Giant Magnetoresistance

Size: px
Start display at page:

Download "Giant Magnetoresistance"

Transcription

1 Giant Magnetoresistance This is a phenomenon that produces a large change in the resistance of certain materials as a magnetic field is applied. It is described as Giant because the observed effect is much larger than the effect had ever been previously seen in metals. It has generated interest from both physicists & device engineers, as there is both new physics to be investigated and overall there are huge technological applications in magnetic recording and sensors. Due to this direct application in the magnetic data storage technology there is a huge international research effort ongoing. The largest is in the data storage industry and IBM were first to market with hard disks based on GMR technology although today all disk drives make use of this technology. Other applications are as diverse as solid-state compasses, automotive sensors, and non-volatile magnetic memory. The effect is most usually seen in magnetic multilayered structures, where two magnetic layers are closely separated by a thin spacer layer a few nm thick. It is analogous to a polarization experiment, where aligned polarizers allow light to pass through, but crossed polarizers do not. The first magnetic layer allows electrons in only one spin state to pass through easily - if the second magnetic layer is aligned then that spin channel can easily pass through the structure, and the resistance is low. If the second magnetic layer is misaligned then neither spin channel can get through the structure easily and the electrical resistance is high. This is illustrated in this diagram: The phenomenon is based in a different scattering rate for electrons with different spins. This can be understood if we consider that the band structure in a ferromagnet is split, so that the density of states is not the same for spin up and down electrons at the Fermi level. Quantum mechanics describes the probability of scattering if one electron with a given spin in a material with the Fermi's golden rule. This law states that scattering rates are proportional to the density of states at the state being scattered into (in this case the Fermi level), so the scattering rates are different for electrons of different spin. This law explains for example the sudden decrease in resistivity of ferromagnetic metals as they are cooled through the Curie point. The GMR effectively measures the difference in angle between the two magnetisations in the magnetic layers. Small angles (parallel alignment) gives a low resistance, large angles

2 (antiparallel alignment) gives a higher resistance. It is easy to produce the state where the two magnetic layers are parallel - simply apply a field large enough to magnetically saturate both layers. But how do we achieve an antiparallel state? There are three basic ideas used here: Antiferromagnetic coupling: When the spacer layer is extremely thin the sense of the coupling between the two layers oscillates. In other words, for certain specific values of the spacer thicknesses the magnetizations of neighboring layers will lie in opposite directions. By applying a large enough magnetic field we can force the magnetizations of the layers to all line up along the field direction. In this way it is possible to get the two different resistance states. It's possible to build up multilayered structures called superlattices which work on this principle - they are samples where you have a magnetic layer and a non-magnetic spacer repeated many times, e.g. {Co/Cu} x 30. Each magnetic Co layer is separated from it's neighbors by a thin Cu spacer. The GMR depends on the thickness of the Cu layers. The figure shows how the resistivity of the films change as a function of the thickness of the spacer layer. There are 3 peaks visible, although only the first two are very strong. At large thicknesses the samples are decoupled, and small random differences between the layers give a small GMR. When the layers are ferromagnetically coupled, the GMR is zero. Notice that the first peak is at a Cu thickness of only 9Å - a copper atom is about 3Å across. Depositing such thin layers without pinholes has only become possible recently with advances in UHV deposition technology. Samples like this have the largest GMR of all - the reason is to do with the mean free path of the electrons which carry the current. (mean free path is the average distance an electron will travel between scattering events - the longer it is the lower the resistance). It possible for electrons of appropriate spin to pass through many aligned magnetic layers and have a very long mean free path. This means that the distance between scatters is increased the most when the layers become magnetically parallel. However in most cases they are inappropriate for senor applications, as the fields required to observe the magnetoresistance are very large. Different Coercivities: If we use two different materials with different switching fields then as we apply the reverse field one layer will switch before the other - we then have the desired anti-parallel alignment. In practice the contrast between the layers has to be good, and most materials do not switch sharply enough to get the full benefit from this technique. We have grown {Co/Cu/Fe/Cu}xN multilayers by MBE which show this

3 sharp switching behaviour. These types of structures are sometimes called 'pseudo' spin valves. Exchange biasing & spin-valves: These are structures where one layer moves in a field, whilst the other does not, and is used as a reference magnetic moment. This will give us a bipolar output with a very high sensitivity in an optimized device. There are a number of different schemes in which it is possible to do this. It is possible to exchange couple one of a pair of magnetic layers to another back layer of antiferromagnetic material. In the diagram below a FeMn layer is used to 'pin' the Co layer magnetization in a certain direction. This layer is used as a reference layer. The NiFe layer, which is very magnetically soft, can now be aligned parallel or antiparallel by very tiny fields. There is a thick enough Cu spacer between these two to stop there from being any magnetic coupling between the layers. The Ta layers are a buffer (to give a good surface to grow on) and a cap (to stop the sample from being oxidized in air). The whole sample is deposited on a piece of Si wafer, which is in fact many thousands of times thicker than the whole multilayer structure. The GMR active region will be only about 100Å thick, with the whole structure being about 300Å, on top of a 1mm thick piece of Si. The magnetisation in the Co layer is pinned by the last plane of spins in the antiferromagnet, causing it to be unaffected by small fields applied in this direction. This means that there is effectively a local magnetic field applied to the pinned layer, causing it to be fully saturated at zero field. The magnetization in the layer actually reverses about some point biased away from zero, due to the effective field.

