220A Solutions. Assignment 5.

Size: px
Start display at page:

Download "220A Solutions. Assignment 5."

Transcription

1 4-40. Draw the free-bod diagram. 220A Solutions Assignment 5. - cos sin here are two stumbling points. he first is to resist the temptation to draw a force pointing down the inclined plane. he onl forces are the normal force that the plane eerts on the block and the pull of gravit. he second is to get the angle straight. Do it carefull once and ou'll have no further trouble with it. One wa is as follows: is perpendicular to the inlclined plane and is perpendicular to the floor. he angle between these two perpendiculars and the angle between the inclined plane and the floor is the same. Another good wa is to draw it carefull. here are onl two angles in the triangle and one look tells us which is correct and whitch is incorrect. correct inc he net force is

2 hus, ewton's 2nd law gives us ΣF = sin ΣF = - cos ΣF = sin = ma ΣF = - cos = ma but, a = 0 ( it isn't even moving in the -direction), so = cos from the -direction. From the -direction, sin = ma. so g sin = a We could have looked this up in Eample 4-7, p. 95, and plugged in the numbers and have finished the problem in one minute. hat's oka after we have gone through it carefull once or twice and we understand it throughl, but we can never learn phsics b searching around for a formula that works. We must learn to reason from the basic principles or we largel waste our time studing phsics. a = 9.8 m/s 2 sin 22 = 3.67 m/s 2. he acceleration is constant so we are permitted to use the constant acceleration formulas. ime is not mentioned so we'll use v2 = v a ( - 0 ) which gives v 2 = 0 +2(3.67 m/s 2 )(2 m - 0) = 88. m 2 /s 2, so v = ± 9.39 m/s. he block is moving in the plus direction, so v = m/s. How long does it take to descend? 4-4. We know the acceleration from the previous problem a = 3.67 m/s 2. his is a practical problem of the tpe we did in the previous chapter, so we need to figure out what we know. We know the initial velocit ( - 4 m/s) and the final velocit (zero, since it stops). We're asked for the distance so we'll use v2 = v a ( - 0 ) which gives so 0 2 = (- 4.0 m/s) 2 + 2(3.67 m/s 2 )( - 0), = - (- 4.0 m/s)2/2(3.67 m/s 2 ) = m. We have begun with the origin at the bottom of the plane, so the final value of is negative; that is to sa, up the plane.

3 - 2.7 m We can get the time to ascend from v = v 0 + at which gives or 0 = - 4 m/s m/s t t = (4 m/s)/3.67 m/s =.09 s. he same time is required to descend, so the total time is twice this, 2.8 s Draw the free-bod diagrams. ote that we have chosen to be positive down for block 2. his is not necessar, just convenient because the positive -direction for block is the positive -direction for block 2. m g 2 m g 2 For block, ΣF = - m g, but since the acceleration is zero in the - direction, the 2nd law immediatel gives = m g. ΣF =, so the 2nd law gives = m a ()

4 For block 2, ΣF = - + m 2 g, (remembering that is positive down), so the 2nd law gives - + m 2 g = m 2 a 2 (2) he accelerations are written a and a 2 respectivel, but these are numbericall equal so we write them a = a 2 = a, and eqs and 2 become two equations in the two unknowns and a. Eplain to a doubting friend that a = a 2. Eplain wh it was convenient to choose positive down for block 2; i.e., what would have happened if twe had chosen it positive up. Solve the two equations two unknowns anwa ou want; for eample, we could add the two and the drops out giving m 2 g = m a + m 2 a, so a = m 2 g/(m + m 2 ) putting this back into eq gives = m m 2 g/(m + m 2 ) Draw the free-bod diagrams. ote that we have used ewton's third law in using the same force on each of the two blocks. Also, since the masses are the same in this problem, both are written m. a b 2 -m gcos30 c 30 m g m g 2 30 m g m gsin30 he net force on block 2 is ΣF = -. It is much simpler to use an inclined coordinate sstem for block. here are two trick parts. First, we need to get the angle straight to see that the angle between and m g is 30. he second trick part is to resolve the weight into components in the inclined coordinate sstem which is detailed in c. he -component of the weight is sin30 and the - component is - m g cos30.

5 he net force on block is ΣF = - cos and ΣF = - + m gcos. hus, ewton's 2nd law gives us ΣF = - + m g sin = m a ΣF = - m g cos = m a but, a = 0 ( it isn't even moving in the -direction), so = m gcos from the -direction. From the -direction, - + m g sin = m a () he net force on block 2 is ΣF = - m 2 g hus, ewton's 2nd law gives us - m 2 g = m 2 a (2) he acceleration of block in the -direction is numbericall equal to the acceleration of block 2 in the -direction, so we write a for block equal to a and a for block 2 equal to a. Eplain this an a wa that a student who does not understand it will get it. If ou have trouble with this, be sure to see our instructor. hus, we have two equations in two unknowns which we ma solve b adding eqs and 2 to eliminate the which ields m g sin - m 2 g = (m + m 2 )a a = (m g sin - m 2 g)/(m + m 2 ) (3) a = ( kg 9.8 m/s 2 sin30 - kg 9.8 m/s 2 )/( kg + kg) = m/s 2 he minus sign means that block accelerates up the plane and block 2, down. (b) If the sstem remains at rest, then a = 0 and eq 3 becomes 0 = (m g sin - m 2 g)/(m + m 2 ), so m g sin = m 2 g, or m 2 = m sin = kg sin 30 = 0.5 kg. (c) Use either eq or 2 to get ; for eample, from eq 2

