Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier

Size: px
Start display at page:

Download "Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier"

Transcription

1 arametrc Dest Estmato: Baesa Estmato. Naïve Baes Classfer

2 Baesa arameter Estmato Suppose we have some dea of the rage where parameters θ should be Should t we formalze such pror owledge hopes that t wll lead to better parameter estmato? Let θ be a radom varable wth pror dstrbuto θ Ths s the e dfferece betwee ML ad Baesa parameter estmato Ths e assumpto allows us to full explot the formato provded b the data

3 Baesa arameter Estmato θ s a radom varable wth pror pθ Ule MLE case, pxθ s a codtoal dest The trag data D allow us to covert pθ to a posteror probablt dest pθd. After we observe the data D, usg Baes rule we ca compute the posteror pθd But θ s ot our fal goal, our fal goal s the uow px Therefore a better thg to do s to maxmze pxd, ths s as close as we ca come to the uow px!

4 Baesa Estmato: Formula for pxd From the defto of ot dstrbuto: θ x D p x, D p dθ Usg the defto of codtoal probablt: x D p x θ, D p θ D p dθ But pxθ,dpxθ sce pxθ s completel specfed b θ Usg Baes formula, p ow uow p x D p x θ p θ D dθ p D θ p θ θ D p D θ p D θ p θ p x θ dθ 1

5 Baesa Estmato vs. MLE So prcple pxd ca be computed I practce, t ma be hard to do tegrato aaltcall, ma have to resort to umercal methods p x D p x θ p x θ p θ 1 dθ 1 p x θ p θ Cotrast ths wth the MLE soluto whch requres dfferetato of lelhood to get p x θˆ d θ Dfferetato s eas ad ca alwas be doe aaltcall

6 Baesa Estmato vs. MLE support θ receves from the data x D p x θ p θ D p dθ proposed model wth certa θ The above equato mples that f we are less certa about the exact value of θ, we should cosder a weghted average of pxθ over the possble values of θ. Cotrast ths wth the MLE soluto whch alwas gves us a sgle model: p x θˆ

7 Baesa Estmato for Gaussa wth uow µ Let px µ be Nµ,σ 2 that s σ 2 s ow, but µ s uow ad eeds to be estmated, so θ µ 2 Assume a pror over µ : p µ ~ N µ 0, σ 0 µ 0 ecodes some pror owledge about the true mea, whle measures our pror ucertat. 2 µ σ 0

8 Baesa Estmato for Gaussa wth uow µ The posteror dstrbuto s: p µ D p D µ p µ x µ µ µ 0 α 'exp σ σ µ 0 α ''exp + µ 2 x µ 2 2 σ σ 0 σ 1 σ 0 Where factors that do ot deped o µ have bee absorbed to the costats α ad α p µ D s a expoet of a quadratc fucto of µ.e. t s a ormal dest; t remas ormal for a umber of trag samples. If we wrte µ µ p µ D exp '' µ 0 ; α exp 2πσ 2 σ + µ 2 x + µ σ σ 0 σ 1 σ 0 the detfg the coeffcets, we get where 1 ˆ µ x µ + µ ˆ µ σ σ σ σ σ σ

9 Baesa Estmato for Gaussa wth uow µ µ 2 Solvg explctl for ad σ we obta: 2 2 σ 0 σ µ ˆ 2 2 µ + µ σ 0 + σ σ 0 + σ our best guess after observg samples σ σ σ σ 0 + σ ucertat about the guess, decreases mootocall wth

10 Baesa Estmato for Gaussa wth uow µ Each addtoal observato decreases our ucertat about the true value of. µ As creases, p µ D becomes more ad more sharpl peaed, approachg a Drac delta fucto as approaches ft. Ths behavor s ow as Baesa Learg.