4 These type of structures are very sensitive to magnetic fields, and are being researched heavily by the magnetic recording industry for use in high density disk and tape playback heads. Dynamic of polarization induced by a current of polarized electrons This is a method to control the magnetization. The idea is to exploit the interaction between the electron spins and the magnetization to drive the orientation of M in the material. In a ferromagnetic metal F the spin of the conduction electrons interacts with the global magnetization M of the material. In standard electron optics, if an electron with spin aligned along the orientation p i that is not parallel to the magnetization M is injected into F this interaction generates a couple which gradually lines up the electron spin with the magnetization M. As this happens the electrons abandon the transverse component of the angular momentum which is transferred to the magnetization by the principle of action and reaction. This transverse angular momentum acts on M to align the it with p i, a process referred as the spin transfer mechanism. The figure below

5 shows schematically this effect. The conclusion is that it is possible to act on the magnetization using an electron current, if this current has spin polarization, i.e., if there are more electrons with spin parallel to p i than antiparallel to it. A realistic calculation of this effect is a complex process and is still subject of some debate. It can be shown that in the Landau-Lifschitz-Gilbert equation applied to the magnetization M the effect shows up through an extra effective field given by [ ] H = χ M p + β χ M p inj i S i The factor χ measures the intensity of this effect. It is of course proportional to the number of injected electrons and hence the current, and depends on the angle between p i and M. Moreover it can be shown that the effect extends over a very short range (<1nm) in the magnetic layer. The factor β is estimated to be less than unity and the first term of the equation dominates. This concept is demonstrated in the following example. A thin film Co nanomagnet in the shape of an elongated hexagon is incorporated in a vertical device structure consisting of the nanomagnet and a thin Cu spacer layer formed on top of a thick Co film. the spin polarized current flowing between the nanomagnet and the Co film is used to abruptly switch the magnetic alignment of the nanomagnet relative to the thick Co layer by the transfer of spin angular momentum from the conduction electrons to the nanomagnet moment. The anisotropy of the nanomagnet promotes the single domain behavior required for non volatile memory applications. The figure shows the results in this experiment. In figure (a) is a scheme of the structure. The top Cu layers act as contacts to polarize the device and produce the current through the nanopillar. In figure (b) is a SEM iamge of the nanopillar. Figure (c) indicates the relative change in the resistance of the device as the magnetic filed is reversed. The change in the differential resistance dv characteristic is produced by di the spin transfer switching provoked by the current. The importance of this effect that demonstrate the possibility to orient magnetic moments utilizing electric currents is of instrumental importance in applications to magnetic memories.

Giant Magnetoresistance

Giant Magnetoresistance Giant Magnetoresistance Zachary Barnett Course: Solid State II; Instructor: Elbio Dagotto; Semester: Spring 2008 Physics Department, University of Tennessee (Dated: February 24, 2008) This paper briefly

More information

Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course

Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course by Mark Jarrel (Cincinnati University), from Ibach and

More information

Colossal magnetoresistance:

Colossal magnetoresistance: Colossal magnetoresistance: Ram Seshadri (seshadri@mrl.ucsb.edu) The simplest example of magnetoresistance is transverse magnetoresistance associated with the Hall effect: H + + + + + + + + + + E y - -

More information

introduction: what is spin-electronics?

introduction: what is spin-electronics? Spin-dependent transport in layered magnetic metals Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany Summary: introduction: what is spin-electronics giant magnetoresistance (GMR)

More information

Mon., Feb. 04 & Wed., Feb. 06, A few more instructive slides related to GMR and GMR sensors

Mon., Feb. 04 & Wed., Feb. 06, A few more instructive slides related to GMR and GMR sensors Mon., Feb. 04 & Wed., Feb. 06, 2013 A few more instructive slides related to GMR and GMR sensors Oscillating sign of Interlayer Exchange Coupling between two FM films separated by Ruthenium spacers of

More information

Giant Magnetoresistance

Giant Magnetoresistance GENERAL ARTICLE Giant Magnetoresistance Nobel Prize in Physics 2007 Debakanta Samal and P S Anil Kumar The 2007 Nobel Prize in Physics was awarded to Albert Fert and Peter Grünberg for the discovery of

More information

From Hall Effect to TMR

From Hall Effect to TMR From Hall Effect to TMR 1 Abstract This paper compares the century old Hall effect technology to xmr technologies, specifically TMR (Tunnel Magneto-Resistance) from Crocus Technology. It covers the various