6 = m 2 (a + g) = kg ( m/s m/s 2 ) = 7.35 for case (a), and = m 2 (a + g) = 0.5 kg ( m/s 2 ) = 4.9 for case (b) Draw the free-bod diagram. If ou are still having trouble with the angle and the resolution into components, see problem cos sin m g he net force in the -direction is zero, so = cos. In the - direction, ΣF = sin so the 2nd law gives sin = ma, thus a = g sin = 9.8 m/s 2 sin9.5 =.62 m/s 2. he acceleration is constant and we are given the distance and asked for the time. hus, we ma use = 0 + v 0 t + 2 at2, which gives 3 m = 0 + v 0 t m/s2 t 2, so t2 = 3 m/ 2.62 m/s2 = 3.70 s 2, thus t = ±.92 s, from which the phsical answer is t = +.92 s. he acceleration does not depend on the mass, so the answer is the same (a) Draw the free-bod diagram.

7 F f he Earth eerts the force on the bo of magnitude straight down, the plane eerts a force perpendicular to the plane with magnitude, and the plane eerts a frictional force parallel to the plane with magnitude F f. If there is an confusion about which wa the frictional force should point, note that the net force on the bo must be zero since it is not accelerated. umbericall F f = sin. (b) If the bo is sliding down the the plane, nothing changes qualitativel in the free-bod diagram. he problem does not specif if the bo is accelerated or not. If it descends at constant speed, F f = sin ; if it speeds up, then F f < sin ; and if it slows down, F f > sin. hus, the length of the arrow in the figure changes according to the situation, but the qualitative diagram is the same in all cases. (c) If the bo slide up the plane, then the frictional force is reversed. F f 5-5. Draw the free-bod diagram.

8 F f he diagram is drawn assuming the acceleration of the train to be to the right. he net force is ΣF = F f ΣF = -, so the 2nd law is F f = ma () - = ma but a = 0, so = (2) It's important to get the reasoning straight. he acceleration in eq is our acceleration. In order for ou not to slip, our acceleration must be equal to that of the train; a = 0.20g It is the frictional force force F f that provides our acceleration, according to eq. We can get the maimum frictional force, because we know the normal force in eq 2; thus, F f < µ s. Substituting F f = µ s into eq will lead to the minimum value of µ s and using eq 2 µ s = ma µ s = ma. he mass divides out so our mass doesn't matter. µ s g = a, so µ s = a /g = 0.2 g/g = Draw the free-bod diagrams. ote that we have chosen to be positive down for block 2, so that the accelerations of the two blocks are the same.

9 F f m g 2 m g 2 For block, ΣF = - m g, but since the acceleration is zero in the - direction, the 2nd law immediatel gives = m g. his means that the maimum frictional force is F f = µ s = µ s m g () ΣF = - F f, so the 2nd law gives - F f = m a (2) so, combining eqs and 2, - µ s m g = m a (3) For block 2, ΣF = - + m 2 g, (remembering that is positive down), so the 2nd law gives - + m 2 g = m 2 a (4) ote that the two accelerations are the same. Equations 3 and 4 become two equations in the two unknowns and a. Solve the two equations two unknowns anwa ou want; for eample, we could add the two and the drops out giving - µ s m g + m 2 g = m a + m 2 a, so a = (- µ s m g + m 2 g)/(m + m 2 ). hus a = 0 results from (- µ s m g + m 2 g) = 0 so m =m 2 /µ s = 2 kg/(0.4) = 5 kg.

10 If the sstem begins to move, µ k becomes the coefficient of friction. he free-bod diagram is the same and the acceleration is again zero, so everthing is the same ecept µ k replaces µ s. m =m 2 /µ s = 2 kg/(0.3) = 6.67 kg.

Lab 5 Forces Part 1. Physics 211 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces.

Lab 5 Forces Part 1. Physics 211 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces. b Lab 5 Forces Part 1 Phsics 211 Lab Introduction This is the first week of a two part lab that deals with forces and related concepts. A force is a push or a pull on an object that can be caused b a variet

More information

Physics 111. Lecture 10 (Walker: 5.5-6) Free Body Diagram Solving 2-D Force Problems Weight & Gravity. February 18, Quiz Monday - Chaps.

