And similarly in the other directions, so the overall result is expressed compactly as,

Size: px
Start display at page:

Download "And similarly in the other directions, so the overall result is expressed compactly as,"

Transcription

1 SQEP Tutorial Session 5: T7S0 Relates to Knowledge & Skills.5,.8 Last Update: //3 Force on an element of area; Definition of principal stresses and strains; Definition of Tresca and Mises equivalent stresses; Mohr s circles; Hdrostatic and deviatoric stresses; How is an element of area described? An element of area is described b a vector. The magnitude of the vector equals the area. The direction of the vector is the normal to area element. Note that this means that area elements have an orientation, i.e., an outside and an inside. A Given the stress matri, what is the force acting on an element of area? If the area happened to be oriented in the -direction, the three components of the force would be, b definition, A, A and A. For an other orientation of the area, if A is the component of the area-vector in the -direction, then this component of the area produces force components of A, A and A. Similarl, the component of the area-vector in the -direction, A, produces force components A, A and A. The total force in the -direction is thus, z F = A + A + A z z z A And similarl in the other directions, so the overall result is epressed compactl as, F = j A i (Note the summation convention for repeated indices). If we adopt vector/matri notation this can also be written, i i F= ( )A (because is smmetric) () Qu. What is the direct stress in an arbitrar direction, nˆ? For a unit area, we can put A= nˆ, where nˆ is the unit vector normal to the area element. The force acting on this unit area is thus F= ( )nˆ, so the component of this T force in the direction of nˆ is F = nˆ ( )nˆ. But this is the normal force on a unit area, n i.e., it is the direct stress in the direction nˆ. That is nn= ˆ ( )nˆ, or, in component notation, nn i j n T = nˆ nˆ () z

2 How do all the stress components change due to a rotation of the coordinate sstem? Restricting attention to a rotation in the (,) plane, the stress components in the rotated coordinate sstem are given b, τ τ cosθ = sinθ sinθ cosθ τ τ cosθ sinθ sinθ cosθ (this will be derived in Session 6) and hence, = cos θ + sin θ + τ cosθsin θ = cos θ + sin θ τ cosθsin θ (4) τ = τ cos θ + cosθsin ( ) θ What is meant b the principal stresses? Supposing the element of area is rotated until the force acting on it is normal to the surface, i.e., F is parallel to A (i.e., normal to the element of area). Then the stress in this direction is one of the principal stresses. Three. How man principal stresses are there? The directions in which the principal stresses act are mutuall orthogonal, i.e. the form a Cartesian coordinate sstem. So, it is alwas possible to rotate the initial (,,z) coordinate sstem to align with the principal aes. The proof of these assertions will be given in Session 6. What does the stress matri look like in principal coordinates? Suppose (, z ), are the principal aes. The forces acting on the faces of a unit cube oriented parallel to these aes are all perpendicular to the faces. In other words, there are onl direct stresses, all the shear stresses being zero. So the stress matri is diagonal, ( ) (3) 0 0 = 0 0 (5) NB: It is conventional to order the principal stresses so that > > 3, but their order in the matri ma not be as indicated above. Can the principal aes be defined b the vanishing of the shear stresses? Yes. The principal aes are the onl aes for which the shears all disappear. To be pedantic, if two of the principal stresses are equal then there is a degree arbitrariness in the orientation of the principal aes (degenerac). Are there principal strains also? Yes. For an isotropic, elastic material this follows from the 3D Hooke s law, since the vanishing of the shear stresses implies the vanishing of the shear strains, i.e., because G γ =, etc. Moreover, in this case the principal stress aes and the principal strain aes are the same.

3 Yes. Do principal aes alwas eist even for anisotropic materials? The eistence of principal stress directions (in terms of which all shear stresses are zero) follows as a mathematical consequence of the smmetr of the stress tensor. Eactl the same is true for strain. The eistence of principal strain directions (in terms of which all shear strains are zero) follows as a mathematical consequence of the smmetr of the strain tensor. Consequentl, principal aes for both stress and strain alwas eist, irrespective of isotrop or elasticit. No. Are the principal aes alwas the same for stress and strain? In linear elasticit for an isotropic material the principal aes for stress coincide with those for strain, since the vanishing of shear stresses implies the vanishing of shear strains in this case. However, for anisotropic materials the principal stress aes and the principal strain aes will generall be different. What are equivalent stresses? Equivalent stresses are a convenient wa of reducing the si components of the stress matri to a single scalar measure of (roughl speaking) the severit of the stressing. More accuratel, the epress the severit of the stressing onl in certain respects, such as the proimit to, or degree of, ielding, or the degree of distortion. Be aware, though, that other stress measures, independent of the equivalent stress, such as the hdrostatic stress, can strongl influence other issues (such as fracture). What is the Tresca stress? The Tresca stress is simpl twice the maimum shear stress for an orientation of the coordinate sstem. It is given in terms of the maimum and minimum principal stresses b, Tresca = 3 = twice maimum shear (6) Wh is the maimum shear equal to ( )/? 3 Recall from Session 4 that a pure shear of τ corresponds to in-plane principal stresses of τ and τ. If we have in-plane principal stresses and, then the D (in-plane) stress matri can be epressed as the sum, 0 0 = ( ) But the first term on the RHS is an isotropic stress, and hence does not give rise to an shear when rotated (it is a purel hdrostatic stress). The second term, however, is of pure shear form or rather it becomes so when rotated b 45 o and the magnitude of the shear is just ( )/. Of the three coordinate planes, the largest shear is therefore found between the /. QED. maimum and the minimum principal stresses, i.e., ( ) 3 (7)

