Outline (1/2) 2.1 Formulation of the Learning Problem. Outline (2/2) Problem Statement, Classical Approaches, and Adaptive Learning

Size: px
Start display at page:

Download "Outline (1/2) 2.1 Formulation of the Learning Problem. Outline (2/2) Problem Statement, Classical Approaches, and Adaptive Learning"

Transcription

1 Outle /. Mathematcal ormulato o rectve lear roblem Classcato reresso est estmato vector quatzato Problem Statemet Classcal Aroaches a Aatve Lear. Classcal statstcal aroaches to estmato rom ata Parametrc moel ML ERM: Ver r assumto about ukow eeec screac Noarametrc moel: Lear wth lare samles asmtotc case Lear From Data Chater Outle /.3 Aatve Methos A ror assumto Choos a moel o otmal comlet or te ata How to cororate a ror assumto to lear? How to measure moel comlet? How to a otmal balace betwee the ata a a ror kowlee Lear. Formulato o the Lear Problem Process o estmat a ukow eeec or structure o a sstem us a lmte umber o observatos Three comoets ➀ Geerator: raom ut vector ➁ Sstem: returs a outut or a ve ut vector ➂ Lear mache: estmates a ukow ma o the sstem rom the observe samles

2 . Problem Formulato. Problem Formulato Geerator Prouces raom vectors R raw eeetl rom a e robablt est whch s ukow observatoal A moeler has ha o cotrol over whch ut values were sule to the sstem Sstem. Problem Formulato Prouces a outut value or ever ut vector accor to the e cotoal est whch s also ukow. Cha uobserve uts o the outut o sstem s characterze as raom a reresete as a rob. strbuto Lear Mache : etermstc : reresso ormulato Imlemet a set o uctos Ω where Ω s a set o abstract arameters use ol to e the set o uctos Eamle. Parametrc Reresso Fe Deree Polomal The set o uctos s sece as a olomal o e eree The tra ata have a sle rector varable w M w Ω { w [w...w M- ] } M : e

3 Eamle. Eamle.3 Semarametrc Reresso Polomal o Arbtrar Deree Remove the restrcto o e olomal eree Deree becomes aother arameter m w m m w Ω { w m [w...w m- ] } m : arbtrar Noarametrc Reresso Kerel Smooth Kerel avera [... ] w α w K K α α where s umber o samles K α s a kerel ucto wth bawth α Eamle.3: Noarametrc Reresso Proertes R ➀ K takes o ts mamum value whe ➁ K ecreases wth - ➂ K s a ucto o varables Raall smmetrc: - to oe varable Gaussa K α ' ' e α Ω takes vector orm [ α w...w ] : the umber o samles. Problem Formulato Choce o Aromat Fuctos Relects a ror kowlee about the sstem Nee to cororate a ror kowlee to the lear metho wth a alrea ve set o aromat uctos Lear arameters vs. olear arameters Troometrc easo lear arameterzato v m m w m m j v j s j w cos j w Multlaer etwork olear arameterzato w V w m m w j v j vj j j

4 .. Role o the Lear Mache Selects a ucto that best aromates the sstem s resose Jot robablt est ucto Tra Data... Loss ucto: measures the qualt o aromato Loss: screac betwee the outut rouce b the sstem a the lear mache or a ve ot Rsk uctoal The eecte value o the loss Lear L R L Is the rocess o estmat the ucto w whch mmzes the rsk uctoal over the set o uctos suorte b the lear mache us tra ata s ukow. Estmates w* the otmal soluto obtae wth te ata set us some lear roceure. Iuctve rcle How shoul a lea mache use tra ata? A eeral rescrto or obta a estmate w* o the true eeec the class o aromat uctos rom the avalable te tra ata. Tell us what to o wth the ata. Lea metho Seces how to obta a estmate. A costructve mlemetato o a uctve rcle or select a estmate w* rom a artcular set o uctos w. For a ve uctve rcle there are ma lear methos correso to a eret set o uctos o a lear mache... Commo Lear Tasks Classcato Outut o lear mache ee ol take o two values. Loss ucto: classcato error w L w Rsk uctoal: Quates the robablt o msclasscato R L w Lear: To the cator ucto w mmz the rob. o msclasscato.

5 Reresso Process o estmat a real-value ucto base o a te set o os samles. R L R [ ] E R [ ] E E R Nose has zero mea : ose varace Sce We have Sce the rst termsose varace oes ot ee o w mmz the seco termucto aromato error s equvalet to mmz Thus obta smallest recto rsk s equvalet to the most accurate estmato o the ukow ucto b a lear mache E R R Dest Estmato Outut o the sstem s ot use. The outut o the lear mache reresets est.e. becomes a set o estes Loss ucto Rsk uctoal Mmz us the tra ata leas to the est estmato. R L l l Ω R...

6 Cluster a Vector Quatzato Otmal artto o the ukow strbuto -sace to a resece umber o reos. Future samles ca be aromate b a sle otcluster ceter or local rotote. The set o vector-value uctos Ω are vector quatzers Loss ucto: Rsk uctoal: c L w w w R w square error storto Vector quatzer mmz R otmall quatzes uture ata eerate rom eerate rom Dmesoalt reucto low-mesoal mas o a hhmesoal strbuto. Summar Loss ucto Classcato w L w Reresso L Dest Estmato L l Cluster a Vector Quatzato L Rsk Fuctoal Classcato Reresso Dest Estmato R L w R R l Cluster a Vector Quatzato R

7 ..3 Scoe o the Lear Problem Formulato Iorme art o lear sstems Selecto o ut/outut varables Data eco/reresetato Icororat a ror kowlee to the sstem The cocetual rae o the ormal lear moel a the role o the huma artcat ur a ormal stae Do relmar work Dee the sstem eleate ts scoe b select ut varable Choose outut base o useuless a easblt..3 Scoe o the Lear Problem Formulato Have cotrol over the eerator or saml rate or strbuto Select the most sutable set o uctos Tcal assumtos mose o the eerator strbuto Prouce eeetl raw samles rom a e robablt strbuto Eceto: tme seres recto roblemsamles eerate b a amcal sstem Ucha eerator strbuto Eceto: actve lear. Classcal Aroaches Two arts o the lear roblemclasscal ➀ Seccato: eterme the arametrc orm o the ukow uerl strbuto ➁ Estmato: eterme arameters that characterze the sece strbutos Two uctve rcles commo classcal lear Emrcal rsk mmzato ERM Mamum lkelhoo ML: a secc orm o ERM.. Dest Estmato The classcal aroach restrcts the class o est uctos suorte b the lear mache to a arametrc set. w w Ω s a set o estes where w s a M-mesoal vector Ω s R M M s e Lkelhoo ucto Gve a set o... tra ata X [... ] the robablt o X as a ucto o w s P X w w