Physics 111. Lecture 10 (Walker: 5.5-6) Free Body Diagram Solving 2-D Force Problems Weight & Gravity. February 18, Quiz Monday - Chaps. Phsics 111 Lecture 10 (Walker: 5.5-6) Free Bod Diagram Solving -D Force Problems Weight & Gravit Februar 18, 009 Quiz Monda - Chaps. 4 & 5 Lecture 10 1/6 Third Law Review A small car is pushing a larger

More information

PHYS 101: Solutions to Chapter 4 Home Work

PHYS 101: Solutions to Chapter 4 Home Work PHYS 101: Solutions to Chapter 4 Home ork 3. EASONING In each case, we will appl Newton s second law. emember that it is the net force that appears in the second law. he net force is the vector sum of

More information

Physics 111. Applying Newton s Laws. Lecture 9 (Walker: 5.4-5) Newton s Third Law Free Body Diagram Solving 2-D Force Problems Weight & Gravity

Physics 111. Applying Newton s Laws. Lecture 9 (Walker: 5.4-5) Newton s Third Law Free Body Diagram Solving 2-D Force Problems Weight & Gravity Phsics 111 Lecture 9 (Walker: 5.4-5) Newton s Third Law ree Bod Diagram Solving -D orce Problems Weight & Gravit Sept. 1, 009 Quiz Wednesda - Chaps. 3 & 4 Lecture 9 1/6 Newton s Third Law of Motion orces

More information

PHYSICS 1 Forces & Newton s Laws

PHYSICS 1 Forces & Newton s Laws Advanced Placement PHYSICS 1 Forces & Newton s Laws Presenter 2014-2015 Forces & Newton s Laws What I Absolutel Have to Know to Survive the AP* Exam Force is an push or pull. It is a vector. Newton s Second

More information

Lab 5 Forces Part 1. Physics 225 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces.

Lab 5 Forces Part 1. Physics 225 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces. b Lab 5 orces Part 1 Introduction his is the first week of a two part lab that deals with forces and related concepts. A force is a push or a pull on an object that can be caused b a variet of reasons.

More information

Phys 201A. Homework 8 Solutions

Phys 201A. Homework 8 Solutions Phys 01A Homewor 8 Solutions 15. (b) The static frictional force that blocs A and B eert on each other has a magnitude f. The force that B eerts on A is directed to the right (the positive direction),

More information

Solutions to Phsics: Principles with Applications, 5/E, Giancoli Chapter 4 CHAPTER 4 1. If we select the sled and child as the object, we appl Newton s second law to find the force: F = ma; F = (60.0 kg)(1.15

More information

Review! Kinematics: Free Fall, A Special Case. Review! A Few Facts About! Physics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension

Review! Kinematics: Free Fall, A Special Case. Review! A Few Facts About! Physics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension Phsics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension What concepts did ou find most difficult, or what would ou like to be sure we discuss in lecture? Acceleration vectors. Will ou go over

More information

Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Chapter 5 Newton s Laws of Motion Newtonian Mechanics Mass Mass is an intrinsic characteristic of a body The mass of a body is the characteristic that relates a force on the body to the resulting acceleration.

More information

LAB 05 Projectile Motion

LAB 05 Projectile Motion LAB 5 Projectile Motion CONTENT: 1. Introduction. Projectile motion A. Setup B. Various characteristics 3. Pre-lab: A. Activities B. Preliminar info C. Quiz 1. Introduction After introducing one-dimensional

More information

Equilibrium at a Point

Equilibrium at a Point Equilibrium at a Point Never slap a man who's chewing tobacco. - Will Rogers Objec3ves Understand the concept of sta3c equilibrium Understand the use of the free- bod diagram to isolate a sstem for analsis

More information

1. If we select the sled and child as the object, we apply Newton s second law to find the force: F = ma; F = (60.0 kg)(1.15 m/s 2 ) = 69.0 N.

1. If we select the sled and child as the object, we apply Newton s second law to find the force: F = ma; F = (60.0 kg)(1.15 m/s 2 ) = 69.0 N. CHAPTER 4 1. If we select the sled and child as the object, we appl Newton s second law to find the force: = ma; = (60.0 kg)(1.15 m/s ) = 69.0 N.. If we select the bike and rider as the object, we appl

More information

Then, by Newton s third law: The knots are also in equilibrium. Newton s law applied to the left knot is. The y-equation gives T1 m1 g sin 1.

Then, by Newton s third law: The knots are also in equilibrium. Newton s law applied to the left knot is. The y-equation gives T1 m1 g sin 1. Chapter 7 Solutions 7.7. Model: The two hanging blocks, which can be modeled as particles, together with the two knots where rope meets with rope and rope meets with rope form a sstem. All the four objects

More information

Second-Order Linear Differential Equations C 2

Second-Order Linear Differential Equations C 2 C8 APPENDIX C Additional Topics in Differential Equations APPENDIX C. Second-Order Homogeneous Linear Equations Second-Order Linear Differential Equations Higher-Order Linear Differential Equations Application

More information

APPENDIX D Rotation and the General Second-Degree Equation

APPENDIX D Rotation and the General Second-Degree Equation APPENDIX D Rotation and the General Second-Degree Equation Rotation of Aes Invariants Under Rotation After rotation of the - and -aes counterclockwise through an angle, the rotated aes are denoted as the

More information

Fluid Mechanics II. Newton s second law applied to a control volume

Fluid Mechanics II. Newton s second law applied to a control volume Fluid Mechanics II Stead flow momentum equation Newton s second law applied to a control volume Fluids, either in a static or dnamic motion state, impose forces on immersed bodies and confining boundaries.