4 What is the von Mises stress? In terms of the principal stresses the Mises stress is given b, [( ) + ( ) + ( ) ] = 3 3 (8) In an arbitrar coordinate sstem, the Mises stress is, [( ) + ( z ) + ( z ) + 6( + z z )] = + (9) The main motivation is that setting the Mises stress to the ield stress provides the best ield criterion for multi-grained, isotropic metals (well, structural steels, at least). Do the Mises or Tresca stresses depend upon the coordinate sstem used? No. In other words, the Mises stress and the Tresca stress are scalars. This is proved in Session 8b. What is the hdrostatic stress? The hdrostatic stress is the average of the three direct stresses, i.e., one-third of the trace of the stress matri. Note that it is also a scalar, i.e., it is the same in all coordinate sstems. ( ) 3 = / 3 = ( + + )/ 3 = ( + )/ 3 H = Tr / ii 3 + zz (0) If a stress state is changed b adding a purel hdrostatic stress, do the equivalent stresses change? No. Neither the Tresca stress nor the Mises stress change. This is because all three principal stresses increase b the same amount, i.e., b the hdrostatic stress added. What are the deviatoric stresses? The deviatoric stresses are the on-diagonal (direct) stresses minus the hdrostatic stress. The are denoted b a hat (caret): thus, ˆ = H. The shear stresses are not affected. Hence, ˆ = δ or ) Ι () where Ι is the unit matri and the Kronecker smbol δ δ = if i= j and δ = 0 if i j. The answer is, H = H What is the Mises stress in terms of the deviatoric stresses? are its components, i.e., 3 = ˆ ˆ () noting that the summation convention applies to both indices. So the Mises stress does not depend upon the hdrostatic stress, onl upon the deviatoric stresses.

5 What is the phsical interpretation of the Mises ield criterion? An interpretation for isotropic media is that the Mises criterion is equivalent to a criterion for which ielding initiates when the elastic strain energ associated with distortion, i.e. with deviatoric strains, reaches a critical value. Specificall, the elastic distortion energ densit,ξˆ, is related to the Mises stress b ˆ + ν ξ =. 3E What are Mohr s Circles? Mohr s circles are a means of visualising the state of stress at a point. A vector field at a point can be visualised as an arrow. The Mohr s circles are the equivalent for the stress field. It is more complicated because stress is a second rank tensor rather than a vector. The Mohr s circles are drawn on a plot of shear stress () against direct stresses (). The centre of a Mohr s circle alwas lies on the -ais. How do ou draw the Mohr s circle for plane stress? Place the two principal stresses on the -ais and draw the circle through them, and with its centre at their mid-point. shear maimum shear τ A Y θ X direct stress B So what s it good for? The magnitudes of the two direct stresses and the shear stress in a coordinate sstem which is rotated b an angle θ from the principal aes are given b the points A and B. Note that the diameter AB is at an angle of θ to the -ais. The -coordinates of A and B are the two direct stresses, and, and the -coordinate of A is the shear stress. (Note that the -coordinate of B is an equal and opposite shear stress). From this it is readil seen that the stresses at an angle θ to the principal aes are, = ( + ) + ( ) cos θ = ( + ) ( ) cos θ (3) τ = = ( ) sin θ

6 These are consistent with the equations given above for a general rotation of coordinates from (, ) to (, ), but for the special case that the initial coordinate sstem is the principal sstem. Where is the point of maimum in-plane shear? Maimum shear must place A at the point with the largest -coordinate, i.e., at the top o of the circle. Hence, the maimum shear is obtained b rotating such that θ = 90, i.e., b 45 o from the principal aes. Moreover, the maimum shear is seen from the Mohr s circle to be just τ ma = ( ), as we have alread seen. The Mohr s circle shows that the direct stresses in this coordinate sstem are both equal to ( + ). What point on the Mohr s circle represents the state of stress at a point? It s a trick question. It s the whole Mohr s circle which represents the state of stress at a point. But then what do A and B represent? The diametrall opposite points A and B represent the components of the stress tensor with respect to a specific coordinate sstem, namel the coordinate sstem at an angle θ to the principal aes. The difference between the whole Mohr s circle and the points A,B is the same as the difference between the stress tensor and the stress matri. The stress matri gives the components of the tensor with respect to a given coordinate sstem. So, Mohr s circle stress tensor Points A,B stress matri