8 Mamum lkelhoo uctve rcle We shoul choose the arameters w whch mamze the lkelhoo ucto correso to choos a w*.e. moel w* whch s most lkel to eerate X to make roblem more tractable lo lkelhoo ucto s use ML rsk uctoal R ML w l w to be mmze Emrcal rsk mmzato uctve rcle emrcall estmates the rsk uctoal us tra ata Emrcal rsk: averae rsk or the tra ata mmze b choos the arorate arameters Eecte rskest estmato R w L w Ths eectato s estmate b tak a averae o the rsk over the tra ata R em w L w The otmum arameter values w* are ou b mmz the emrcal rsk wth resect to w ERM s more eeral tha ML sce t oes ot sec the artcular orm o the loss ucto. ERM s equvalet to ML or est estmato the loss ucto s Lw -l w Eamle.4 Estmat the Parameters o the Normal Dstrbuto Us Fte Data samles o eote b... were eerate accor to the ormal strbuto mea µ a varace are the two ukow arameters µ e π Lo lkelhoo ucto or ths roblem s P X µ lπ l µ

9 Ths ca be mamze b tak artal ervatves lea to the estmates ˆµ ˆ µ Eamle.5 Mture o Normals Vak 995 The estmato or a more comlcate est Let samles o eote b... be eerate accor to the strbuto Lo lkelhoo ucto e e π µ π P e e l π µ π µ X We ca show that or certa values o a there oes ot est a lobal mamumcat that ML als to rove a ete soluto Seccall s set to the value o a tra ata ot the there s o value o that ves a lobal mamum. Evaluate the lkelhoo or the choce Coser a lower bou b assum that some o the terms take o ther mmum values µ µ µ e l P π π µ X e e l π µ π > P e l l π π µ X > P l l l π µ X The lower bou o the lkelhoo cotues to crease or ecreas whch meas that a lobal mamum oes ot est.

10 .. Classcato Dscrmat Aalss Classcal Classcato Cotoal estes or each class a are estmate b classcal arametrc est estmato a the ML uctve rcle ML estmates arametrc α * β * Pror Probabltes The robablt o occurrece o each class P P Posteror Probabltes The robablt o observato belo to each class Costruct a scrmat rule that escrbes how a observato shoul be classe so as to mmze the rob. o error Choose outut class hav mamum osteror rob. Baes rule s use to calculate the osteror rob. or each class * α P P * β P P Deomator : ormalz costat o ee to comute sce the ecso rule s a comarso o relatve matues o osteror robabltes α* P β* P Oce osteror robabltes are eterme the scrmat ucto s use to class : α* P > β* P otherwse * * P I l β l α l > P where I s the cator ucto that takes ts arumet s true a otherwse Cotoal class estes Determ the arameters α * a β * us ML or ERM Al the ERM rectl rst to estmate the est Use them to ormulate the ecso rule Ths ers rom al the ERM rcle rectl to mmze the emrcal rsk R em w I w B estmat R or classcato us averae o the rsk over the ata.

11 ..3 Reresso Classcal ormulato o the reresso roblem Seek to estmate a vector o arameters o a ukow ucto w b mak measuremets o the ucto wth error at a ot w where error s eeet o a s strbute accor to a kow est. O ata Z {...} lkelhoo s P Z w l w Lkelhoo or Gaussa error wth zero mea a e varace P Z w Mamz the lkelhoo s equvalet to mmz uctoal R em whch s the rsk uctoal obtae b ERM or the square rom ucto. Square loss ucto Arorate ol or aussa ose. w l π w w Ote use ractcal alcato where the ose s ot aussa...4 Stochastc Aromato Stochastc Aromato Robbs a Moroe 95 Parameters a aromat ucto are estmate sequetall. For each vual ata samle resete a ew arameter estmate s rouce. As samles becomes lare rsk coveres to mmum. Geeral eecte rsk uctoal R L z z z stochastc aromato roceure k k γ ra L z k k where z...z s sequece o ata samles Geeral coto lm γ k Ital motvato k k k Geerate arameter estmates a real-tme asho as ata are collecte Beets Lare amout ata ee ot be store at oe tme. Aat to slowl cha ata-eerat sstem. γ k k k γ k <

12 Reccl each ccle eoch Store batch o ata s resete sequetall. Prouces a asmtotcall lare tra sequece. Comutatoall less comlcate tha batch oe. Whe to sto the uat rocess Motor the raet or each resete samles Check threshol Obe ERM ot use lear s halte earl beore small raets are see..5 Solv Problems wth Fte Data Do ot attemt to solve a sece roblem b rectl solv a harer eeral roblem as a termeate ste More eeral lear roblem larer samles requre Secc task shoul be solve rectl Estmate eatures o the est that are crtcal or solv our artcular roblem. Eamle.6 Soluto to ot eouh ata To mose artcal costrat Lear ecso rule Dscrmat Aalss Bul a two-class classer rom ata ata are eerate accor to the multvarate ormal robablt strbuto N µ a N µ estmate µ us ML base o the tra ata µ otmal ecso rule T T I µ µ µ µ c et Σ P c l l et Σ P > T T T P I µ µ Σ µ Σ µ µ Σ µ l > P estmate two meas a ol oe covarace matr The smler lear ecso rule ote erorms better tha the quaratc ecso rule eve whe Demostrato ata samles er class accor to Class est s ausa meas a covarace matrces are ukow Quaratc ecso rule vs. lear ecso rule Lear ecso rule oes ot match uerl class strbuto Frst-orer moel roves the lowest classcato error F..