More information

APPLYING NEWTON S LAWS

APPLYING NEWTON S LAWS APPLYING NEWTON S LAWS 5 igible mass. Let T r be the tension in the rope and let T c be the tension in the chain. EXECUTE: (a) The free-bod diagram for each weight is the same and is given in Figure 5.1a.

More information

REVISION SHEET MECHANICS 1 MOTION GRAPHS OCR MEI. Displacement-time graphs and distance-time graphs

REVISION SHEET MECHANICS 1 MOTION GRAPHS OCR MEI. Displacement-time graphs and distance-time graphs the Further Mhemics network www.fmnetwork.org.uk V 07 1 REVISION SHEET MECHANICS 1 MOTION GRAPHS The main ideas are AQA Edx MEI OCR Displacement-time graphs M1 M1 M1 M1 Distance-time graphs M1 M1 M1 M1

More information

The Force Table Introduction: Theory:

The Force Table Introduction: Theory: 1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is

More information

PHYS-2010: General Physics I Course Lecture Notes Section V

PHYS-2010: General Physics I Course Lecture Notes Section V PHYS-2010: General Physics I Course Lecture Notes Section V Dr. Donald G. Luttermoser East Tennessee State University Edition 2.5 Abstract These class notes are designed for use of the instructor and students

More information

2.3. Applying Newton s Laws of Motion. Objects in Equilibrium

2.3. Applying Newton s Laws of Motion. Objects in Equilibrium Appling Newton s Laws of Motion As ou read in Section 2.2, Newton s laws of motion describe ow objects move as a result of different forces. In tis section, ou will appl Newton s laws to objects subjected

More information

5.6. Differential equations

5.6. Differential equations 5.6. Differential equations The relationship between cause and effect in phsical phenomena can often be formulated using differential equations which describe how a phsical measure () and its derivative

More information

VECTORS IN THREE DIMENSIONS

VECTORS IN THREE DIMENSIONS 1 CHAPTER 2. BASIC TRIGONOMETRY 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW VECTORS IN THREE DIMENSIONS 1 Vectors in Two Dimensions A vector is an object which has magnitude

More information

LESSON #11 - FORMS OF A LINE COMMON CORE ALGEBRA II

LESSON #11 - FORMS OF A LINE COMMON CORE ALGEBRA II LESSON # - FORMS OF A LINE COMMON CORE ALGEBRA II Linear functions come in a variet of forms. The two shown below have been introduced in Common Core Algebra I and Common Core Geometr. TWO COMMON FORMS

More information

LESSON #12 - FORMS OF A LINE COMMON CORE ALGEBRA II

LESSON #12 - FORMS OF A LINE COMMON CORE ALGEBRA II LESSON # - FORMS OF A LINE COMMON CORE ALGEBRA II Linear functions come in a variet of forms. The two shown below have been introduced in Common Core Algebra I and Common Core Geometr. TWO COMMON FORMS

More information

PHYS1100 Practice problem set, Chapter 8: 5, 9, 14, 20, 22, 25, 28, 30, 34, 35, 40, 44

PHYS1100 Practice problem set, Chapter 8: 5, 9, 14, 20, 22, 25, 28, 30, 34, 35, 40, 44 PHYS00 Practice problem set, Chapter 8: 5, 9, 4, 0,, 5, 8, 30, 34, 35, 40, 44 8.5. Solve: The top figure shows the pulle (P), block A, block B, the surface S of the incline, the rope (R), and the earth

More information

Course 15 Numbers and Their Properties

Course 15 Numbers and Their Properties Course Numbers and Their Properties KEY Module: Objective: Rules for Eponents and Radicals To practice appling rules for eponents when the eponents are rational numbers Name: Date: Fill in the blanks.

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for Lecture Outlines Chapter 5 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc. Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

Vectors Primer. M.C. Simani. July 7, 2007

Vectors Primer. M.C. Simani. July 7, 2007 Vectors Primer M.. Simani Jul 7, 2007 This note gives a short introduction to the concept of vector and summarizes the basic properties of vectors. Reference textbook: Universit Phsics, Young and Freedman,

More information

Physics 18 Spring 2011 Homework 3 - Solutions Wednesday February 2, 2011

Physics 18 Spring 2011 Homework 3 - Solutions Wednesday February 2, 2011 Phsics 18 Spring 2011 Hoework 3 - s Wednesda Februar 2, 2011 Make sure our nae is on our hoework, and please bo our final answer. Because we will be giving partial credit, be sure to attept all the probles,

More information

9.2. Cartesian Components of Vectors. Introduction. Prerequisites. Learning Outcomes

9.2. Cartesian Components of Vectors. Introduction. Prerequisites. Learning Outcomes Cartesian Components of Vectors 9.2 Introduction It is useful to be able to describe vectors with reference to specific coordinate sstems, such as the Cartesian coordinate sstem. So, in this Section, we

More information

Ph211 Summer 09 HW #4, week of 07/13 07/16. Ch6: 44, 46, 52; Ch7: 29, 41. (Knight, 2nd Ed).