7 What are the Mohr s circles for a 3D state of stress? Now there are three principal stresses, so we can draw three different Mohr s circles according to which pair of principal stresses we choose to define the circle. What we get is, shear maimum shear possible impossible 3 impossible impossible direct stress possible Again this shows that the maimum shear is τ ( ) ma = 3. A rotation of the coordinate sstem in an one of the three principal planes moves the stress components around the relevant circle. But a general 3D rotation is not in one of the principal planes. For a general 3D rotation the stress components acting on an element of area are given b a point within the region between the inner and outer circles (marked possible ). The points within the inner circles, or outside the outer circle, cannot be reached, i.e., there is no orientation of an area element such that the area element is acted upon b such a combination of direct and shear stresses. What point on the 3D Mohr s circles represents the state of stress at a point? Not falling for it a second time, eh? You think that the whole of the three circles represents the state of stress at the point? Good tr, but no. It is the whole of the possible region between the inner and outer circles which represents the state of stress, i.e., the stress tensor. The correspondence in 3D is, The region between the inner & outer Mohr s circles stress tensor An points in this region the direct and shear stresses on an element of area

8 How do I find the point on the 3D Mohr s circles corresponding to a given orientation of the element of area? 3 Orientation of element of area (area normal) θ β These are the principal aes Objects versus Components Tensors, including vectors, are mathematical objects in their own right independent of the coordinate sstem used to describe them in terms of components. Object Components Vector Arrow ( v v vz ) Stress Tensor Mohr s Circles z z z z zz

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane 3.5 Plane Stress This section is concerned with a special two-dimensional state of stress called plane stress. It is important for two reasons: () it arises in real components (particularl in thin components

More information

8 Properties of Lamina

8 Properties of Lamina 8 Properties of Lamina 8- ORTHOTROPIC LAMINA An orthotropic lamina is a sheet with unique and predictable properties and consists of an assemblage of fibers ling in the plane of the sheet and held in place

More information

Lecture Triaxial Stress and Yield Criteria. When does yielding occurs in multi-axial stress states?

Lecture Triaxial Stress and Yield Criteria. When does yielding occurs in multi-axial stress states? Lecture 5.11 Triaial Stress and Yield Criteria When does ielding occurs in multi-aial stress states? Representing stress as a tensor operational stress sstem Compressive stress sstems Triaial stresses:

More information

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes Mathematics 309 Conic sections and their applicationsn Chapter 2. Quadric figures In this chapter want to outline quickl how to decide what figure associated in 2D and 3D to quadratic equations look like.

More information

Strain Transformation and Rosette Gage Theory

Strain Transformation and Rosette Gage Theory Strain Transformation and Rosette Gage Theor It is often desired to measure the full state of strain on the surface of a part, that is to measure not onl the two etensional strains, and, but also the shear

More information

MAE 323: Chapter 4. Plane Stress and Plane Strain. The Stress Equilibrium Equation

MAE 323: Chapter 4. Plane Stress and Plane Strain. The Stress Equilibrium Equation The Stress Equilibrium Equation As we mentioned in Chapter 2, using the Galerkin formulation and a choice of shape functions, we can derive a discretized form of most differential equations. In Structural

More information

σ = F/A. (1.2) σ xy σ yy σ zy , (1.3) σ xz σ yz σ zz The use of the opposite convention should cause no problem because σ ij = σ ji.

σ = F/A. (1.2) σ xy σ yy σ zy , (1.3) σ xz σ yz σ zz The use of the opposite convention should cause no problem because σ ij = σ ji. Cambridge Universit Press 978-0-521-88121-0 - Metal Forming: Mechanics Metallurg, Third Edition Ecerpt 1 Stress Strain An understing of stress strain is essential for analzing metal forming operations.

More information

σ = F/A. (1.2) σ xy σ yy σ zx σ xz σ yz σ, (1.3) The use of the opposite convention should cause no problem because σ ij = σ ji.

σ = F/A. (1.2) σ xy σ yy σ zx σ xz σ yz σ, (1.3) The use of the opposite convention should cause no problem because σ ij = σ ji. Cambridge Universit Press 978-1-107-00452-8 - Metal Forming: Mechanics Metallurg, Fourth Edition Ecerpt 1 Stress Strain An understing of stress strain is essential for the analsis of metal forming operations.

More information

4 Strain true strain engineering strain plane strain strain transformation formulae

4 Strain true strain engineering strain plane strain strain transformation formulae 4 Strain The concept of strain is introduced in this Chapter. The approimation to the true strain of the engineering strain is discussed. The practical case of two dimensional plane strain is discussed,

More information

Module #4. Fundamentals of strain The strain deviator Mohr s circle for strain READING LIST. DIETER: Ch. 2, Pages 38-46

Module #4. Fundamentals of strain The strain deviator Mohr s circle for strain READING LIST. DIETER: Ch. 2, Pages 38-46 HOMEWORK From Dieter 2-7 Module #4 Fundamentals of strain The strain deviator Mohr s circle for strain READING LIST DIETER: Ch. 2, Pages 38-46 Pages 11-12 in Hosford Ch. 6 in Ne Strain When a solid is

More information

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering (3.8-3.1, 3.14) MAE 316 Strength of Mechanical Components NC State Universit Department of Mechanical & Aerospace Engineering 1 Introduction MAE 316 is a continuation of MAE 314 (solid mechanics) Review

More information

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole Phs 221 Chapter 3 Vectors adzubenko@csub.edu http://www.csub.edu/~adzubenko 2014. Dzubenko 2014 rooks/cole 1 Coordinate Sstems Used to describe the position of a point in space Coordinate sstem consists