11 Baesa Estmato for Gaussa wth uow µ 2 2 σ 0 σ µ ˆ 2 2 µ + µ σ 0 + σ σ 0 + σ µ ˆ I geeral, s a lear combato of a sample mea ad a pror µ 0, wth coeffcets that are o-egatve ad sum to 1. Thus µ les somewhere betwee ˆ µ ad µ 0. If σ 0 0, µ ˆ µ as If σ 0 0, our a pror certat that µ µ 0 s so strog that o umber of observatos ca chage our opo. If a pror guess s ver ucerta σ 0 s large, we tae µ ˆ µ µ

12 Baesa Estmato: Example for U[0,θ] Let X be U[0,θ]. Recall pxθ1/θ sde [0,θ], else 0 p x θ p θ 1 θ θ 1 10 x 10 Suppose we assume a U[0,10] pror o θ good pror to use f we ust ow the rage of θ but do t ow athg else θ

13 Baesa Estmato: Example for U[0,θ] We eed to compute p x D p x θ p θ D usg dθ p D θ p θ p θ D ad p D θ p D θ p θ p x θ dθ 1 Whe computg MLE of θ, we had p D θ Thus p θ D 1 for θ max{ x,..., x } θ 0 otherwse 1 1 c for max{ θ 0 otherwse x 1,..., x } θ x p θ 1 x3 x2 θ D p 10 θ where c s the ormalzg costat,.e. c 1 10 d max { x..., x } 1, θ θ

14 Baesa Estmato: Example for U[0,θ] We eed to compute p x D p x θ p θ D 1 θ p θ D p x θ 1 c for max{ θ 0 otherwse We have 2 cases: 1. case x < max{x 1, x 2,, x } θ x x 1 dθ,..., 1 p x,... x } + 1 θ 2. case x > max{x 1, x 2,, x } 10 1 c 10 p x D c dθ x + 1 x θ θ x } θ 10 x 1 x3 x2 10 x D c dθ α max{ 1 c x D p θ 10 c 10 θ costat depedet of x

15 Baesa Estmato: Example for U[0,θ] α ML x p x θˆ 1 x3 x2 Baes 10 x p x D Note that eve after x >max {x 1, x 2,, x }, Baes dest s ot zero, whch maes sese curous fact: Baes dest s ot uform,.e. does ot have the fuctoal form that we have assumed!

16 ML vs. Baesa Estmato wth Broad ror Suppose pθ s flat ad broad close to uform pror pθd teds to sharpe f there s a lot of data p θ D p D θ p θ θˆ θ Thus pdθ pθdpθ wll have the same sharp pea as pθd But b defto, pea of pdθ s the ML estmate θ^ The tegral s domated b the pea: p x D p x θ p θ D dθ p x ˆ θ p θ D dθ p x ˆ θ Thus as goes to ft, Baesa estmate wll approach the dest correspodg to the MLE!

17 ML vs. Baesa Estmato Number of trag data The two methods are equvalet assumg fte umber of trag data ad pror dstrbutos that do ot exclude the true soluto. For small trag data sets, the gve dfferet results most cases. Computatoal complext ML uses dfferetal calculus or gradet search for maxmzg the lelhood. Baesa estmato requres complex multdmesoal tegrato techques.

18 ML vs. Baesa Estmato Soluto complext Easer to terpret ML solutos.e., must be of the assumed parametrc form. A Baesa estmato soluto mght ot be of the parametrc form assumed. Hard to terpret, returs weghted average of models. ror dstrbuto If the pror dstrbuto pθ s uform, Baesa estmato solutos are equvalet to ML solutos.

19 Naïve Baes Classfer

20 Ubased Learg of Baes Classfers s Impractcal Lear Baes classfer b estmatg XY ad Y. AssumeY s boolea ad X s a vector of boolea attrbutes. I ths case, we eed to estmate a set of parameters θ X x Y taes o 2 possble values; How ma parameters? taes o 2 possble values. For a partcular value, ad the 2 possble values of x, we eed compute 2-1 depedet parameters. Gve the two possble values for Y, we must estmate a total of 22-1 such parameters. Complex model Hgh varace wth lmted data!!!