More information

Giant Magnetoresistance

Giant Magnetoresistance Giant Magnetoresistance N. Shirato urse: Solid State Physics 2, Spring 2010, Instructor: Dr. Elbio Dagotto Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996

More information

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials CHAPTER 2 MAGNETISM Magnetism plays a crucial role in the development of memories for mass storage, and in sensors to name a few. Spintronics is an integration of the magnetic material with semiconductor

More information

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid Magnetism Electromagnetic Fields in a Solid SI units cgs (Gaussian) units Total magnetic field: B = μ 0 (H + M) = μ μ 0 H B = H + 4π M = μ H Total electric field: E = 1/ε 0 (D P) = 1/εε 0 D E = D 4π P

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

Effects of Large Scale Interfacial Roughness on Giant. Magnetoresistance in Exchange Biased Spin Valves and Co/Cu. Multilayers

Effects of Large Scale Interfacial Roughness on Giant. Magnetoresistance in Exchange Biased Spin Valves and Co/Cu. Multilayers Effects of Large Scale Interfacial Roughness on Giant Magnetoresistance in Exchange Biased Spin Valves and Co/Cu Multilayers A thesis submitted in partial fulfillment of the requirements for the degree

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 1 Today s Topics 1.1 History of Spintronics 1.2 Fudamentals in Spintronics Spin-dependent transport GMR and TMR effect Spin injection

More information

The exchange interaction between FM and AFM materials

The exchange interaction between FM and AFM materials Chapter 1 The exchange interaction between FM and AFM materials When the ferromagnetic (FM) materials are contacted with antiferromagnetic (AFM) materials, the magnetic properties of FM materials are drastically

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/24306 holds various files of this Leiden University dissertation Author: Verhagen, T.G.A. Title: Magnetism and magnetization dynamics in thin film ferromagnets

More information

GIANT MAGNETORESISTANCE IN MAGNETIC NANOSTRUCTURES

GIANT MAGNETORESISTANCE IN MAGNETIC NANOSTRUCTURES etnnu. Rev. Mater. Sci. 1995.25." 357-88 Copyright 1995 by Annual Reviews 1no. All rights reserved GIANT MAGNETORESISTANCE IN MAGNETIC NANOSTRUCTURES S. S. P. Park& IBM Research Division, Almaden Research

More information

Introduction to magnetic recording + recording materials

Introduction to magnetic recording + recording materials Introduction to magnetic recording + recording materials Laurent Ranno Institut Néel, Nanoscience Dept, CNRS-UJF, Grenoble, France I will give two lectures about magnetic recording. In the first one, I

More information

Giant magnetoresistance in electrodeposited Co-Cu/Cu multilayers: origin of absence of oscillatory behaviour

Giant magnetoresistance in electrodeposited Co-Cu/Cu multilayers: origin of absence of oscillatory behaviour Published in: Phys. Rev. B 79, 174421/1-13 (2009) Giant magnetoresistance in electrodeposited Co-Cu/Cu multilayers: origin of absence of oscillatory behaviour I. Bakonyi*, E. Simon, B.G. Tóth, L. Péter

More information

High-frequency measurements of spin-valve films and devices invited

High-frequency measurements of spin-valve films and devices invited JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 10 15 MAY 003 High-frequency measurements of spin-valve films and devices invited Shehzaad Kaka, John P. Nibarger, and Stephen E. Russek a) National Institute

More information

Ultrafast MOKE Study of Magnetization Dynamics in an Exchange-Biased IrMn/Co Thin Film

Ultrafast MOKE Study of Magnetization Dynamics in an Exchange-Biased IrMn/Co Thin Film Ultrafast MOKE Study of Magnetization Dynamics in an Exchange-Biased IrMn/Co Thin Film Keoki Seu, a Hailong Huang, a Anne Reilly, a Li Gan, b William Egelhoff, Jr. b a College of William and Mary, Williamsburg,

More information

Giant Magnetoresistance

Giant Magnetoresistance Giant Magnetoresistance 03/18/2010 Instructor: Dr. Elbio R. Dagotto Class: Solid State Physics 2 Nozomi Shirato Department of Materials Science and Engineering ntents: Giant Magnetoresistance (GMR) Discovery

More information

High T C copper oxide superconductors and CMR:

High T C copper oxide superconductors and CMR: High T C copper oxide superconductors and CMR: Ram Seshadri (seshadri@mrl.ucsb.edu) The Ruddlesden-Popper phases: Ruddlesden-Popper phases are intergrowths of perovskite slabs with rock salt slabs. First

More information

Wouldn t it be great if

Wouldn t it be great if IDEMA DISKCON Asia-Pacific 2009 Spin Torque MRAM with Perpendicular Magnetisation: A Scalable Path for Ultra-high Density Non-volatile Memory Dr. Randall Law Data Storage Institute Agency for Science Technology