Ph211 Summer 09 HW #4, week of 07/13 07/16. Ch6: 44, 46, 52; Ch7: 29, 41. (Knight, 2nd Ed). Solutions 1 for HW #4: Ch6: 44, 46, 52; Ch7: 29, 41. (Knight, 2nd Ed). We make use of: equations of kinematics, and Newton s Laws. You also (routinely) need to handle components of a vector, in nearly

More information

Lecture PowerPoints. Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli

Lecture PowerPoints. Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli Lecture PowerPoints Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided

More information

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life. Forces and Newton s Laws Reading Notes Name: Section 4-1: Force What is force? Give an example of a force you have experienced continuously all your life. Give an example of a situation where an object

More information

Lesson 3: Free fall, Vectors, Motion in a plane (sections )

Lesson 3: Free fall, Vectors, Motion in a plane (sections ) Lesson 3: Free fall, Vectors, Motion in a plane (sections.6-3.5) Last time we looked at position s. time and acceleration s. time graphs. Since the instantaneous elocit is lim t 0 t the (instantaneous)

More information

Worksheet #1. A little review.

Worksheet #1. A little review. Worksheet #1. A little review. I. Set up BUT DO NOT EVALUATE definite integrals for each of the following. 1. The area between the curves = 1 and = 3. Solution. The first thing we should ask ourselves

More information

Trusses - Method of Sections

Trusses - Method of Sections Trusses - Method of Sections ME 202 Methods of Truss Analsis Method of joints (previous notes) Method of sections (these notes) 2 MOS - Concepts Separate the structure into two parts (sections) b cutting

More information

5. Zeros. We deduce that the graph crosses the x-axis at the points x = 0, 1, 2 and 4, and nowhere else. And that s exactly what we see in the graph.

5. Zeros. We deduce that the graph crosses the x-axis at the points x = 0, 1, 2 and 4, and nowhere else. And that s exactly what we see in the graph. . Zeros Eample 1. At the right we have drawn the graph of the polnomial = ( 1) ( 2) ( 4). Argue that the form of the algebraic formula allows ou to see right awa where the graph is above the -ais, where

More information

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane 3.5 Plane Stress This section is concerned with a special two-dimensional state of stress called plane stress. It is important for two reasons: () it arises in real components (particularl in thin components

More information

Scalars distance speed mass time volume temperature work and energy

Scalars distance speed mass time volume temperature work and energy Scalars and Vectors scalar is a quantit which has no direction associated with it, such as mass, volume, time, and temperature. We sa that scalars have onl magnitude, or size. mass ma have a magnitude

More information

Newton s Laws II Physics

Newton s Laws II Physics Newton s Laws II Physics Objectives i) Distinguish weight and mass, and understand that weight is a force ii) What is Normal force and when does this force exist? iii) Practice solving questions ΣF=ma

More information

Lecture PowerPoints. Chapter 4 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 4 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 4 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations The Cartesian Coordinate Sstem- Pictures of Equations Concepts: The Cartesian Coordinate Sstem Graphs of Equations in Two Variables -intercepts and -intercepts Distance in Two Dimensions and the Pthagorean

More information

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors)

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors) MOTION IN -DIMENSION (Projectile & Circular motion nd Vectors) INTRODUCTION The motion of an object is called two dimensional, if two of the three co-ordinates required to specif the position of the object

More information

Physics 101 Lecture 7 Kinetic Energy and Work

Physics 101 Lecture 7 Kinetic Energy and Work Phsics 101 Lecture 7 Kinetic Energ and Work Dr. Ali ÖVGÜN EMU Phsics Department www.aovgun.com Wh Energ? q Wh do we need a concept of energ? q The energ approach to describing motion is particularl useful

More information

1) caused by the interaction of 2 + objects. 2) opposite (opposes) motion. 3) Types Kinetic, static, sliding, rolling

1) caused by the interaction of 2 + objects. 2) opposite (opposes) motion. 3) Types Kinetic, static, sliding, rolling Friction: 1) caused by the interaction of 2 + objects 2) opposite (opposes) motion 3) Types Kinetic, static, sliding, rolling 4) size determined by: nature of surfaces force pushing surfaces together frictional

More information

CHAPTER-OPENING QUESTION

CHAPTER-OPENING QUESTION g B This snowboarder fling through the air shows an eample of motion in two dimensions. In the absence of air resistance, the path would be a perfect parabola. The gold arrow represents the downward acceleration

More information

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds?