More information

The. Consortium. Continuum Mechanics. Original notes by Professor Mike Gunn, South Bank University, London, UK Produced by the CRISP Consortium Ltd

The. Consortium. Continuum Mechanics. Original notes by Professor Mike Gunn, South Bank University, London, UK Produced by the CRISP Consortium Ltd The C R I S P Consortium Continuum Mechanics Original notes b Professor Mike Gunn, South Bank Universit, London, UK Produced b the CRISP Consortium Ltd THOR OF STRSSS In a three dimensional loaded bod,

More information

VECTORS IN THREE DIMENSIONS

VECTORS IN THREE DIMENSIONS 1 CHAPTER 2. BASIC TRIGONOMETRY 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW VECTORS IN THREE DIMENSIONS 1 Vectors in Two Dimensions A vector is an object which has magnitude

More information

Analytic Geometry in Three Dimensions

Analytic Geometry in Three Dimensions Analtic Geometr in Three Dimensions. The Three-Dimensional Coordinate Sstem. Vectors in Space. The Cross Product of Two Vectors. Lines and Planes in Space The three-dimensional coordinate sstem is used

More information

9.2. Cartesian Components of Vectors. Introduction. Prerequisites. Learning Outcomes

9.2. Cartesian Components of Vectors. Introduction. Prerequisites. Learning Outcomes Cartesian Components of Vectors 9.2 Introduction It is useful to be able to describe vectors with reference to specific coordinate sstems, such as the Cartesian coordinate sstem. So, in this Section, we

More information

Tensor Transformations and the Maximum Shear Stress. (Draft 1, 1/28/07)

Tensor Transformations and the Maximum Shear Stress. (Draft 1, 1/28/07) Tensor Transformations and the Maximum Shear Stress (Draft 1, 1/28/07) Introduction The order of a tensor is the number of subscripts it has. For each subscript it is multiplied by a direction cosine array

More information

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design MAE4700/5700 Finite Element Analsis for Mechanical and Aerospace Design Cornell Universit, Fall 2009 Nicholas Zabaras Materials Process Design and Control Laborator Sible School of Mechanical and Aerospace

More information

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014 Universit of Pretoria Department of Mechanical & Aeronautical Engineering MOW 7, nd Semester 04 Semester Test Date: August, 04 Total: 00 Internal eaminer: Duration: hours Mr. Riaan Meeser Instructions:

More information

Spherical Pressure Vessels

Spherical Pressure Vessels Spherical Pressure Vessels Pressure vessels are closed structures containing liquids or gases under essure. Examples include tanks, pipes, essurized cabins, etc. Shell structures : When essure vessels

More information

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Chapter 8 KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Figure 8.1: 195 196 CHAPTER 8. KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS 8.1 Motivation In Chapter 3, the conservation of linear momentum for a

More information

Pure Core 1. Revision Notes

Pure Core 1. Revision Notes Pure Core Revision Notes Ma 06 Pure Core Algebra... Indices... Rules of indices... Surds... 4 Simplifing surds... 4 Rationalising the denominator... 4 Quadratic functions... 5 Completing the square....

More information

ME111 Instructor: Peter Pinsky Class #21 November 13, 2000

ME111 Instructor: Peter Pinsky Class #21 November 13, 2000 Toda s Topics ME Instructor: Peter Pinsk Class # November,. Consider two designs of a lug wrench for an automobile: (a) single ended, (b) double ended. The distance between points A and B is in. and the

More information

9 Strength Theories of Lamina

9 Strength Theories of Lamina 9 trength Theories of Lamina 9- TRENGTH O ORTHOTROPIC LAMINA or isotropic materials the simplest method to predict failure is to compare the applied stresses to the strengths or some other allowable stresses.

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Pure Bending Ch 2 Aial Loading & Parallel Loading: uniform normal stress and shearing stress distribution Ch 3 Torsion:

More information

CH.7. PLANE LINEAR ELASTICITY. Multimedia Course on Continuum Mechanics

CH.7. PLANE LINEAR ELASTICITY. Multimedia Course on Continuum Mechanics CH.7. PLANE LINEAR ELASTICITY Multimedia Course on Continuum Mechanics Overview Plane Linear Elasticit Theor Plane Stress Simplifing Hpothesis Strain Field Constitutive Equation Displacement Field The

More information

ES.1803 Topic 16 Notes Jeremy Orloff

ES.1803 Topic 16 Notes Jeremy Orloff ES803 Topic 6 Notes Jerem Orloff 6 Eigenalues, diagonalization, decoupling This note coers topics that will take us seeral classes to get through We will look almost eclusiel at 2 2 matrices These hae

More information

Physics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN

Physics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN Phsics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN EMU Phsics Department www.aovgun.com Coordinate Sstems qcartesian coordinate sstem qpolar coordinate sstem Januar 21, 2015 qfrom Cartesian to Polar coordinate

More information

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000 Higher Mathematics UNIT Mathematics HSN000 This document was produced speciall for the HSN.uk.net website, and we require that an copies or derivative works attribute the work to Higher Still Notes. For