More information

Spintronics. Kishan K. Sinha. Xiaoshan Xu s Group Department of Physics and Astronomy University of Nebraska-Lincoln

Spintronics. Kishan K. Sinha. Xiaoshan Xu s Group Department of Physics and Astronomy University of Nebraska-Lincoln Spintronics by Kishan K. Sinha Xiaoshan Xu s Group Department of Physics and Astronomy University of Nebraska-Lincoln What is spintronics? In conventional electronics, motion of electrons is controlled

More information

MAGNETORESISTANCE PHENOMENA IN MAGNETIC MATERIALS AND DEVICES. J. M. De Teresa

MAGNETORESISTANCE PHENOMENA IN MAGNETIC MATERIALS AND DEVICES. J. M. De Teresa MAGNETORESISTANCE PHENOMENA IN MAGNETIC MATERIALS AND DEVICES J. M. De Teresa Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, Facultad de Ciencias, 50009 Zaragoza, Spain. E-mail:

More information

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR)

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR) Ferromagnetism and Electronic Transport There are a number of effects that couple magnetization to electrical resistance. These include: Ordinary magnetoresistance (OMR) Anisotropic magnetoresistance (AMR)

More information

UNIT - IV SEMICONDUCTORS AND MAGNETIC MATERIALS

UNIT - IV SEMICONDUCTORS AND MAGNETIC MATERIALS 1. What is intrinsic If a semiconductor is sufficiently pure, then it is known as intrinsic semiconductor. ex:: pure Ge, pure Si 2. Mention the expression for intrinsic carrier concentration of intrinsic

More information

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik Spin orbit torque driven magnetic switching and memory Debanjan Bhowmik Spin Transfer Torque Fixed Layer Free Layer Fixed Layer Free Layer Current coming out of the fixed layer (F2) is spin polarized in

More information

Artificially layered structures

Artificially layered structures http://accessscience.com/popup.ap x?id=053450&name=print Close Window ENCYCLOPEDIA ARTICLE Artificially layered structures Manufactured, reproducibly layered structures having layer thicknesses approaching

More information

Magnetically Engineered Spintronic Sensors and Memory

Magnetically Engineered Spintronic Sensors and Memory Magnetically Engineered Spintronic Sensors and Memory STUART PARKIN, SENIOR MEMBER, IEEE, XIN JIANG, CHRISTIAN KAISER, ALEX PANCHULA, KEVIN ROCHE, AND MAHESH SAMANT Invited Paper The discovery of enhanced

More information

( (Chapter 5)(Magnetism and Matter)

(  (Chapter 5)(Magnetism and Matter) Additional Exercises Question 5.16: Answer the following questions: (a) Why does a paramagnetic sample display greater magnetisation (for the same magnetising field) when cooled? (b) Why is diamagnetism,

More information

Italian School of Magnetism

Italian School of Magnetism Spintronics I 1. Introduction 3. Mott paradigm: two currents model 4. Giant MagnetoResistance: story and basic principles 5. Semiclassical model for CIP GMR Italian School of Magnetism Prof. Riccardo Bertacco

More information

Spin caloritronics in magnetic/non-magnetic nanostructures and graphene field effect devices Dejene, Fasil

Spin caloritronics in magnetic/non-magnetic nanostructures and graphene field effect devices Dejene, Fasil University of Groningen Spin caloritronics in magnetic/non-magnetic nanostructures and graphene field effect devices Dejene, Fasil DOI: 10.1038/nphys2743 IMPORTANT NOTE: You are advised to consult the

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

REVIEW OF GIANT MAGNETORESISTANCE IN FERROMAGNETIC CRYSTALS

REVIEW OF GIANT MAGNETORESISTANCE IN FERROMAGNETIC CRYSTALS REVIEW OF GIANT MAGNETORESISTANCE IN FERROMAGNETIC CRYSTALS By Tadesse Lakew Zeru A PROJECT SUBMITTED TO SCHOOL OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

More information

From spinwaves to Giant Magnetoresistance (GMR) and beyond

From spinwaves to Giant Magnetoresistance (GMR) and beyond From spinwaves to Giant Magnetoresistance (GMR) and beyond P.A. Grünberg, Institut für Festkörperforschung Forschungszentrum Jülich, Germany 1. Introduction 2. Discovery of BLS from Damon Eshbach surface

More information

Study of the areal density in the read heads with spin valves with nano-oxide-layer insertion

Study of the areal density in the read heads with spin valves with nano-oxide-layer insertion MATEC Web of Conferences 2, 040 (207) DOI: 0.05/ matecconf/2072040 Study of the areal density in the read heads with spin valves with nano-oxide-layer insertion Daniela Ionescu, * and Gabriela Apreotesei

More information

Chapter 1 Electronic and Photonic Materials - DMS. Diluted Magnetic Semiconductor (DMS)

