvets SFI Nanoscience Laboratories, School of Physics, Trinity College Dublin, Dublin 2, Ireland 1 Abstract.

More information

39. (a) Use trigonometric substitution to verify that. 40. The parabola y 2x divides the disk into two

39. (a) Use trigonometric substitution to verify that. 40. The parabola y 2x divides the disk into two 35. Prove the formula A r for the area of a sector of a circle with radius r and central angle. [Hint: Assume 0 and place the center of the circle at the origin so it has the equation. Then is the sum

More information

Physics 2135 Exam 1 September 20, 2016

Physics 2135 Exam 1 September 20, 2016 Eam Total / 200 Phsics 2135 Eam 1 September 20, 2016 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearl correct answer. 1. Two positive charges

More information

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives Chapter 3 3Quadratics Objectives To recognise and sketch the graphs of quadratic polnomials. To find the ke features of the graph of a quadratic polnomial: ais intercepts, turning point and ais of smmetr.

More information

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998. Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains arxiv:cond-mat/9803101v1 [cond-mat.mes-hall] 9 Mar 1998 A. D. Kent a, U. Ruediger a, J. Yu a, S. Zhang a, P. M. Levy a

More information

Modelling the magnetic field caused by a dc-electrified railway with linearly changing leakage currents

Modelling the magnetic field caused by a dc-electrified railway with linearly changing leakage currents Earth Planets Space, 63, 991 998, 11 Modelling the magnetic field caused b a dc-electrified railwa with linearl changing leakage currents Risto Pirjola Finnish Meteorological Institute, P. O. Bo 53, FI-11

More information

*

* Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials Gu Lipworth 1, Joshua Ensworth 2, Kushal Seetharam 1, Jae Seung Lee 3, Paul Schmalenberg 3, Tsuoshi Nomura 4, Matthew

More information