13 ..6 Noarametrc Methos Develomet o oarametrc metho Attemt to eal wth the ma shortcom o classcal techques Sec the arametrc orm o ukow strbutos a eeeces Requre ew assumtos but lare umber o samles Noarametrc Dest Estmato Hstoram Dve samle sace to bs o costat wth Determe umber o samles all to each b F..3

14 Drawback : result est s scotuous Sl wow kerel ucto Results a smooth estmate Geeral rcle or oarametrc est estmator. Solv the teral equato e the est u u F where F s cumulatve strbuto ucto: c Sce the c s ukow t s aromate b the emrcal c covere to true c as samles tes to t F I Caot be solve b strahtorwar sce the emrcal c has scotutes. A aroach to the cotuous soluto to the est Relace the Drac ucto wth a cotuous ucto aromate the est as a sum o kerel uctos at each ata ot Kα K α ' where s a kerel ucto ee 9 Drawbacks oor scal roertes or hh-mesoal ata a volume eclos eouh ata ot s ot local a more raus o volume ca be a scat racto o total rae o ata Asmtotc assumtos classcal oarametrc methos ot ese or small umber o samles oor results ractcal stuatos wth lmte ata.3 Aatve Lear: Cocets a Iuctve Prcles Fleble or aatve lear methos Fleblt A metho s caablt to estmate arbtrar eeeces rom te ata Prevous roblem Parametrc methos Imose ver stret assumto Are lkel to al the true arametrc orm o a eeec s ot kow Classcal oarametrc methos Fal or hh-mesoal roblems wth te samles

15 Uversal aromato roert Use leble ver we class o aromat uctos Aromate a cotuous ucto wth a resece accurac Fteess o avalable ata Set o uctos ees to be costrae to rouce a uque soluto Iuctve rcle Prove a ramework or select a uque soluto rom a we class o uctos us te ata.3. Phlosoh Major Cocets a Issues Two stes rectve lear F..4 ➀ Lea ukow eeec rom samles Iucto ➁ Us eeec estmate to rect outut or uture ut values Deucto Trasuctve aroach Estmate oututs o ukow ucto or several ots o terest rectl rom the tra ata Local Estmato A secal case o trasucto The recto s mae at a sle ot. Lea to local rsk ormulato Derece betwee trasucto a local estmato Assume that the trasucto reers to rectos at two or more ut values smultaeousl. Prectve lear Frst ste: challe oe Its soluto requres a ror kowlee ato to ata Seco ste: sml calculat the value o ucto All lear methos use a ror kowlee the orm o the class o aromat uctos o a lear mache Parametrc Metho Use a ver restrcte set o aromat uctos o resece arametrc orm

16 Aatve Methos Atoal a ror kowlee s eee or mos atoal costrats ealt o a otetal o a ucto to be a soluto to the lear roblem Two tes o a ror kowlee ➀ Choos a we leble set o aromat uctos o a lear mache ➁ Imos atoal costrats o the uctos wth ths set Seco te to a ror kowlee Requre ollows to orm a uque eeralzato moel rom te ata ➀ A set o aromat uctos. ➁ A ror kowlee or costrats ➂ A uctve rcle or comb a ror kowlee wth ata ➃ A lear metho o uctve rcle or a ve class o aromat uctos Iuctve Prcle vs. Lear Methos For a ve uctve rcle there ma be ma lear methos correso to eret classes o aromat uctos a/or eret otmzato techques.3. A Pror Kowlee a Moel Comlet No more ths shoul be resume to est tha are absolutel ecessar Occam s razor rcle attrbute to W. Occam c Geeral bele For aatve lear methos wth te samles the best recto erormace s rove b a moel o otmum comlet Moel Selecto Seek smler moels over comle oes. Otmze the trae-o betwee moel comlet a the accurac o moel s escrto t to the tra ata. Moel Comlet Usuall cotrolle b a ror kowlee A Pror Kowlee Caot assume a moel o e comlet. Shoul ot be automatcall use or rectve lear wth te samles eve the true arametrc orm o a moel s kow a ror.

17 Eamle.7 Frst-orer olomal vs. seco-orer olomal Frst-orer olomal roves the lowest rsk F..5 Parametrc Estmato or Fte Data Parametrc reresso roblem ata ots are eerate accor to where the ose s aussa wth zero mea a varace.5 quatt has uorm strbuto [ ]. Assume Kow: a olomal o seco orer has eerate the ata Ukow: the coecets o the olomal Remark: For te ata t s ot the valt o the assumtos but the comlet o the moel that etermes recto accurac. Two Coclusos ➀ A otmal trae-o betwee the moel comlet a avalable te ata are mortat eve whe the arametrc orm o the moel s kow. 5 tra ata -> seco-orer olomal 5 samles -> a mea estmate zero-orer olomal ➁ A ror kowlee ca be useul or lear rectve moels ol t cotrols elctl or mlctl the moel comlet. Two ssues How to ee a measure the moel comlet? How to rove oo arameterzato or a aml o aromat uctos o a lear mache?.3.3 Iuctve Prcles Classcal moel Moel s ve rst a arameters are estmate rom ata us emrcal rsk mmzato uctve rcle. Aatve moel Uerl moel s ot kow a t s estmate us a lare umber o caate moels. Ma ssue: Choos the caate moel o the rht comlet to escrbe the tra ata as state b Occam s razor.

18 Iuctve Prcles Prove eret quattatve ormulato o Occam s rcle Der terms o Reresetato eco o a ror kowlee Alcablt whe the true moel oes ot belo to the set o aromat uctos Mechasm or comb a ror kowlee wth tra ata Avalablt o costructve roceures or a ve rcle Fve uctve rcles revew Pealzatoreularzato uctve rcle Earl sto rules Structural rsk mmzatosrm Baesa erece Mmum Descrto LethMDL Pealzato Reularzato Iuctve Prcle Assumes a Fleble class o aromat uctos w w Ω where Ω s a set o abstract arameters. Pealzato reularzato term s use to restrct solutos R e R λφ[ ] em R em : usual emrcal rsk Φ[ ] : ealtoeatve eeet o ata λ> : reularzato arameter A ror kowlee s clue ealt orm. Reularzato arameter λ Cotrols the streth o ror kowlee Ver lare λ -> result o mmz R em oes ot ee o ata Small λ -> al moel oes ot ee o ealt uctoal Otmal value o λ s chose us resaml methos Otmal moel estmate s ou as a result o a trae-o betwee tt the ata a a ror kowlee.e. a ealt term.