21 Codtoal Idepedece Defto: X s codtoall depedet of Y gve Z, f the probablt dstrbuto goverg X s depedet of the value of Y, gve the value of Z,, X x Y, Z z X x Z z Example: Thuder Ra, Lghtg Thuder Lghtg Note that geeral Thuder s ot depedet of Ra, but t s gve Lghtg. Equvalet to: X, Y Z X Y, Z Y Z X Z Y Z

22 Dervato of Nave Baes Algorthm Nave Baes algorthm assumes that the attrbutes X 1,,X are all codtoall depedet of oe aother, gve Y. Ths dramatcall smplfes the represetato of XY estmatg XY from the trag data. Cosder XX 1,X 2 X Y X, X Y X Y X Y For X cotag attrbutes Y X Y 1 X Y Gve the boolea X ad Y, ow we eed ol 2 parameters to defe XY, whch s dramatc reducto compared to the 22-1 parameters f we mae o codtoal depedece assumpto.

23 The Naïve Baes Classfer Gve: ror Y codtoall depedet features X, gve the class Y For each X, we have lelhood X Y The probablt that Y wll tae o ts th possble value, s Y X Y The Decso rule: Y X Y Y X Y X Y arg max * Y X Y If assumpto holds, NB s optmal classfer!

24 Naïve Baes for the dscrete puts Gve, attrbutes X each tag o J possble dscrete values ad Y a dscrete varable tag o K possble values. MLE for Lelhood X x Y gve a set of trag examples D: # D { X x Y } ˆ X x Y # D{ Y } where the #D{x} operator returs the umber of elemets the set D that satsf propert x. MLE for the pror D Y ˆ # { Y D } umber of elemets the trag set D

25 NB Example Gve, trag data X Y Classf the followg ovel stace : Outloosu, Tempcool,Humdthgh,Wdstrog

26 NB Example arg max }, { o es NB strog Wd hgh Humdt cool Temp su Outloo / /14 rors : o lates es lates / / strog : Wd e.g. robabltes, Codtoal o lates strog Wd es lates strog Wd es strog es hgh es cool es su es 0.02 o strog o hgh o cool o su o

27 Subtletes of NB classfer 1 Volatg the NB assumpto Usuall, features are ot codtoall depedet. Noetheless, NB ofte performs well, eve whe assumpto s volated [Domgos& azza 96] dscuss some codtos for [Domgos& azza 96] dscuss some codtos for good performace

28 Subtletes of NB classfer 2 Isuffcet trag data What f ou ever see a trag stace where X 1 a whe Yb? X 1 a Yb 0 Thus, o matter what the values X 2,,X tae: Soluto? Yb X 1 a,x 2,,X 0

29 Subtletes of NB classfer 2 Isuffcet trag data To avod ths, use a smoothed estmate effectvel adds a umber of addtoal hallucated examples assumes these hallucated examples are spread evel over the possble values of X. Ths smoothed estmate s gve b # D{ X x Y ˆ X x Y # D{ Y } + lj # D{ Y } + l ˆ Y D + lk l determes the stregth of the smoothg If l1 called Laplace smoothg } + l The umber of hallucated examples

30 Nave Baes for Cotuous Iputs Whe the X are cotuous we must choose some other wa to represet the dstrbutos X Y. Oe commo approach s to assume that for each possble dscrete value of Y, the dstrbuto of each cotuous X s Gaussa. I order to tra such a Naïve Baes classfer we must estmate the mea ad stadard devato of each of these Gaussas

31 Nave Baes for Cotuous Iputs MLE for meas 1 ˆ µ δ Y Y where refers to the th trag example, ad where δy s 1 f Y ad 0 otherwse. Note the role of δ s to select ol those trag examples for whch Y. MLE for stadard devato ˆ σ X Y Y 2 µ δ δ 1 X δ 2 ˆ

32 Learg Classf Text Applcatos: Lear whch ews artcle are of terest Lear to classf web pages b topc. Naïve Baes s amog most effectve algorthms Target cocept Iterestg?: Documet->{+,-} Target cocept Iterestg?: Documet->{+,-} 1 Represet each documet b vector of words oe attrbute per word posto documet 2 Learg: Use trag examples to estmate + - doc+ doc-