Chapter 1 Electronic and Photonic Materials - DMS. Diluted Magnetic Semiconductor (DMS) Diluted Magnetic Semiconductor (DMS) 1 Properties of electron Useful! Charge Electron Spin? Mass 2 Schematic of a Spinning & Revolving Particle Spinning Revolution 3 Introduction Electronics Industry Uses

More information

Properties of Materials. Chapter Two Magnetic Properties of Materials

Properties of Materials. Chapter Two Magnetic Properties of Materials 1896 1920 1987 2006 Properties of Materials Chapter Two Magnetic Properties of Materials Key Magnetic Parameters How does M respond to H? Ferromagnetic Fe, Co, Ni Ferrimagnetic Fe 3 O 4 Antiferromagnetic

More information

P. Khatua IIT Kanpur. D. Temple MCNC, Electronic Technologies. A. K. Majumdar, S. N. Bose National Centre for Basic Sciences, Kolkata

P. Khatua IIT Kanpur. D. Temple MCNC, Electronic Technologies. A. K. Majumdar, S. N. Bose National Centre for Basic Sciences, Kolkata The scaling law and its universality in the anomalous Hall effect of giant magnetoresistive Fe/Cr multilayers A. K. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata & Department of Physics

More information

SPINTRONICS-A RETROSPECTIVE AND PERSPECTIVE

SPINTRONICS-A RETROSPECTIVE AND PERSPECTIVE SPINTRONICS-A RETROSPECTIVE AND PERSPECTIVE AkritiSrivastava¹, ShokhiRastogi², Akshita Verma³, Pooja Singh 4 1,2,3,4 Department Of Electronics And Communication Engineering F.E.T Mjp Rohilklhand University,

More information

Contents. Acknowledgments

Contents. Acknowledgments MAGNETIC MATERIALS Fundamentals and Applications Second edition NICOLA A. SPALDIN University of California, Santa Barbara CAMBRIDGE UNIVERSITY PRESS Contents Acknowledgments page xiii I Basics 1 Review

More information

Giant Magnetoresistance and Oscillations In Interlayer Exchange Coupling In Co/Cu/Co Multi-Layers

Giant Magnetoresistance and Oscillations In Interlayer Exchange Coupling In Co/Cu/Co Multi-Layers Fundamental Journals International Journal of Fundamental Physical Sciences (), Vol 4, No 3, pp 89-94, Sept, 2014 DOI:10.14331/ijfps.2014.330070 http://dx.doi.org/10.14331/ijfps.2014.330070 ISSN:2231-8186

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

Influence of Size on the Properties of Materials

Influence of Size on the Properties of Materials Influence of Size on the Properties of Materials M. J. O Shea Kansas State University mjoshea@phys.ksu.edu If you cannot get the papers connected to this work, please e-mail me for a copy 1. General Introduction

More information

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES CRR Report Number 29, Winter 2008 SPIN TRANSFER TORQUES IN HIGH ANISOTROPY AGNETIC NANOSTRUCTURES Eric Fullerton 1, Jordan Katine 2, Stephane angin 3, Yves Henry 4, Dafine Ravelosona 5, 1 University of

More information

SIMULATIONS ON DILUTE MAGNETIC SEMICONDUCTOR PROPERTIES

SIMULATIONS ON DILUTE MAGNETIC SEMICONDUCTOR PROPERTIES Romanian Reports in Physics, Vol. 62, No. 1, P. 115 120, 2010 SIMULATIONS ON DILUTE MAGNETIC SEMICONDUCTOR PROPERTIES M. NEGOITA, E. A. PATROI, C. V. ONICA National Institute for Research and Development

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Magnetism in Condensed Matter

Magnetism in Condensed Matter Magnetism in Condensed Matter STEPHEN BLUNDELL Department of Physics University of Oxford OXFORD 'UNIVERSITY PRESS Contents 1 Introduction 1.1 Magnetic moments 1 1 1.1.1 Magnetic moments and angular momentum

More information

Electromagnetism II. Instructor: Andrei Sirenko Spring 2013 Thursdays 1 pm 4 pm. Spring 2013, NJIT 1

Electromagnetism II. Instructor: Andrei Sirenko Spring 2013 Thursdays 1 pm 4 pm. Spring 2013, NJIT 1 Electromagnetism II Instructor: Andrei Sirenko sirenko@njit.edu Spring 013 Thursdays 1 pm 4 pm Spring 013, NJIT 1 PROBLEMS for CH. 6 http://web.njit.edu/~sirenko/phys433/phys433eandm013.htm Can obtain

More information

01 Development of Hard Disk Drives

01 Development of Hard Disk Drives 01 Development of Hard Disk Drives Design Write / read operation MR / GMR heads Longitudinal / perpendicular recording Recording media Bit size Areal density Tri-lemma 11:00 10/February/2016 Wednesday