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds? Newton s Laws 1 1. Define mass variable Formula S or v SI 2. Define inertia, how is inertia related to mass 3. What is a Force? variable Formula S or v SI 4. How is a Newton defined? What does a Newton

More information

Properties of Limits

Properties of Limits 33460_003qd //04 :3 PM Page 59 SECTION 3 Evaluating Limits Analticall 59 Section 3 Evaluating Limits Analticall Evaluate a it using properties of its Develop and use a strateg for finding its Evaluate

More information

Vertex. March 23, Ch 9 Guided Notes.notebook

Vertex. March 23, Ch 9 Guided Notes.notebook March, 07 9 Quadratic Graphs and Their Properties A quadratic function is a function that can be written in the form: Verte Its graph looks like... which we call a parabola. The simplest quadratic function

More information

APPLIED MECHANICS I Resultant of Concurrent Forces Consider a body acted upon by co-planar forces as shown in Fig 1.1(a).

APPLIED MECHANICS I Resultant of Concurrent Forces Consider a body acted upon by co-planar forces as shown in Fig 1.1(a). PPLIED MECHNICS I 1. Introduction to Mechanics Mechanics is a science that describes and predicts the conditions of rest or motion of bodies under the action of forces. It is divided into three parts 1.

More information

College of Sciences PHYS 101 General Physics 1 F a l l S e m e s t e r Midterm1 Exam October 26, 2015 Monday, 19:00-21:00. Please read.

College of Sciences PHYS 101 General Physics 1 F a l l S e m e s t e r Midterm1 Exam October 26, 2015 Monday, 19:00-21:00. Please read. Name: Surname: Number: K O Ç U N I V E R S I T Y College of Sciences PHYS 101 General Phsics 1 F a l l S e m e s t e r 0 1 5 Midterm1 Exam October 6, 015 Monda, 19:00-1:00 Please read. Count to make sure

More information

3.7 InveRSe FUnCTIOnS

3.7 InveRSe FUnCTIOnS CHAPTER functions learning ObjeCTIveS In this section, ou will: Verif inverse functions. Determine the domain and range of an inverse function, and restrict the domain of a function to make it one-to-one.

More information

Chapter 3 Motion in a Plane

Chapter 3 Motion in a Plane Chapter 3 Motion in a Plane Introduce ectors and scalars. Vectors hae direction as well as magnitude. The are represented b arrows. The arrow points in the direction of the ector and its length is related

More information

2.2 SEPARABLE VARIABLES

2.2 SEPARABLE VARIABLES 44 CHAPTER FIRST-ORDER DIFFERENTIAL EQUATIONS 6 Consider the autonomous DE 6 Use our ideas from Problem 5 to find intervals on the -ais for which solution curves are concave up and intervals for which

More information

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box?

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box? Review Packet Name: _ 1. A box is sliding to the right along a horizontal surface with a velocity of 2 m/s. There is friction between the box and the horizontal surface. The box is tied to a hanging stone

More information

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve:

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve: .2 INITIAL-VALUE PROBLEMS 3.2 INITIAL-VALUE PROBLEMS REVIEW MATERIAL Normal form of a DE Solution of a DE Famil of solutions INTRODUCTION We are often interested in problems in which we seek a solution

More information

Unit 1: Equilibrium and Center of Mass

Unit 1: Equilibrium and Center of Mass Unit 1: Equilibrium and Center of Mass FORCES What is a force? Forces are a result of the interaction between two objects. They push things, pull things, keep things together, pull things apart. It s really

More information

Answers !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Answers !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 11 th Grade Phsics Workbook METU Development Foundation High School 1 Answers 11th Grade Chapter-1 Newton s Laws Motion Activit - 1.3.1 Applications of Newton s Laws 1. 2. Three blocks of masses 5 kg,

More information

Applying Newton s Laws

Applying Newton s Laws Applying Newton s Laws Free Body Diagrams Draw and label the forces acting on the object. Examples of forces: weight, normal force, air resistance, friction, applied forces (like a push or pull) Velocity

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Observation #1 An object at rest remains at rest, unless something makes it move. Observation #2 A object in motion continues in motion with constant velocity, unless something

More information

Section 1 Changes in Motion. Chapter 4. Preview. Objectives Force Force Diagrams

Section 1 Changes in Motion. Chapter 4. Preview. Objectives Force Force Diagrams Section 1 Changes in Motion Preview Objectives Force Force Diagrams Section 1 Changes in Motion Objectives Describe how force affects the motion of an object. Interpret and construct free body diagrams.

More information

Physics 40 Chapter 7 Homework Solutions

Physics 40 Chapter 7 Homework Solutions Phsics 40 Chapter 7 Homework Solutions T = F 3 g (1) T sin θ + T sin θ = Fg () 1 1 T cosθ = T cosθ (3) 1 1 Eliminate T and solve for T 1 Fgcos θ T = = T 1 3 g ( sin θ cosθ + cosθ sin θ ) sin ( θ + θ )

More information

BE SURE THAT YOU HAVE LOOKED AT, THOUGHT ABOUT AND TRIED THE SUGGESTED PROBLEMS ON THIS REVIEW GUIDE PRIOR TO LOOKING AT THESE COMMENTS!!!