19 Earl Sto Rules Sto Rules A heurstc uctve rcle ote use the alcatos o eural etworks. Avo overtt wth overarameterze moels. Ca be terrete as a mlct orm o ealzato A ealt s ee o a ath correso to the successve moel estmates obtae ur raet-escet tra. Solutos are ealze accor to the umber o raet escet stes take alo the ath.e. the stace rom the start ot. Dcult to cotrol a terret ealzato va earl sto rule Frema 994 Structural Rsk Mmzato SRM Rsk Mmzato Aromat uctos are orere accor to ther comlet orm a este structure S S S Eamle: Class o olomal aromat uctos The elemets o a structure are olomals o a ve eree. Polomals o eree m are a subset o olomals o eree m. Goal o lear Choose a otmal elemet o a structure.e. olomal eree a estmate ts coecets rom a ve tra set.... Baesa Ierece Comlet Number o ree arameters lear uctos VC-meso olear uctos Otmal Choce o Moel Comlet Proves the mmum o the eecte rsk. Statstcal lear theor roves aaltc uer-bou estmates or eecte rsk. These estmates are use or moel selecto choos a otmal elemet o a structure uer the SRM uctve rcle. Baesa Ierece Uses atoal a ror ormato about aromat uctos. Obta a uque rectve moel rom te ata. Pror Probablt Dstrbuto Probablt o a ucto be the true ucto Relects subjectve eree o bele Proves a eectve wa o eco ror kowlee. Base o the classcal Baes ormula or uat ror robablt us the evece rove b the ata: P[ata moel] P[moel] P [moel ata] P[ata]

20 Where P[moel]: Pror robablt beore the ata are observe P[ata]: The robablt o observ tra ata P[moelata]: A osteror robablt o a moel ve the ata P[atamoel]: The robablt that the ata are eerate b a moel also kow as the lkelhoo Dest estmato w w Ω s a set o estes w: m-mesoal vector o ree arameters m s e w belos to ths class X [... ] Probablt o see X as a ucto o w A ror est ucto P [moel] w Baes ormula P X w w P w X P X Pror strbuto s take rather broal relect eeral ucertat about correct arameter values Posteror strbuto coverte rom ror robablt ater hav observe the ata more arrow be cosstet wth the observe ata P[ata moel] P W w w Two Baesa aroaches or obta a estmate o ukow... True Baesa aroach Averae over all ossble moels Θ X w w X w where wx s ve b the Baes ormula Maralzato : volves terat out reuat varables Fal moel s a wehte sum o all ossble rectve moels wth wehts ve b the evece that each moel s correct Multmesoal terato resets a challe roblem Staar umercal terato s mossble Whe aussa assumtos o ot hol varous orms o raom saml such as Mote Carlo methos have bee roose MAP aroach Choose a estmate w* mamz osteror robablt wx Mamum a osteror robablt MAP estmate Equvalet to the ealzato ormulato as show below Reresso ormulato Tra ata eerate accor to w

21 Z [X ] where X [... ] a [... ] w s a ror est PZ w w w Z PZ Z w P X w R ma w l w w N R l ma w l w w l w l w w Equvalet to ealzato ormulato wth reularzato arameter relect the kowlee o ose varace Estmat os varace Estmat reularzato arameter Choce o a ealt term <-> ror ormato strbuto Choce o the reularzato arameter <-> kowlee estmate o the amout o ose Choos the value o reularzato arameterf a oo ror Talor rors to the ata Te II mamum lkelhoo techque Cotracts the oral oto o ata-eeet ror kowlee Comarso o Baesa a Pealzato Methos Baes: To ecoe a ror kowlee about multle eeral user-ee characterstcs o the taret ucto. Pealzato: To erorm comlet cotrol b eco a ror kowlee about ucto smoothess terms o a ealt uctoal. Baesa moel selecto: Pealze more comle moels choos the moel Not uaratee the best eerato erormace Pealzato a SRM: elct mmzato: elct mmzato o the recto rsk Baesa Moel Comarso Two moels: MDLs wth a eret o. o he uts. M w a M w Problem: choose the best moel to escrbe a ve ata set Z Estmate relatve lausbltes o two moels us Baes actor P M P M Evece o moel M: PZ M Z PZ M P M Z PZ M P M PZw M w PZ w M w M w

22 Mmum Descrto Leth MDL MDL rcle Base o the ormato-theoretc aalss o the raomess cocet Rears moels as coes as ecos o tra ata Ma ea A ata set ca be aroratel ecoe a ts coe leth reresets a heret roert o the ata whch s rectl relate to the eeralzato caablt o the moel.e. coe Characterstcs o raomess o a ata set Be the shortest bar coe escrb the ata Relate to the leth o the bar coe MDL uctve rcle Tra ata set:... { } s -mesoal eature vector Problem Gve a ata object X... s a bar str... raom? Ecoe the outut str b a ossbl shorter coe Moel: coe leth Lmoel Error term: coe leth Lata moel Total leth: l l Lmoel Lata moel Coecet o comresso: Kmoel Small coecet -> str s ot raom Summarz Proertes o Iuctve Prcle T X Lmo el lo m e loc loe loloe Lata moel R T < K T l lη

23

Linear regression (cont) Logistic regression

Linear regression (cont) Logistic regression CS 7 Fouatos of Mache Lear Lecture 4 Lear reresso cot Lostc reresso Mlos Hausrecht mlos@cs.ptt.eu 539 Seott Square Lear reresso Vector efto of the moel Iclue bas costat the put vector f - parameters ehts

More information

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation CS 750 Mache Learg Lecture 5 esty estmato Mlos Hausrecht mlos@tt.edu 539 Seott Square esty estmato esty estmato: s a usuervsed learg roblem Goal: Lear a model that rereset the relatos amog attrbutes the

More information

CS 2750 Machine Learning Lecture 8. Linear regression. Supervised learning. a set of n examples

CS 2750 Machine Learning Lecture 8. Linear regression. Supervised learning. a set of n examples CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht los@cs.tt.eu 59 Seott Square Suervse learg Data: D { D D.. D} a set of eales D s a ut vector of sze s the esre outut gve b a teacher Obectve: lear

More information

Continuous Random Variables: Conditioning, Expectation and Independence

Continuous Random Variables: Conditioning, Expectation and Independence Cotuous Radom Varables: Codtog, xectato ad Ideedece Berl Che Deartmet o Comuter cece & Iormato geerg atoal Tawa ormal Uverst Reerece: - D.. Bertsekas, J.. Tstskls, Itroducto to robablt, ectos 3.4-3.5 Codtog

More information

Parameter Estimation

Parameter Estimation arameter Estmato robabltes Notatoal Coveto Mass dscrete fucto: catal letters Desty cotuous fucto: small letters Vector vs. scalar Scalar: la Vector: bold D: small Hgher dmeso: catal Notes a cotuous state

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

Probability and Statistics. What is probability? What is statistics?