More information

l μ M Right hand Screw rule

l μ M Right hand Screw rule Magnetic materials Magnetic property The response of the materials to external magnetic field All the materials are magnetic, only the degree of response varies, which is measured in terms of their magnetization

More information

Large-amplitude coherent spin waves excited by spin-polarized current in nanoscale spin valves

Large-amplitude coherent spin waves excited by spin-polarized current in nanoscale spin valves Large-amplitude coherent spin waves excited by spin-polarized current in nanoscale spin valves I. N. Krivorotov Department of Physics and Astronomy, University of California, Irvine, California 92697-4575,

More information

Observation of magnetization alignment switching in Fe3Si/FeSi2 artificial lattices by polarized neutron reflection

Observation of magnetization alignment switching in Fe3Si/FeSi2 artificial lattices by polarized neutron reflection Proc. Int. Conf. and Summer School on Advanced Silicide Technology 2014 JJAP Conf. Proc. 3 (2015) 011503 2015 The Japan Society of Applied Physics Observation of magnetization alignment switching in Fe3Si/FeSi2

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF PHYSICS QUESTION BANK II SEMESTER PH8252 - PHYSICS FOR INFORMATION SCIENCE (Common to CSE & IT) Regulation 2017 Academic Year

More information

Paramagnetism and Diamagnetism. Paramagnets (How do paramagnets differ fundamentally from ferromagnets?)

Paramagnetism and Diamagnetism. Paramagnets (How do paramagnets differ fundamentally from ferromagnets?) Paramagnetism and Diamagnetism Paramagnets (How do paramagnets differ fundamentally from ferromagnets?) The study of paramagnetism allows us to investigate the atomic magnetic moments of atoms almost in

More information

HALL EFFECT AND MAGNETORESISTANCE MEASUREMENTS ON PERMALLOY Py THIN FILMS AND Py/Cu/Py MULTILAYERS

HALL EFFECT AND MAGNETORESISTANCE MEASUREMENTS ON PERMALLOY Py THIN FILMS AND Py/Cu/Py MULTILAYERS Journal of Optoelectronics and Advanced Materials, Vol. 4, No. 1, March 2002, p. 79-84 HALL EFFECT AND MAGNETORESISTANCE MEASUREMENTS ON PERMALLOY Py THIN FILMS AND Py/Cu/Py MULTILAYERS M. Volmer, J. Neamtu

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/24306 holds various files of this Leiden University dissertation Author: Verhagen, T.G.A. Title: Magnetism and magnetization dynamics in thin film ferromagnets

More information

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg SPINTRONICS Waltraud Buchenberg Faculty of Physics Albert-Ludwigs-University Freiburg July 14, 2010 TABLE OF CONTENTS 1 WHAT IS SPINTRONICS? 2 MAGNETO-RESISTANCE STONER MODEL ANISOTROPIC MAGNETO-RESISTANCE

More information

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK Soft X-ray Physics Overview of research in Prof. Tonner s group Introduction to synchrotron radiation physics Photoemission spectroscopy: band-mapping and photoelectron diffraction Magnetic spectroscopy

More information

Magnetoresistance sensors with magnetic layers for high sensitivity measurements

Magnetoresistance sensors with magnetic layers for high sensitivity measurements JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 10, No. 1, January 008, p. 104-109 Magnetoresistance sensors with magnetic layers for high sensitivity measurements M. VOLMER*, J. NEAMTU a, M. AVRAM

More information

DOMAIN WALL DYNAMICS IN FERROMAGNETIC CYLINDRICAL AND PLANAR NANOSTRUCTURES

DOMAIN WALL DYNAMICS IN FERROMAGNETIC CYLINDRICAL AND PLANAR NANOSTRUCTURES DOMAIN WALL DYNAMICS IN FERROMAGNETIC CYLINDRICAL AND PLANAR NANOSTRUCTURES CHANDRASEKHAR MURAPAKA School of Physical and Mathematical Sciences A THESIS SUBMITTED TO NANYANG TECHNOLOGICAL UNIVERSITY FOR

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. A.A. Baker,, 2 A.I. Figueroa, 2 L.J. Collins-McIntyre, G. van der Laan, 2 and T., a) Hesjedal )

More information

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction D. Chiba 1, 2*, Y. Sato 1, T. Kita 2, 1, F. Matsukura 1, 2, and H. Ohno 1, 2 1 Laboratory

More information

Versuchsprotokoll: Spezifische Wärme

Versuchsprotokoll: Spezifische Wärme Versuchsprotokoll: Spezifische Wärme Christian Buntin, ingfan Ye Gruppe 30 Karlsruhe, 30. anuar 2012 Contents 1 Introduction 2 1.1 The Debye- and Sommerfeld-Model of Heat Capacity.................... 2

More information

The Physics of Ferromagnetism

The Physics of Ferromagnetism Terunobu Miyazaki Hanmin Jin The Physics of Ferromagnetism Springer Contents Part I Foundation of Magnetism 1 Basis of Magnetism 3 1.1 Basic Magnetic Laws and Magnetic Quantities 3 1.1.1 Basic Laws of

More information

During such a time interval, the MOS is said to be in "deep depletion" and the only charge present in the semiconductor is the depletion charge.