BE SURE THAT YOU HAVE LOOKED AT, THOUGHT ABOUT AND TRIED THE SUGGESTED PROBLEMS ON THIS REVIEW GUIDE PRIOR TO LOOKING AT THESE COMMENTS!!! Review Guide for MAT0 Final Eam Part I. Thursday December 7 th during regular class time Part is worth 50% of your Final Eam grade. Syllabus approved calculators can be used on this part of the eam but

More information

Prof. Dr. I. Nasser T171 Chapter5_I 12/10/2017

Prof. Dr. I. Nasser T171 Chapter5_I 12/10/2017 Prof. Dr. I. Nasser T171 Chapter5_I 1/10/017 Chapter 5 Force and Motion I 5-1 NEWTON S FIRST AND SECOND LAWS Newton s Three Laws Newton s 3 laws define some of the most fundamental things in physics including:

More information

AQA Higher Practice paper (calculator 2)

AQA Higher Practice paper (calculator 2) AQA Higher Practice paper (calculator 2) Higher Tier The maimum mark for this paper is 8. The marks for each question are shown in brackets. Time: 1 hour 3 minutes 1 One billion in the UK is one thousand

More information

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II LESSON #4 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART COMMON CORE ALGEBRA II You will recall from unit 1 that in order to find the inverse of a function, ou must switch and and solve for. Also,

More information

Lecture PowerPoints. Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones Physics 22000 General Physics Lecture 3 Newtonian Mechanics Fall 2016 Semester Prof. Matthew Jones 1 Review of Lectures 1 and 2 In the previous lectures we learned how to describe some special types of

More information

M1 January An easy question to start the paper. Applying conservation of momentum where u is the initial velocity and v the final velocity.

M1 January An easy question to start the paper. Applying conservation of momentum where u is the initial velocity and v the final velocity. Page 1 M1 January 003 1. A railway truck P of mass 000 kg is moving along a straight horizontal track with speed 10 ms -1. The truck P collides with a truck Q of mass 3000 kg, which is at rest on the same

More information

Answers without work shown will not be given any credit.

Answers without work shown will not be given any credit. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall Term 2012 Problem 1 of 4 (25 points) Exam 1 Solutions with Grading Scheme Answers without work shown will not be given any

More information

Linear Programming. Maximize the function. P = Ax + By + C. subject to the constraints. a 1 x + b 1 y < c 1 a 2 x + b 2 y < c 2

Linear Programming. Maximize the function. P = Ax + By + C. subject to the constraints. a 1 x + b 1 y < c 1 a 2 x + b 2 y < c 2 Linear Programming Man real world problems require the optimization of some function subject to a collection of constraints. Note: Think of optimizing as maimizing or minimizing for MATH1010. For eample,

More information

Lecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 5 Physics, 4 th Edition James S. Walker Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third

More information

MATH GRADE 8 UNIT 4 LINEAR RELATIONSHIPS EXERCISES

MATH GRADE 8 UNIT 4 LINEAR RELATIONSHIPS EXERCISES MATH GRADE 8 UNIT LINEAR RELATIONSHIPS Copright 01 Pearson Education, Inc., or its affiliate(s). All Rights Reserved. Printed in the United States of America. This publication is protected b copright,

More information

Chapter 4: Newton s Laws of Motion

Chapter 4: Newton s Laws of Motion Chapter 4: Newton s Laws of Motion We will study classical motion: No quantum mechanics No relativity We introduce the concept of force and define it in terms of the acceleration of a standard d body Intuitively,

More information

Ch 3 Alg 2 Note Sheet.doc 3.1 Graphing Systems of Equations

Ch 3 Alg 2 Note Sheet.doc 3.1 Graphing Systems of Equations Ch 3 Alg Note Sheet.doc 3.1 Graphing Sstems of Equations Sstems of Linear Equations A sstem of equations is a set of two or more equations that use the same variables. If the graph of each equation =.4

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion Sir Isaac Newton 1642 1727 Formulated basic laws of mechanics Discovered Law of Universal Gravitation Invented form of calculus Many observations dealing with light and optics

More information

10. The dimensional formula for c) 6% d) 7%

10. The dimensional formula for c) 6% d) 7% UNIT. One of the combinations from the fundamental phsical constants is hc G. The unit of this epression is a) kg b) m 3 c) s - d) m. If the error in the measurement of radius is %, then the error in the

More information

1-D and 2-D Motion Test Friday 9/8

1-D and 2-D Motion Test Friday 9/8 1-D and -D Motion Test Frida 9/8 3-1 Vectors and Scalars A vector has magnitude as well as direction. Some vector quantities: displacement, velocit, force, momentum A scalar has onl a magnitude. Some scalar

More information

Chapter 5. Force and Motion-I

Chapter 5. Force and Motion-I Chapter 5 Force and Motion-I 5.3 Newton s First Law Newton s First Law: If no force acts on a body, the body s velocity cannot change The purpose of Newton s First Law is to introduce the special frames

More information

Symmetry Arguments and the Role They Play in Using Gauss Law

Symmetry Arguments and the Role They Play in Using Gauss Law Smmetr Arguments and the Role The la in Using Gauss Law K. M. Westerberg (9/2005) Smmetr plas a ver important role in science in general, and phsics in particular. Arguments based on smmetr can often simplif

More information

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow.