Probability and Statistics. What is probability? What is statistics? robablt ad Statstcs What s robablt? What s statstcs? robablt ad Statstcs robablt Formall defed usg a set of aoms Seeks to determe the lkelhood that a gve evet or observato or measuremet wll or has haeed

More information

= 2. Statistic - function that doesn't depend on any of the known parameters; examples:

= 2. Statistic - function that doesn't depend on any of the known parameters; examples: of Samplg Theory amples - uemploymet househol cosumpto survey Raom sample - set of rv's... ; 's have ot strbuto [ ] f f s vector of parameters e.g. Statstc - fucto that oes't epe o ay of the ow parameters;

More information

CS 3710 Advanced Topics in AI Lecture 17. Density estimation. CS 3710 Probabilistic graphical models. Administration

CS 3710 Advanced Topics in AI Lecture 17. Density estimation. CS 3710 Probabilistic graphical models. Administration CS 37 Avace Topcs AI Lecture 7 esty estmato Mlos Hauskrecht mlos@cs.ptt.eu 539 Seott Square CS 37 robablstc graphcal moels Amstrato Mterm: A take-home exam week ue o Weesay ovember 5 before the class epes

More information

Generative classification models

Generative classification models CS 75 Mache Learg Lecture Geeratve classfcato models Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Data: D { d, d,.., d} d, Classfcato represets a dscrete class value Goal: lear f : X Y Bar classfcato

More information

Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier

Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier arametrc Dest Estmato: Baesa Estmato. Naïve Baes Classfer Baesa arameter Estmato Suose we have some dea of the rage where arameters should be Should t we formalze such ror owledge hoes that t wll lead

More information

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Lear regresso Fucto f : X Y s a lear combato of put compoets f + + + K d d K k - parameters

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Nonparametric Density Estimation Intro

Nonparametric Density Estimation Intro Noarametrc Desty Estmato Itro Parze Wdows No-Parametrc Methods Nether robablty dstrbuto or dscrmat fucto s kow Haes qute ofte All we have s labeled data a lot s kow easer salmo bass salmo salmo Estmate

More information

MAINTENANCE POLICY FOR DETERIORATING SYSTEM WITH EXPLANATORY VARIABLES ABSTRACT

MAINTENANCE POLICY FOR DETERIORATING SYSTEM WITH EXPLANATORY VARIABLES ABSTRACT R&RATA # 3 art Vol. 9, Jue MAINTENANCE POLICY FOR DETERIORATING SYSTEM WITH EXPLANATORY VARIABLES Xueg Zhao*,** Mtra Foulara* Chrstohe Béreguer*, Lauret Bores*** * Uversté e Techologe e Troes,, TROYES

More information

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING Joural of tatstcs: Advaces Theory ad Alcatos Volume 5, Number, 6, Pages 3- Avalable at htt://scetfcadvaces.co. DOI: htt://d.do.org/.864/jsata_7678 TRONG CONITENCY FOR IMPLE LINEAR EV MODEL WITH v/ -MIXING

More information

UNIT 7 RANK CORRELATION

UNIT 7 RANK CORRELATION UNIT 7 RANK CORRELATION Rak Correlato Structure 7. Itroucto Objectves 7. Cocept of Rak Correlato 7.3 Dervato of Rak Correlato Coeffcet Formula 7.4 Te or Repeate Raks 7.5 Cocurret Devato 7.6 Summar 7.7

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Aalyss of Varace ad Desg of Exermets-I MODULE II LECTURE - GENERAL LINEAR HYPOTHESIS AND ANALYSIS OF VARIANCE Dr Shalabh Deartmet of Mathematcs ad Statstcs Ida Isttute of Techology Kaur Tukey s rocedure

More information

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ Stat 74 Estmato for Geeral Lear Model Prof. Goel Broad Outle Geeral Lear Model (GLM): Trag Samle Model: Gve observatos, [[( Y, x ), x = ( x,, xr )], =,,, the samle model ca be exressed as Y = µ ( x, x,,

More information

Lecture 12: Multilayer perceptrons II

Lecture 12: Multilayer perceptrons II Lecture : Multlayer perceptros II Bayes dscrmats ad MLPs he role of hdde uts A eample Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty Bayes dscrmats ad MLPs ( As we have see throuhout

More information

BASIC PRINCIPLES OF STATISTICS

BASIC PRINCIPLES OF STATISTICS BASIC PRINCIPLES OF STATISTICS PROBABILITY DENSITY DISTRIBUTIONS DISCRETE VARIABLES BINOMIAL DISTRIBUTION ~ B 0 0 umber of successes trals Pr E [ ] Var[ ] ; BINOMIAL DISTRIBUTION B7 0. B30 0.3 B50 0.5

More information

Kernel-based Methods and Support Vector Machines

Kernel-based Methods and Support Vector Machines Kerel-based Methods ad Support Vector Maches Larr Holder CptS 570 Mache Learg School of Electrcal Egeerg ad Computer Scece Washgto State Uverst Refereces Muller et al. A Itroducto to Kerel-Based Learg

More information

Unsupervised Learning and Other Neural Networks

Unsupervised Learning and Other Neural Networks CSE 53 Soft Computg NOT PART OF THE FINAL Usupervsed Learg ad Other Neural Networs Itroducto Mture Destes ad Idetfablty ML Estmates Applcato to Normal Mtures Other Neural Networs Itroducto Prevously, all

More information

Generalized Linear Regression with Regularization

Generalized Linear Regression with Regularization Geeralze Lear Regresso wth Regularzato Zoya Bylsk March 3, 05 BASIC REGRESSION PROBLEM Note: I the followg otes I wll make explct what s a vector a what s a scalar usg vec t or otato, to avo cofuso betwee

More information

STK3100 and STK4100 Autumn 2017

STK3100 and STK4100 Autumn 2017 SK3 ad SK4 Autum 7 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Sectos 4..5, 4.3.5, 4.3.6, 4.4., 4.4., ad 4.4.3 Sectos 5.., 5.., ad 5.5. Ørulf Borga Deartmet of Mathematcs

More information

Model Fitting, RANSAC. Jana Kosecka

Model Fitting, RANSAC. Jana Kosecka Model Fttg, RANSAC Jaa Kosecka Fttg: Issues Prevous strateges Le detecto Hough trasform Smple parametrc model, two parameters m, b m + b Votg strateg Hard to geeralze to hgher dmesos a o + a + a 2 2 +

More information

Classification : Logistic regression. Generative classification model.