33 Text Classfcato-Example: Text Text Classfcato, or the tas of automatcall assgg sematc categores to atural laguage text, has become oe of the e methods for orgazg ole formato. Sce had-codg classfcato rules s costl or eve mpractcal, most moder approaches emplo mache learg techques to automatcall lear text classfers from examples. The text cotas 48 words Text Represetato a 1 text,a 2 classfcato,. a 48 examples The represetato cotas 48 attrbutes Note: Text sze ma var, but t wll ot cause a problem

34 NB codtoal depedece Assumpto doc legth doc 1 a w The NB assumpto s that the word probabltes for oe text posto are depedet of the words other postos, gve the documet classfcato Idcates the th word Eglsh vocabular probablt that word posto s w, gve Clearl ot true: The probablt of word learg ma be greater f the precedg word s mache Necessar, wthout t the umber of probablt terms s prohbtve erforms remarabl well despte the correctess of the assumpto

35 Text Classfcato-Example: Text Text Classfcato, or the tas of automatcall assgg sematc categores to atural laguage text, has become oe of the e methods for orgazg ole formato. Sce had-codg classfcato rules s costl or eve mpractcal, most moder approaches emplo mache learg techques to automatcall lear text classfers from examples. The text cotas 48 words Classfcato: * arg max { +, } { +, } arg max a 1 ' text' a w Text Represetato a 1 text,a 2 classfcato,. a 48 examples The represetato cotas 48 attrbutes... a 48 ' examples'

36 Estmatg Lelhood Is problematc because we eed to estmate t for each combato of text posto, Eglsh word, ad target value: 48*50,000*2 5 mllo such terms. Assumpto that reduced the umber of terms Bag of Words Model The probablt of ecouterg a specfc word w s depedet of the specfc word posto. a w am w,, m Istead of estmatg we estmate a sgle term Now we have 50,000*2 dstct terms. a 1 w, a w,... w

37 Estmatg Lelhood The estmate for the lelhood s w Vocabular -the total umber of word postos all -the total umber of word postos all trag examples whose target value s -the umber tmes word w s foud amog these word postos. Vocabular -the total umber of dstct words foud wth the trag data.

38 Lear_Nave_Baes_TextExamples,V 1. collect all words ad other toes that occur Examples Vocabular all dstct words ad other toes Examples 2. calculate the requred ad For each target value V do docs w - subset of Examples for whch the target value s - Text - a sgle documet created b cocateatg all members of - total umber of words coutg duplcate words multple tmes - For each word the Vocabular * umber of tmes word occurs * docs Examples w w Text w Vocabular Text docs

39 Classf_Nave_Baes_TextDoc postos all word postos Doc that cota toes foud Vocabular * Retur arg max w { +, } postos

Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier

Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier arametrc Dest Estmato: Baesa Estmato. Naïve Baes Classfer Baesa arameter Estmato Suose we have some dea of the rage where arameters should be Should t we formalze such ror owledge hoes that t wll lead

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Generative classification models

Generative classification models CS 75 Mache Learg Lecture Geeratve classfcato models Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Data: D { d, d,.., d} d, Classfcato represets a dscrete class value Goal: lear f : X Y Bar classfcato

More information

Unsupervised Learning and Other Neural Networks

Unsupervised Learning and Other Neural Networks CSE 53 Soft Computg NOT PART OF THE FINAL Usupervsed Learg ad Other Neural Networs Itroducto Mture Destes ad Idetfablty ML Estmates Applcato to Normal Mtures Other Neural Networs Itroducto Prevously, all

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Part I: Background on the Binomial Distribution

Part I: Background on the Binomial Distribution Part I: Bacgroud o the Bomal Dstrbuto A radom varable s sad to have a Beroull dstrbuto f t taes o the value wth probablt "p" ad the value wth probablt " - p". The umber of "successes" "" depedet Beroull

More information

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Lear regresso Fucto f : X Y s a lear combato of put compoets f + + + K d d K k - parameters

More information

Naïve Bayes MIT Course Notes Cynthia Rudin

Naïve Bayes MIT Course Notes Cynthia Rudin Thaks to Şeyda Ertek Credt: Ng, Mtchell Naïve Bayes MIT 5.097 Course Notes Cytha Rud The Naïve Bayes algorthm comes from a geeratve model. There s a mportat dstcto betwee geeratve ad dscrmatve models.