During such a time interval, the MOS is said to be in deep depletion and the only charge present in the semiconductor is the depletion charge. Q1 (a) If we apply a positive (negative) voltage step to a p-type (n-type) MOS capacitor, which is sufficient to generate an inversion layer at equilibrium, there is a time interval, after the step, when

More information

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN MAGNETIC MATERIALS Fundamentals and device applications NICOLA A. SPALDIN CAMBRIDGE UNIVERSITY PRESS Acknowledgements 1 Review of basic magnetostatics 1.1 Magnetic field 1.1.1 Magnetic poles 1.1.2 Magnetic

More information

Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal. and E. D. Dahlberg 3. Abstract

Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal. and E. D. Dahlberg 3. Abstract Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal W.-T. Lee 1, S. G. E. te Velthuis 2, G. P. Felcher 2, F. Klose 1, T. Gredig 3, and E. D. Dahlberg 3. 1 Spallation Neutron Source,

More information

Magnetism and Levitation

Magnetism and Levitation Magnetism and Levitation Brent Hobbs Dan Stark Timothy Wofford Junior Lab I Wednesday, December 11, 2002 Types of Magnetism Ferromagnetism Antiferromagnetism Ferrimagnetism Paramagnetism Superparamagnetism

More information

Biased Target Ion Beam Deposition of Spin-valves

Biased Target Ion Beam Deposition of Spin-valves Biased Target Ion Beam Deposition of Spin-valves H. N. G. Wadley (haydn@virginia.edu), X. W. Zhou, and J. J. Quan Department of Materials Science and Engineering, University of Virginia, Charlottesville,

More information

Planar Hall Effect in Magnetite (100) Films

Planar Hall Effect in Magnetite (100) Films Planar Hall Effect in Magnetite (100) Films Xuesong Jin, Rafael Ramos*, Y. Zhou, C. McEvoy and I.V. Shvets SFI Nanoscience Laboratories, School of Physics, Trinity College Dublin, Dublin 2, Ireland 1 Abstract.

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

Lecture contents. Magnetic properties Diamagnetism Band paramagnetism Atomic paramagnetism Ferromagnetism. Molecular field theory Exchange interaction

Lecture contents. Magnetic properties Diamagnetism Band paramagnetism Atomic paramagnetism Ferromagnetism. Molecular field theory Exchange interaction 1 Lecture contents Magnetic properties Diamagnetism and paramagnetism Atomic paramagnetism Ferromagnetism Molecular field theory Exchange interaction NNSE 58 EM Lecture #1 [SI] M magnetization or magnetic

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Direct observation of the spin-dependent Peltier effect J. Flipse, F. L. Bakker, A. Slachter, F. K. Dejene & B. J. van Wees A. Calculation of the temperature gradient We first derive an expression for

More information

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way Application to Magnetic Systems 1 µm 1895 1993 2003 http://www-ssrl.slac.stanford.edu/stohr/index.htm

More information

Anisotropic magnetothermoelectric power of ferromagnetic thin films

Anisotropic magnetothermoelectric power of ferromagnetic thin films Chapter 6 Anisotropic magnetothermoelectric power of ferromagnetic thin films We discuss measurements of the magnetothermoelectric power (MTEP) in metallic ferromagnetic films of Ni 80 Fe 20 (Permalloy;

More information

Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009

Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009 Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009 Overview Background A brief history GMR and why it occurs TMR structure What is spin transfer? A novel device A future

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS 2753 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2011 Wednesday, 22 June, 9.30 am 12.30

More information

A Generalized HSPICE* Macro-Model for Pseudo-Spin-Valve GMR Memory Bits

A Generalized HSPICE* Macro-Model for Pseudo-Spin-Valve GMR Memory Bits A Generalized HSPICE* Macro-Model for Pseudo-Spin-Valve GMR Memory Bits by Bodhisattva Das William C. Black, Jr. Department of Electrical and Computer Engineering, Iowa State University (Work sponsored

More information

Extraordinary Hall effect in Fe-Cr giant magnetoresistive multilayers

Extraordinary Hall effect in Fe-Cr giant magnetoresistive multilayers PHYSICAL REVIEW B 68, 144405 2003 Extraordinary Hall effect in Fe-Cr giant magnetoresistive multilayers P. Khatua and A. K. Majumdar* Department of Physics, Indian Institute of Technology, Kanpur - 208016,