Classification : Logistic regression. Generative classification model. CS 75 Mache Lear Lecture 8 Classfcato : Lostc reresso. Geeratve classfcato model. Mlos Hausrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Lear Bar classfcato o classes Y {} Our oal s to lear to classf

More information

Lecture 3 Naïve Bayes, Maximum Entropy and Text Classification COSI 134

Lecture 3 Naïve Bayes, Maximum Entropy and Text Classification COSI 134 Lecture 3 Naïve Baes, Mamum Etro ad Tet Classfcato COSI 34 Codtoal Parameterzato Two RVs: ItellgeceI ad SATS ValI = {Hgh,Low}, ValS={Hgh,Low} A ossble jot dstrbuto Ca descrbe usg cha rule as PI,S PIPS

More information

ECON 5360 Class Notes GMM

ECON 5360 Class Notes GMM ECON 560 Class Notes GMM Geeralzed Method of Momets (GMM) I beg by outlg the classcal method of momets techque (Fsher, 95) ad the proceed to geeralzed method of momets (Hase, 98).. radtoal Method of Momets

More information

ELEC 6041 LECTURE NOTES WEEK 1 Dr. Amir G. Aghdam Concordia University

ELEC 6041 LECTURE NOTES WEEK 1 Dr. Amir G. Aghdam Concordia University ELEC 604 LECTURE NOTES WEEK Dr mr G ghdam Cocorda Uverst Itroducto - Large-scale sstems are the mult-ut mult-outut (MIMO) sstems cosstg of geograhcall searated comoets - Eamles of large-scale sstems clude

More information

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 17

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 17 Itroucto to Ecoometrcs (3 r Upate Eto) by James H. Stock a Mark W. Watso Solutos to O-Numbere E-of-Chapter Exercses: Chapter 7 (Ths erso August 7, 04) 05 Pearso Eucato, Ic. Stock/Watso - Itroucto to Ecoometrcs

More information

STK3100 and STK4100 Autumn 2018

STK3100 and STK4100 Autumn 2018 SK3 ad SK4 Autum 8 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Cofdece tervals by vertg tests Cosder a model wth a sgle arameter β We may obta a ( α% cofdece terval for

More information

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/2008, pp

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/2008, pp THE PUBLISHIN HOUSE PROCEEDINS OF THE ROMANIAN ACADEMY, Seres A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/8, THE UNITS IN Stela Corelu ANDRONESCU Uversty of Pteşt, Deartmet of Mathematcs, Târgu Vale

More information

2. Independence and Bernoulli Trials

2. Independence and Bernoulli Trials . Ideedece ad Beroull Trals Ideedece: Evets ad B are deedet f B B. - It s easy to show that, B deedet mles, B;, B are all deedet ars. For examle, ad so that B or B B B B B φ,.e., ad B are deedet evets.,

More information

Basics of Information Theory: Markku Juntti. Basic concepts and tools 1 Introduction 2 Entropy, relative entropy and mutual information

Basics of Information Theory: Markku Juntti. Basic concepts and tools 1 Introduction 2 Entropy, relative entropy and mutual information : Markku Jutt Overvew Te basc cocepts o ormato teory lke etropy mutual ormato ad EP are eeralzed or cotuous-valued radom varables by troduc deretal etropy ource Te materal s maly based o Capter 9 o te

More information

2SLS Estimates ECON In this case, begin with the assumption that E[ i

2SLS Estimates ECON In this case, begin with the assumption that E[ i SLS Estmates ECON 3033 Bll Evas Fall 05 Two-Stage Least Squares (SLS Cosder a stadard lear bvarate regresso model y 0 x. I ths case, beg wth the assumto that E[ x] 0 whch meas that OLS estmates of wll

More information

LINEARLY CONSTRAINED MINIMIZATION BY USING NEWTON S METHOD

LINEARLY CONSTRAINED MINIMIZATION BY USING NEWTON S METHOD Jural Karya Asl Loreka Ahl Matematk Vol 8 o 205 Page 084-088 Jural Karya Asl Loreka Ahl Matematk LIEARLY COSTRAIED MIIMIZATIO BY USIG EWTO S METHOD Yosza B Dasrl, a Ismal B Moh 2 Faculty Electrocs a Computer

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

A MODIFIED REGULARIZED NEWTON METHOD FOR UNCONSTRAINED NONCONVEX OPTIMIZATION

A MODIFIED REGULARIZED NEWTON METHOD FOR UNCONSTRAINED NONCONVEX OPTIMIZATION JRRAS 9 Ma 4 wwwarpapresscom/volumes/vol9ssue/jrras_9 6p A MODFED REGULARZED NEWON MEOD FOR UNCONSRANED NONCONVEX OPMZAON e Wa Me Q & abo Wa Collee o Scece Uverst o Shaha or Scece a echolo Shaha Cha 93

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

9.1 Introduction to the probit and logit models

9.1 Introduction to the probit and logit models EC3000 Ecoometrcs Lecture 9 Probt & Logt Aalss 9. Itroducto to the probt ad logt models 9. The logt model 9.3 The probt model Appedx 9. Itroducto to the probt ad logt models These models are used regressos

More information

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1 STA 08 Appled Lear Models: Regresso Aalyss Sprg 0 Soluto for Homework #. Let Y the dollar cost per year, X the umber of vsts per year. The the mathematcal relato betwee X ad Y s: Y 300 + X. Ths s a fuctoal

More information

Entropy, Relative Entropy and Mutual Information

Entropy, Relative Entropy and Mutual Information Etro Relatve Etro ad Mutual Iformato rof. Ja-Lg Wu Deartmet of Comuter Scece ad Iformato Egeerg Natoal Tawa Uverst Defto: The Etro of a dscrete radom varable s defed b : base : 0 0 0 as bts 0 : addg terms

More information

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois Radom Varables ECE 313 Probablty wth Egeerg Alcatos Lecture 8 Professor Rav K. Iyer Uversty of Illos Iyer - Lecture 8 ECE 313 Fall 013 Today s Tocs Revew o Radom Varables Cumulatve Dstrbuto Fucto (CDF

More information

Tokyo Institute of Technology Tokyo Institute of Technology

Tokyo Institute of Technology Tokyo Institute of Technology Outle ult-aget Search usg oroo Partto ad oroo D eermet Revew Itroducto Decreasg desty fucto Stablty Cocluso Fujta Lab, Det. of Cotrol ad System Egeerg, FL07--: July 09,007 Davd Ask ork rogress:. Smulato

More information

Channel Models with Memory. Channel Models with Memory. Channel Models with Memory. Channel Models with Memory

Channel Models with Memory. Channel Models with Memory. Channel Models with Memory. Channel Models with Memory Chael Models wth Memory Chael Models wth Memory Hayder radha Electrcal ad Comuter Egeerg Mchga State Uversty I may ractcal etworkg scearos (cludg the Iteret ad wreless etworks), the uderlyg chaels are

More information

CONTROL CHARTS FOR ATTRIBUTES

CONTROL CHARTS FOR ATTRIBUTES UNIT 3 CONTROL CHARTS FOR ATTRIBUTES Structure 3.1 Itroucto Objectves 3.2 Cotrol Charts for Attrbutes 3.3 Cotrol Chart for Fracto Defectve (-Chart) 3.4 -Chart for Varable Samle Sze 3.5 Cotrol Chart for