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow. POGIL: Newton s First Law of Motion and Statics Name Purpose: To become familiar with the forces acting on an object at rest Part 1: Net Force Model: Read the following carefully and study the diagrams

More information

Mechanics Departmental Exam Last updated November 2013

Mechanics Departmental Exam Last updated November 2013 Mechanics Departmental Eam Last updated November 213 1. Two satellites are moving about each other in circular orbits under the influence of their mutual gravitational attractions. The satellites have

More information

Physics 1100: 2D Kinematics Solutions

Physics 1100: 2D Kinematics Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Physics 1100: 2D Kinematics Solutions 1. In the diagrams below, a ball is on a flat horizontal surface. The initial velocity

More information

Unit 12 Study Notes 1 Systems of Equations

Unit 12 Study Notes 1 Systems of Equations You should learn to: Unit Stud Notes Sstems of Equations. Solve sstems of equations b substitution.. Solve sstems of equations b graphing (calculator). 3. Solve sstems of equations b elimination. 4. Solve

More information

Physics 20 Lesson 11 Vector Addition Components

Physics 20 Lesson 11 Vector Addition Components Phsics 20 Lesson 11 Vector ddition Components In Lesson 10 we learned how to add vectors which were perpendicular to one another using vector diagrams, Pthagorean theor, and the tangent function. What

More information

LAB 6: WORK AND ENERGY

LAB 6: WORK AND ENERGY 93 Name Date Partners LAB 6: WORK AND ENERGY OBJECTIVES OVERVIEW Energy is the only life and is from the Body; and Reason is the bound or outward circumference of energy. Energy is eternal delight. William

More information

ENR202 Mechanics of Materials Lecture 12B Slides and Notes

ENR202 Mechanics of Materials Lecture 12B Slides and Notes ENR0 Mechanics of Materials Lecture 1B Slides and Notes Slide 1 Copright Notice Do not remove this notice. COMMMONWEALTH OF AUSTRALIA Copright Regulations 1969 WARNING This material has been produced and

More information

2 MOTION ALONG A STRAIGHT LINE

2 MOTION ALONG A STRAIGHT LINE MOTION ALONG A STRAIGHT LINE Download full Solution manual for Universit phsics with modern phsics 14t http://testbankcollection.com/download/solution-manual-for-universit-phsics-withmodern-phsics-14th.1.

More information

MORE TRIGONOMETRY

MORE TRIGONOMETRY MORE TRIGONOMETRY 5.1.1 5.1.3 We net introduce two more trigonometric ratios: sine and cosine. Both of them are used with acute angles of right triangles, just as the tangent ratio is. Using the diagram

More information

Newton s 3 rd Law. Book page 48-49

Newton s 3 rd Law. Book page 48-49 Newton s 3 rd Law Book page 48-49 14/9/2016 cgrahamphysics.com 2016 Newton s 2 nd Law problem Newton s second law does not always work: - does not work when applied to atoms and molecules - does not work

More information

Green s Theorem Jeremy Orloff

Green s Theorem Jeremy Orloff Green s Theorem Jerem Orloff Line integrals and Green s theorem. Vector Fields Vector notation. In 8.4 we will mostl use the notation (v) = (a, b) for vectors. The other common notation (v) = ai + bj runs

More information

Quadratic Functions. The graph of the function shifts right 3. The graph of the function shifts left 3.

Quadratic Functions. The graph of the function shifts right 3. The graph of the function shifts left 3. Quadratic Functions The translation o a unction is simpl the shiting o a unction. In this section, or the most part, we will be graphing various unctions b means o shiting the parent unction. We will go

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

More information

Thurs Sept.23. Thurs Sept. Phys .23. Why is it moving upwards after I let go? Don t forget to read over the lab write-up and be ready for the quiz.

Thurs Sept.23. Thurs Sept. Phys .23. Why is it moving upwards after I let go? Don t forget to read over the lab write-up and be ready for the quiz. ics Announcements day, ember 23, 2004 Ch 5: Newton s 1st and 2nd Laws Example Problems Ch 6: Intro to Friction static kinetic Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR

More information

Online homework #6 due on Tue March 24

Online homework #6 due on Tue March 24 Online homework #6 due on Tue March 24 Problem 5.22 Part A: give your answer with only 2 significant digits (i.e. round answer and drop less significant digits) 51 Equilibrium Question 52 1 Using Newton

More information