More information

MATHEMATICAL FUNDAMENTALS I. Michele Fitzpatrick

MATHEMATICAL FUNDAMENTALS I. Michele Fitzpatrick MTHEMTICL FUNDMENTLS I Michele Fitpatrick OVERVIEW Vectors and arras Matrices Linear algebra Del( operator Tensors DEFINITIONS vector is a single row or column of numbers. n arra is a collection of vectors

More information

CONSERVATION OF ENERGY FOR ACONTINUUM

CONSERVATION OF ENERGY FOR ACONTINUUM Chapter 6 CONSERVATION OF ENERGY FOR ACONTINUUM Figure 6.1: 6.1 Conservation of Energ In order to define conservation of energ, we will follow a derivation similar to those in previous chapters, using

More information

EXERCISES FOR SECTION 3.1

EXERCISES FOR SECTION 3.1 174 CHAPTER 3 LINEAR SYSTEMS EXERCISES FOR SECTION 31 1 Since a > 0, Paul s making a pro t > 0 has a bene cial effect on Paul s pro ts in the future because the a term makes a positive contribution to

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The McGraw-Hill Companies, Inc. All rights reserved. T Edition CHAPTER MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Teas Tech Universit

More information

Physics for Scientists and Engineers. Chapter 3 Vectors and Coordinate Systems

Physics for Scientists and Engineers. Chapter 3 Vectors and Coordinate Systems Phsics for Scientists and Engineers Chapter 3 Vectors and Coordinate Sstems Spring, 2008 Ho Jung Paik Coordinate Sstems Used to describe the position of a point in space Coordinate sstem consists of a

More information

3.7 InveRSe FUnCTIOnS

3.7 InveRSe FUnCTIOnS CHAPTER functions learning ObjeCTIveS In this section, ou will: Verif inverse functions. Determine the domain and range of an inverse function, and restrict the domain of a function to make it one-to-one.

More information

MEG 741 Energy and Variational Methods in Mechanics I

MEG 741 Energy and Variational Methods in Mechanics I MEG 74 Energ and Variational Methods in Mechanics I Brendan J. O Toole, Ph.D. Associate Professor of Mechanical Engineering Howard R. Hghes College of Engineering Universit of Nevada Las Vegas TBE B- (7)

More information

3 Stress internal forces stress stress components Stress analysis stress transformation equations principal stresses stress invariants

3 Stress internal forces stress stress components Stress analysis stress transformation equations principal stresses stress invariants 3 Stress orces acting at the surfaces of components were considered in the previous chapter. The task now is to eamine forces arising inside materials, internal forces. Internal forces are described using

More information

Failure surface according to maximum principal stress theory

Failure surface according to maximum principal stress theory Maximum Principal Stress Theory (W. Rankin s Theory- 1850) Brittle Material The maximum principal stress criterion: Rankin stated max principal stress theory as follows- a material fails by fracturing

More information

GG303 Lab 10 10/26/09 1. Stresses

GG303 Lab 10 10/26/09 1. Stresses GG303 Lab 10 10/26/09 1 Stresses Eercise 1 (38 pts total) 1a Write down the epressions for all the stress components in the ' coordinate sstem in terms of the stress components in the reference frame.

More information

Eigenvectors and Eigenvalues 1

Eigenvectors and Eigenvalues 1 Ma 2015 page 1 Eigenvectors and Eigenvalues 1 In this handout, we will eplore eigenvectors and eigenvalues. We will begin with an eploration, then provide some direct eplanation and worked eamples, and

More information

Identifying second degree equations

Identifying second degree equations Chapter 7 Identifing second degree equations 71 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +

More information

( ) ( ) ( ) ( ) TNM046: Datorgrafik. Transformations. Linear Algebra. Linear Algebra. Sasan Gooran VT Transposition. Scalar (dot) product:

( ) ( ) ( ) ( ) TNM046: Datorgrafik. Transformations. Linear Algebra. Linear Algebra. Sasan Gooran VT Transposition. Scalar (dot) product: TNM046: Datorgrafik Transformations Sasan Gooran VT 04 Linear Algebra ( ) ( ) =,, 3 =,, 3 Transposition t = 3 t = 3 Scalar (dot) product: Length (Norm): = t = + + 3 3 = = + + 3 Normaliation: ˆ = Linear

More information

Spin ½ (Pages 1-12 are needed)

Spin ½ (Pages 1-12 are needed) Prof. Dr. I. Nasser Phs- 55 (T-) October 3, 03 Spin3.doc Spin ½ (Pages - are needed) Recall that in the H-atom solution, we showed that the fact that the wavefunction ψ (r) is singlevalued requires that

More information

The aircraft shown is being tested to determine how the forces due to lift would be distributed over the wing. This chapter deals with stresses and

The aircraft shown is being tested to determine how the forces due to lift would be distributed over the wing. This chapter deals with stresses and The aircraft shown is being tested to determine how the forces due to lift would be distributed over the wing. This chapter deals with stresses and strains in structures and machine components. 436 H P

More information

11.4 Polar Coordinates

11.4 Polar Coordinates 11. Polar Coordinates 917 11. Polar Coordinates In Section 1.1, we introduced the Cartesian coordinates of a point in the plane as a means of assigning ordered pairs of numbers to points in the plane.