More information

15-381: Artificial Intelligence. Regression and neural networks (NN)

15-381: Artificial Intelligence. Regression and neural networks (NN) 5-38: Artfcal Itellece Reresso ad eural etorks NN) Mmck the bra I the earl das of AI there as a lot of terest develop models that ca mmc huma thk. Whle o oe ke eactl ho the bra orks ad, eve thouh there

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

An Efficient Conjugate- Gradient Method With New Step-Size

An Efficient Conjugate- Gradient Method With New Step-Size Australa Joural of Basc a Ale Sceces, 5(8: 57-68, ISSN 99-878 A Effcet Cojugate- Graet Metho Wth New Ste-Sze Ba Ahma Mtras, Naa Faleh Hassa Deartmet of Mathematcs College of Comuters Sceces a Mathematcs

More information

C.11 Bang-bang Control

C.11 Bang-bang Control Itroucto to Cotrol heory Iclug Optmal Cotrol Nguye a e -.5 C. Bag-bag Cotrol. Itroucto hs chapter eals wth the cotrol wth restrctos: s boue a mght well be possble to have scotutes. o llustrate some of

More information

M2S1 - EXERCISES 8: SOLUTIONS

M2S1 - EXERCISES 8: SOLUTIONS MS - EXERCISES 8: SOLUTIONS. As X,..., X P ossoλ, a gve that T ˉX, the usg elemetary propertes of expectatos, we have E ft [T E fx [X λ λ, so that T s a ubase estmator of λ. T X X X Furthermore X X X From

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

MIMA Group. Chapter 4 Non-Parameter Estimation. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 4 Non-Parameter Estimation. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Grou M D L M Chater 4 No-Parameter Estmato X-Shu Xu @ SDU School of Comuter Scece ad Techology, Shadog Uversty Cotets Itroducto Parze Wdows K-Nearest-Neghbor Estmato Classfcato Techques The Nearest-Neghbor

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Lecture Notes Forecasting the process of estimating or predicting unknown situations

Lecture Notes Forecasting the process of estimating or predicting unknown situations Lecture Notes. Ecoomc Forecastg. Forecastg the process of estmatg or predctg ukow stuatos Eample usuall ecoomsts predct future ecoomc varables Forecastg apples to a varet of data () tme seres data predctg

More information

Recursive linear estimation for discrete time systems in the presence of different multiplicative observation noises

Recursive linear estimation for discrete time systems in the presence of different multiplicative observation noises Recursve lear estmato for dscrete tme systems the resece of dfferet multlcatve observato oses C. Sáchez Gozález,*,.M. García Muñoz Deartameto de Métodos Cuattatvos ara la Ecoomía y la Emresa, Facultad

More information

Lecture 3. Least Squares Fitting. Optimization Trinity 2014 P.H.S.Torr. Classic least squares. Total least squares.

Lecture 3. Least Squares Fitting. Optimization Trinity 2014 P.H.S.Torr. Classic least squares. Total least squares. Lecture 3 Optmzato Trt 04 P.H.S.Torr Least Squares Fttg Classc least squares Total least squares Robust Estmato Fttg: Cocepts ad recpes Least squares le fttg Data:,,,, Le equato: = m + b Fd m, b to mmze

More information

Australian Journal of Basic and Applied Sciences. Full-Sweep SOR Iterative Method to Solve Space-Fractional Diffusion Equations

Australian Journal of Basic and Applied Sciences. Full-Sweep SOR Iterative Method to Solve Space-Fractional Diffusion Equations Australa Joural of Basc ad Aled Sceces, 8(4) Secal 14, Paes: 153-158 AENSI Jourals Australa Joural of Basc ad Aled Sceces ISSN:1991-8178 Joural home ae: www.abasweb.com Full-Swee SOR Iteratve Method to

More information

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and CHAPTR 6 Secto 6.. a. We use the samle mea, to estmate the oulato mea µ. Σ 9.80 µ 8.407 7 ~ 7. b. We use the samle meda, 7 (the mddle observato whe arraged ascedg order. c. We use the samle stadard devato,

More information

Linear regression (cont.) Linear methods for classification

Linear regression (cont.) Linear methods for classification CS 75 Mache Lear Lecture 7 Lear reresso cot. Lear methods for classfcato Mlos Hausrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Lear Coeffcet shrae he least squares estmates ofte have lo bas but hh

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

A new Yang-type estimator of Distribution Function at Quantal Response over Indirect Data

A new Yang-type estimator of Distribution Function at Quantal Response over Indirect Data A ew Yag-tye estmator of Dstrbuto Fucto at Quatal Resose over Irect Data MIKHAIL TIKHOV, MAXIM IVKIN Deartmet Ale Teory Probablty Nzy Novgoro State Uversty, 3 Prosekt Gagara, 6395, Nzy Novgoro, RUSSIA

More information

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018 Chrs Pech Fal Practce CS09 Dec 5, 08 Practce Fal Examato Solutos. Aswer: 4/5 8/7. There are multle ways to obta ths aswer; here are two: The frst commo method s to sum over all ossbltes for the rak of

More information

Two Fuzzy Probability Measures

Two Fuzzy Probability Measures Two Fuzzy robablty Measures Zdeěk Karíšek Isttute of Mathematcs Faculty of Mechacal Egeerg Bro Uversty of Techology Techcká 2 66 69 Bro Czech Reublc e-mal: karsek@umfmevutbrcz Karel Slavíček System dmstrato

More information

Applied Poker Test for General Digital Sequences

Applied Poker Test for General Digital Sequences IOSR Joural of Mathematcs IOSR-JM e-issn: 78-578, -ISSN: 39-765X. Volume, Issue Ver. V Ja. - Feb. 6, PP 7-3 www.osrjourals.org Ale Poker Test for Geeral Dgtal Sequeces Sahar A. Mohamme Abstract: The Poker

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Big Data Analytics. Data Fitting and Sampling. Acknowledgement: Notes by Profs. R. Szeliski, S. Seitz, S. Lazebnik, K. Chaturvedi, and S.