More information

Femtosecond Heating as a Sufficient Stimulus for Magnetization Reversal

Femtosecond Heating as a Sufficient Stimulus for Magnetization Reversal Femtosecond Heating as a Sufficient Stimulus for Magnetization Reversal T. Ostler, J. Barker, R. F. L. Evans and R. W. Chantrell Dept. of Physics, The University of York, York, United Kingdom. Seagate,

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 5: MAGNETIC STRUCTURES - Mean field theory and magnetic order - Classification of magnetic structures - Collinear and non-collinear magnetic structures. - Magnetic

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION UPPLEMENTARY INFORMATION doi: 0.038/nmat78. relaxation time, effective s polarization, and s accumulation in the superconducting state The s-orbit scattering of conducting electrons by impurities in metals

More information

Magnon-drag thermopile

Magnon-drag thermopile Magnon-drag thermopile I. DEVICE FABRICATION AND CHARACTERIZATION Our devices consist of a large number of pairs of permalloy (NiFe) wires (30 nm wide, 20 nm thick and 5 µm long) connected in a zigzag

More information

Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies. Güntherodt

Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies. Güntherodt Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies B. Özyilmaz a, G. Richter, N. Müsgens, M. Fraune, M. Hawraneck, B. Beschoten b, and G. Güntherodt Physikalisches

More information

A Review of Spintronics based Data Storage. M.Tech Student Professor

A Review of Spintronics based Data Storage. M.Tech Student Professor A Review of Spintronics based Data Storage By: Mohit P. Tahiliani S. Vadakkan M.Tech Student Professor NMAMIT, Nitte NMAMIT, Nitte CONTENTS Introduction Giant Magneto Resistance (GMR) Tunnel Magneto Resistance

More information

Spin Valve Transistors Radha Krishnan Dept. of Electrical and Electronics, National Institute of Technology- Puducherry

Spin Valve Transistors Radha Krishnan Dept. of Electrical and Electronics, National Institute of Technology- Puducherry Spin Valve Transistors Radha Krishnan Dept. of Electrical and Electronics, National Institute of Technology- Puducherry Abstract In our conventional electronic devices we use semi conducting materials

More information

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface Pramod Verma Indian Institute of Science, Bangalore 560012 July 24, 2014 Pramod Verma

More information

Chapter 2 Magnetic Properties

Chapter 2 Magnetic Properties Chapter 2 Magnetic Properties Abstract The magnetic properties of a material are the basis of their applications. Specifically, the contrast agents that will be developed in Chaps. 4 and 5 use their magnetic

More information

V High frequency magnetic measurements

V High frequency magnetic measurements V High frequency magnetic measurements Rémy Lassalle-Balier What we are doing and why Ferromagnetic resonance CHIMP memory Time-resolved magneto-optic Kerr effect NISE Task 8 New materials Spin dynamics

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supramolecular Spin Valves M. Urdampilleta, 1 J.-P. Cleuziou, 1 S. Klyatskaya, 2 M. Ruben, 2,3* W. Wernsdorfer 1,* 1 Institut Néel, associé á l Université Joseph Fourier, CNRS, BP 166, 38042 Grenoble Cedex

More information

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Spin electronics at the nanoscale Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Principles of spin electronics: ferromagnetic metals spin accumulation Resistivity of homogeneous

More information

Module-16. Magnetic properties

Module-16. Magnetic properties Module-16 Magnetic properties Contents 1) Dia-, Para-, and Ferro-magnetism (Antiferro-magnetism and ferri-magnetism) 2) Influence of temperature on magnetic behavior 3) Domains and Hysteresis Introduction

More information

Probing Magnetic Order with Neutron Scattering

Probing Magnetic Order with Neutron Scattering Probing Magnetic Order with Neutron Scattering G.J. Mankey, V.V. Krishnamurthy, F.D. Mackey and I. Zoto University of Alabama in collaboration with J.L. Robertson and M.L. Crow Oak Ridge National Laboratory

More information

7. Basics of Magnetization Switching

7. Basics of Magnetization Switching Beyond CMOS computing 7. Basics of Magnetization Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Energies in a nanomagnet Precession in a magnetic field Anisotropies in a nanomagnet Hysteresis

More information

The temperature and field stability of exchange biased magnetic multilayers containing a synthetic antiferromagnet

The temperature and field stability of exchange biased magnetic multilayers containing a synthetic antiferromagnet Eindhoven University of Technology MASTER The temperature and field stability of exchange biased magnetic multilayers containing a synthetic antiferromagnet Deen, L.D.P. Award date: 2015 Disclaimer This

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure S1: Structure and composition of Teflon tape. (a) XRD spectra of original Teflon tape and Teflon tape subjected to annealing at 150 o C under Ar atmosphere.

More information

Lecture 24 - Magnetism

Lecture 24 - Magnetism Lecture 24: Magnetism (Kittel Ch. 1112) Quantum Mechanics Magnetism ElectronElectron Interactions Physics 460 F 2006 Lect 24 1 Outline Magnetism is a purely quantum phenomenon! Totally at variance with

More information