More information

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur Module Stresses in machine elements Version M, IIT Kharagpur Lesson 3 Strain analsis Version M, IIT Kharagpur Instructional Objectives At the end of this lesson, the student should learn Normal and shear

More information

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE Functions & Graphs Contents Functions and Relations... 1 Interval Notation... 3 Graphs: Linear Functions... 5 Lines and Gradients... 7 Graphs: Quadratic

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 20, 2011 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 20, 2011 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 20, 2011 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS LAST NAME (printed): FIRST NAME (printed): STUDENT

More information

ENR202 Mechanics of Materials Lecture 12B Slides and Notes

ENR202 Mechanics of Materials Lecture 12B Slides and Notes ENR0 Mechanics of Materials Lecture 1B Slides and Notes Slide 1 Copright Notice Do not remove this notice. COMMMONWEALTH OF AUSTRALIA Copright Regulations 1969 WARNING This material has been produced and

More information

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential CHAPTER : Partial Derivatives.1 Definition of a Partial Derivative. Increments and Differential.3 Chain Rules.4 Local Etrema.5 Absolute Etrema 1 Chapter : Partial Derivatives.1 Definition of a Partial

More information

Chapter 3. Theory of measurement

Chapter 3. Theory of measurement Chapter. Introduction An energetic He + -ion beam is incident on thermal sodium atoms. Figure. shows the configuration in which the interaction one is determined b the crossing of the laser-, sodium- and

More information

Mathematics Trigonometry: Unit Circle

Mathematics Trigonometry: Unit Circle a place of mind F A C U L T Y O F E D U C A T I O N Department of Curriculum and Pedagog Mathematics Trigonometr: Unit Circle Science and Mathematics Education Research Group Supported b UBC Teaching and

More information

6.1 The Linear Elastic Model

6.1 The Linear Elastic Model Linear lasticit The simplest constitutive law or solid materials is the linear elastic law, which assumes a linear relationship between stress and engineering strain. This assumption turns out to be an

More information

Tutorial #1 - CivE. 205 Name: I.D:

Tutorial #1 - CivE. 205 Name: I.D: Tutorial # - CivE. 0 Name: I.D: Eercise : For the Beam below: - Calculate the reactions at the supports and check the equilibrium of point a - Define the points at which there is change in load or beam

More information

TENSOR TRANSFORMATION OF STRESSES

TENSOR TRANSFORMATION OF STRESSES GG303 Lecture 18 9/4/01 1 TENSOR TRANSFORMATION OF STRESSES Transformation of stresses between planes of arbitrar orientation In the 2-D eample of lecture 16, the normal and shear stresses (tractions)

More information

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a two-dimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e

More information

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following:

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following: Math 323 Eam 2 - Practice Problem Solutions 1. Given the vectors a = 2,, 1, b = 3, 2,4, and c = 1, 4,, compute the following: (a) A unit vector in the direction of c. u = c c = 1, 4, 1 4 =,, 1+16+ 17 17

More information

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS )

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER : Limits and continuit of functions in R n. -. Sketch the following subsets of R. Sketch their boundar and the interior. Stud

More information

Concept Question Comment on the general features of the stress-strain response under this loading condition for both types of materials

Concept Question Comment on the general features of the stress-strain response under this loading condition for both types of materials Module 5 Material failure Learning Objectives review the basic characteristics of the uni-axial stress-strain curves of ductile and brittle materials understand the need to develop failure criteria for

More information

All parabolas through three non-collinear points

All parabolas through three non-collinear points ALL PARABOLAS THROUGH THREE NON-COLLINEAR POINTS 03 All parabolas through three non-collinear points STANLEY R. HUDDY and MICHAEL A. JONES If no two of three non-collinear points share the same -coordinate,

More information

MECHANICS OF MATERIALS REVIEW

MECHANICS OF MATERIALS REVIEW MCHANICS OF MATRIALS RVIW Notation: - normal stress (psi or Pa) - shear stress (psi or Pa) - normal strain (in/in or m/m) - shearing strain (in/in or m/m) I - area moment of inertia (in 4 or m 4 ) J -

More information

Survey of Wave Types and Characteristics

Survey of Wave Types and Characteristics Seminar: Vibrations and Structure-Borne Sound in Civil Engineering Theor and Applications Surve of Wave Tpes and Characteristics Xiuu Gao April 1 st, 2006 Abstract Mechanical waves are waves which propagate

More information

Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

More information

15. Polarization. Linear, circular, and elliptical polarization. Mathematics of polarization. Uniaxial crystals. Birefringence.