Big Data Analytics. Data Fitting and Sampling. Acknowledgement: Notes by Profs. R. Szeliski, S. Seitz, S. Lazebnik, K. Chaturvedi, and S. Bg Data Aaltcs Data Fttg ad Samplg Ackowledgemet: Notes b Profs. R. Szelsk, S. Setz, S. Lazebk, K. Chaturved, ad S. Shah Fttg: Cocepts ad recpes A bag of techques If we kow whch pots belog to the le, how

More information

Chapter 5. Curve fitting

Chapter 5. Curve fitting Chapter 5 Curve ttg Assgmet please use ecell Gve the data elow use least squares regresso to t a a straght le a power equato c a saturato-growthrate equato ad d a paraola. Fd the r value ad justy whch

More information

QR Factorization and Singular Value Decomposition COS 323

QR Factorization and Singular Value Decomposition COS 323 QR Factorzato ad Sgular Value Decomposto COS 33 Why Yet Aother Method? How do we solve least-squares wthout currg codto-squarg effect of ormal equatos (A T A A T b) whe A s sgular, fat, or otherwse poorly-specfed?

More information

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines CS 675 Itroducto to Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Mdterm eam October 9, 7 I-class eam Closed book Stud materal: Lecture otes Correspodg chapters

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

4. Standard Regression Model and Spatial Dependence Tests

4. Standard Regression Model and Spatial Dependence Tests 4. Stadard Regresso Model ad Spatal Depedece Tests Stadard regresso aalss fals the presece of spatal effects. I case of spatal depedeces ad/or spatal heterogeet a stadard regresso model wll be msspecfed.

More information

Linear Regression Linear Regression with Shrinkage. Some slides are due to Tommi Jaakkola, MIT AI Lab

Linear Regression Linear Regression with Shrinkage. Some slides are due to Tommi Jaakkola, MIT AI Lab Lear Regresso Lear Regresso th Shrkage Some sldes are due to Tomm Jaakkola, MIT AI Lab Itroducto The goal of regresso s to make quattatve real valued predctos o the bass of a vector of features or attrbutes.

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

A class of Liu-type estimators based on ridge regression under multicollinearity with an application to mixture experiments

A class of Liu-type estimators based on ridge regression under multicollinearity with an application to mixture experiments A class of Lu-te estmators based o rdge regresso uder multcolleart wth a alcato to mture eermets Preseter: A-Chu Che 陳愛群 Advsor: aesh Emura Jue 6, 5 Graduate Isttute of Statstcs, NCU Outle Itroducto Methodolog

More information

Lecture 7: Linear and quadratic classifiers

Lecture 7: Linear and quadratic classifiers Lecture 7: Lear ad quadratc classfers Bayes classfers for ormally dstrbuted classes Case : Σ σ I Case : Σ Σ (Σ daoal Case : Σ Σ (Σ o-daoal Case 4: Σ σ I Case 5: Σ Σ j eeral case Lear ad quadratc classfers:

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Regression and the LMS Algorithm

Regression and the LMS Algorithm CSE 556: Itroducto to Neural Netorks Regresso ad the LMS Algorthm CSE 556: Regresso 1 Problem statemet CSE 556: Regresso Lear regresso th oe varable Gve a set of N pars of data {, d }, appromate d b a

More information

Module 7. Lecture 7: Statistical parameter estimation

Module 7. Lecture 7: Statistical parameter estimation Lecture 7: Statstcal parameter estmato Parameter Estmato Methods of Parameter Estmato 1) Method of Matchg Pots ) Method of Momets 3) Mamum Lkelhood method Populato Parameter Sample Parameter Ubased estmato

More information

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have NM 7 Lecture 9 Some Useful Dscrete Dstrbutos Some Useful Dscrete Dstrbutos The observatos geerated by dfferet eermets have the same geeral tye of behavor. Cosequetly, radom varables assocated wth these

More information

Dimensionality reduction Feature selection

Dimensionality reduction Feature selection CS 675 Itroucto to ache Learg Lecture Dmesoalty reucto Feature selecto los Hauskrecht mlos@cs.ptt.eu 539 Seott Square Dmesoalty reucto. otvato. L methos are sestve to the mesoalty of ata Questo: Is there

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

CHAPTER 3 POSTERIOR DISTRIBUTIONS

CHAPTER 3 POSTERIOR DISTRIBUTIONS CHAPTER 3 POSTERIOR DISTRIBUTIONS If scece caot measure the degree of probablt volved, so much the worse for scece. The practcal ma wll stck to hs apprecatve methods utl t does, or wll accept the results

More information

Initial-Value Problems for ODEs. numerical errors (round-off and truncation errors) Consider a perturbed system: dz dt

Initial-Value Problems for ODEs. numerical errors (round-off and truncation errors) Consider a perturbed system: dz dt Ital-Value Problems or ODEs d GIVEN: t t,, a FIND: t or atb umercal errors (roud-o ad trucato errors) Cosder a perturbed sstem: dz t, z t, at b z a a Does z(t) (t)? () (uqueess) a uque soluto (t) exsts

More information

Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier

Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier arametrc Dest Estmato: Baesa Estmato. Naïve Baes Classfer Baesa arameter Estmato Suppose we have some dea of the rage where parameters θ should be Should t we formalze such pror owledge hopes that t wll

More information

COMPUTERISED ALGEBRA USED TO CALCULATE X n COST AND SOME COSTS FROM CONVERSIONS OF P-BASE SYSTEM WITH REFERENCES OF P-ADIC NUMBERS FROM

COMPUTERISED ALGEBRA USED TO CALCULATE X n COST AND SOME COSTS FROM CONVERSIONS OF P-BASE SYSTEM WITH REFERENCES OF P-ADIC NUMBERS FROM U.P.B. Sc. Bull., Seres A, Vol. 68, No. 3, 6 COMPUTERISED ALGEBRA USED TO CALCULATE X COST AND SOME COSTS FROM CONVERSIONS OF P-BASE SYSTEM WITH REFERENCES OF P-ADIC NUMBERS FROM Z AND Q C.A. MURESAN Autorul

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

Some Applications of the Resampling Methods in Computational Physics

Some Applications of the Resampling Methods in Computational Physics Iteratoal Joural of Mathematcs Treds ad Techoloy Volume 6 February 04 Some Applcatos of the Resampl Methods Computatoal Physcs Sotraq Marko #, Lorec Ekoom * # Physcs Departmet, Uversty of Korca, Albaa,

More information

Study of Correlation using Bayes Approach under bivariate Distributions

Study of Correlation using Bayes Approach under bivariate Distributions Iteratoal Joural of Scece Egeerg ad Techolog Research IJSETR Volume Issue Februar 4 Stud of Correlato usg Baes Approach uder bvarate Dstrbutos N.S.Padharkar* ad. M.N.Deshpade** *Govt.Vdarbha Isttute of

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean Research Joural of Mathematcal ad Statstcal Sceces ISS 30 6047 Vol. 1(), 5-1, ovember (013) Res. J. Mathematcal ad Statstcal Sc. Comparso of Dual to Rato-Cum-Product Estmators of Populato Mea Abstract

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information