15. Polarization. Linear, circular, and elliptical polarization. Mathematics of polarization. Uniaxial crystals. Birefringence. 15. Polarization Linear, circular, and elliptical polarization Mathematics of polarization Uniaial crstals Birefringence Polarizers Notation: polarization near an interface Parallel ("p") polarization

More information

Research Article Equivalent Elastic Modulus of Asymmetrical Honeycomb

Research Article Equivalent Elastic Modulus of Asymmetrical Honeycomb International Scholarl Research Network ISRN Mechanical Engineering Volume, Article ID 57, pages doi:.5//57 Research Article Equivalent Elastic Modulus of Asmmetrical Honecomb Dai-Heng Chen and Kenichi

More information

Symmetry Arguments and the Role They Play in Using Gauss Law

Symmetry Arguments and the Role They Play in Using Gauss Law Smmetr Arguments and the Role The la in Using Gauss Law K. M. Westerberg (9/2005) Smmetr plas a ver important role in science in general, and phsics in particular. Arguments based on smmetr can often simplif

More information

MA123, Chapter 1: Equations, functions and graphs (pp. 1-15)

MA123, Chapter 1: Equations, functions and graphs (pp. 1-15) MA123, Chapter 1: Equations, functions and graphs (pp. 1-15) Date: Chapter Goals: Identif solutions to an equation. Solve an equation for one variable in terms of another. What is a function? Understand

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHAPTER MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Teas Tech Universit Transformations of Stress and Strain 006 The McGraw-Hill Companies,

More information

3D Elasticity Theory

3D Elasticity Theory 3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.

More information

Coordinate geometry. + bx + c. Vertical asymptote. Sketch graphs of hyperbolas (including asymptotic behaviour) from the general

Coordinate geometry. + bx + c. Vertical asymptote. Sketch graphs of hyperbolas (including asymptotic behaviour) from the general A Sketch graphs of = a m b n c where m = or and n = or B Reciprocal graphs C Graphs of circles and ellipses D Graphs of hperbolas E Partial fractions F Sketch graphs using partial fractions Coordinate

More information

MAT 1275: Introduction to Mathematical Analysis. Graphs and Simplest Equations for Basic Trigonometric Functions. y=sin( x) Function

MAT 1275: Introduction to Mathematical Analysis. Graphs and Simplest Equations for Basic Trigonometric Functions. y=sin( x) Function MAT 275: Introduction to Mathematical Analsis Dr. A. Rozenblum Graphs and Simplest Equations for Basic Trigonometric Functions We consider here three basic functions: sine, cosine and tangent. For them,

More information

ME 323 Examination #2 April 11, 2018

ME 323 Examination #2 April 11, 2018 ME 2 Eamination #2 April, 2 PROBLEM NO. 25 points ma. A thin-walled pressure vessel is fabricated b welding together two, open-ended stainless-steel vessels along a 6 weld line. The welded vessel has an

More information

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM B Course Content: A INTRODUCTION AND OVERVIEW Numerical method and Computer-Aided Engineering; Phsical problems; Mathematical models; Finite element method;. B Elements and nodes, natural coordinates,

More information

15. Eigenvalues, Eigenvectors

15. Eigenvalues, Eigenvectors 5 Eigenvalues, Eigenvectors Matri of a Linear Transformation Consider a linear ( transformation ) L : a b R 2 R 2 Suppose we know that L and L Then c d because of linearit, we can determine what L does

More information

Ground Rules. PC1221 Fundamentals of Physics I. Coordinate Systems. Cartesian Coordinate System. Lectures 5 and 6 Vectors.

Ground Rules. PC1221 Fundamentals of Physics I. Coordinate Systems. Cartesian Coordinate System. Lectures 5 and 6 Vectors. PC1221 Fundamentals of Phsics I Lectures 5 and 6 Vectors Dr Ta Seng Chuan 1 Ground ules Switch off our handphone and pager Switch off our laptop computer and keep it No talking while lecture is going on

More information

MATH 115: Final Exam Review. Can you find the distance between two points and the midpoint of a line segment? (1.1)

MATH 115: Final Exam Review. Can you find the distance between two points and the midpoint of a line segment? (1.1) MATH : Final Eam Review Can ou find the distance between two points and the midpoint of a line segment? (.) () Consider the points A (,) and ( 6, ) B. (a) Find the distance between A and B. (b) Find the

More information

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites ME 75 Lecture Effective Properties of Particulate and Unidirectional Composites Concepts from Elasticit Theor Statistical Homogeneit, Representative Volume Element, Composite Material Effective Stress-

More information

8. BOOLEAN ALGEBRAS x x

8. BOOLEAN ALGEBRAS x x 8. BOOLEAN ALGEBRAS 8.1. Definition of a Boolean Algebra There are man sstems of interest to computing scientists that have a common underling structure. It makes sense to describe such a mathematical

More information

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II LESSON #4 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART COMMON CORE ALGEBRA II You will recall from unit 1 that in order to find the inverse of a function, ou must switch and and solve for. Also,

More information

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000 hsn.uk.net Higher Mathematics UNIT Mathematics HSN000 This document was produced speciall for the HSN.uk.net website, and we require that an copies or derivative works attribute the work to Higher Still

More information

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 52 HSN22100

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 52 HSN22100 Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 5 1 Quadratics 5 The Discriminant 54 Completing the Square 55 4 Sketching Parabolas 57 5 Determining the Equation

More information

Table of Contents. Module 1

Table of Contents. Module 1 Table of Contents Module 1 11 Order of Operations 16 Signed Numbers 1 Factorization of Integers 17 Further Signed Numbers 13 Fractions 18 Power Laws 14 Fractions and Decimals 19 Introduction to Algebra

More information

Green s Theorem Jeremy Orloff

Green s Theorem Jeremy Orloff Green s Theorem Jerem Orloff Line integrals and Green s theorem. Vector Fields Vector notation. In 8.4 we will mostl use the notation (v) = (a, b) for vectors. The other common notation (v) = ai + bj runs

More information

1.1 The Equations of Motion

1.1 The Equations of Motion 1.1 The Equations of Motion In Book I, balance of forces and moments acting on an component was enforced in order to ensure that the component was in equilibrium. Here, allowance is made for stresses which

More information

Exercise solutions: concepts from chapter 5

Exercise solutions: concepts from chapter 5 1) Stud the oöids depicted in Figure 1a and 1b. a) Assume that the thin sections of Figure 1 lie in a principal plane of the deformation. Measure and record the lengths and orientations of the principal

More information

Introduction to 3D Game Programming with DirectX 9.0c: A Shader Approach

Introduction to 3D Game Programming with DirectX 9.0c: A Shader Approach Introduction to 3D Game Programming with DirectX 90c: A Shader Approach Part I Solutions Note : Please email to frank@moon-labscom if ou find an errors Note : Use onl after ou have tried, and struggled

More information

CHAPTER 4 Stress Transformation

CHAPTER 4 Stress Transformation CHAPTER 4 Stress Transformation ANALYSIS OF STRESS For this topic, the stresses to be considered are not on the perpendicular and parallel planes only but also on other inclined planes. A P a a b b P z

More information

The Plane Stress Problem

The Plane Stress Problem . 4 The Plane Stress Problem 4 Chapter 4: THE PLANE STRESS PROBLEM 4 TABLE OF CONTENTS Page 4.. INTRODUCTION 4 3 4... Plate in Plane Stress............... 4 3 4... Mathematical Model.............. 4 4

More information

The first change comes in how we associate operators with classical observables. In one dimension, we had. p p ˆ

The first change comes in how we associate operators with classical observables. In one dimension, we had. p p ˆ VI. Angular momentum Up to this point, we have been dealing primaril with one dimensional sstems. In practice, of course, most of the sstems we deal with live in three dimensions and 1D quantum mechanics

More information

Vectors Primer. M.C. Simani. July 7, 2007

Vectors Primer. M.C. Simani. July 7, 2007 Vectors Primer M.. Simani Jul 7, 2007 This note gives a short introduction to the concept of vector and summarizes the basic properties of vectors. Reference textbook: Universit Phsics, Young and Freedman,

More information

Rigid Body Transforms-3D. J.C. Dill transforms3d 27Jan99

Rigid Body Transforms-3D. J.C. Dill transforms3d 27Jan99 ESC 489 3D ransforms 1 igid Bod ransforms-3d J.C. Dill transforms3d 27Jan99 hese notes on (2D and) 3D rigid bod transform are currentl in hand-done notes which are being converted to this file from that

More information

Roger Johnson Structure and Dynamics: The 230 space groups Lecture 3

Roger Johnson Structure and Dynamics: The 230 space groups Lecture 3 Roger Johnson Structure and Dnamics: The 23 space groups Lecture 3 3.1. Summar In the first two lectures we considered the structure and dnamics of single molecules. In this lecture we turn our attention

More information

CH.4. STRESS. Continuum Mechanics Course (MMC)

CH.4. STRESS. Continuum Mechanics Course (MMC) CH.4. STRESS Continuum Mechanics Course (MMC) Overview Forces Acting on a Continuum Body Cauchy s Postulates Stress Tensor Stress Tensor Components Scientific Notation Engineering Notation Sign Criterion

More information

Chapter 3: BASIC ELEMENTS. solid mechanics)

Chapter 3: BASIC ELEMENTS. solid mechanics) Chapter 3: BASIC ELEMENTS Section 3.: Preliminaries (review of solid mechanics) Outline Most structural analsis FE codes are displacement based In this chapter we discuss interpolation methods and elements

More information

Functions. Introduction

Functions. Introduction Functions,00 P,000 00 0 70 7 80 8 0 000 00 00 Figure Standard and Poor s Inde with dividends reinvested (credit "bull": modification of work b Praitno Hadinata; credit "graph": modification of work b MeasuringWorth)

More information

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except SHEAR STRENGTH OF SOIL Chapter 10: Sections 10. 10.3 Chapter 1: All sections ecept 1.13 1.14 1.15 1.17 1.18 TOPICS Introduction Components of Shear Strength of Soils Normal and Shear Stresses on a Plane

More information

Chapter 4 Analytic Trigonometry

Chapter 4 Analytic Trigonometry Analtic Trigonometr Chapter Analtic Trigonometr Inverse Trigonometric Functions The trigonometric functions act as an operator on the variable (angle, resulting in an output value Suppose this process

More information

The Force Table Introduction: Theory:

The Force Table Introduction: Theory: 1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is

More information

Lecture Notes 5

Lecture Notes 5 1.5 Lecture Notes 5 Quantities in Different Coordinate Systems How to express quantities in different coordinate systems? x 3 x 3 P Direction Cosines Axis φ 11 φ 3 φ 1 x x x x 3 11 1 13 x 1 3 x 3 31 3

More information