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

CHAPTER 3 POSTERIOR DISTRIBUTIONS

CHAPTER 3 POSTERIOR DISTRIBUTIONS CHAPTER 3 POSTERIOR DISTRIBUTIONS If scece caot measure the degree of probablt volved, so much the worse for scece. The practcal ma wll stck to hs apprecatve methods utl t does, or wll accept the results

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier Baa Classfcato CS6L Data Mg: Classfcato() Referece: J. Ha ad M. Kamber, Data Mg: Cocepts ad Techques robablstc learg: Calculate explct probabltes for hypothess, amog the most practcal approaches to certa

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation CS 750 Mache Learg Lecture 5 esty estmato Mlos Hausrecht mlos@tt.edu 539 Seott Square esty estmato esty estmato: s a usuervsed learg roblem Goal: Lear a model that rereset the relatos amog attrbutes the

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

Dimensionality Reduction and Learning

Dimensionality Reduction and Learning CMSC 35900 (Sprg 009) Large Scale Learg Lecture: 3 Dmesoalty Reducto ad Learg Istructors: Sham Kakade ad Greg Shakharovch L Supervsed Methods ad Dmesoalty Reducto The theme of these two lectures s that

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

Parameter Estimation

Parameter Estimation arameter Estmato robabltes Notatoal Coveto Mass dscrete fucto: catal letters Desty cotuous fucto: small letters Vector vs. scalar Scalar: la Vector: bold D: small Hgher dmeso: catal Notes a cotuous state

More information

Lecture 3 Naïve Bayes, Maximum Entropy and Text Classification COSI 134

Lecture 3 Naïve Bayes, Maximum Entropy and Text Classification COSI 134 Lecture 3 Naïve Baes, Mamum Etro ad Tet Classfcato COSI 34 Codtoal Parameterzato Two RVs: ItellgeceI ad SATS ValI = {Hgh,Low}, ValS={Hgh,Low} A ossble jot dstrbuto Ca descrbe usg cha rule as PI,S PIPS

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

ECON 482 / WH Hong The Simple Regression Model 1. Definition of the Simple Regression Model

ECON 482 / WH Hong The Simple Regression Model 1. Definition of the Simple Regression Model ECON 48 / WH Hog The Smple Regresso Model. Defto of the Smple Regresso Model Smple Regresso Model Expla varable y terms of varable x y = β + β x+ u y : depedet varable, explaed varable, respose varable,

More information

Supervised learning: Linear regression Logistic regression

Supervised learning: Linear regression Logistic regression CS 57 Itroducto to AI Lecture 4 Supervsed learg: Lear regresso Logstc regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Data: D { D D.. D D Supervsed learg d a set of eamples s

More information

Idea is to sample from a different distribution that picks points in important regions of the sample space. Want ( ) ( ) ( ) E f X = f x g x dx

Idea is to sample from a different distribution that picks points in important regions of the sample space. Want ( ) ( ) ( ) E f X = f x g x dx Importace Samplg Used for a umber of purposes: Varace reducto Allows for dffcult dstrbutos to be sampled from. Sestvty aalyss Reusg samples to reduce computatoal burde. Idea s to sample from a dfferet

More information

22 Nonparametric Methods.

22 Nonparametric Methods. 22 oparametrc Methods. I parametrc models oe assumes apror that the dstrbutos have a specfc form wth oe or more ukow parameters ad oe tres to fd the best or atleast reasoably effcet procedures that aswer

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Simple Linear Regression

Simple Linear Regression Correlato ad Smple Lear Regresso Berl Che Departmet of Computer Scece & Iformato Egeerg Natoal Tawa Normal Uversty Referece:. W. Navd. Statstcs for Egeerg ad Scetsts. Chapter 7 (7.-7.3) & Teachg Materal

More information

Correlation and Simple Linear Regression

Correlation and Simple Linear Regression Correlato ad Smple Lear Regresso Berl Che Departmet of Computer Scece & Iformato Egeerg Natoal Tawa Normal Uverst Referece:. W. Navd. Statstcs for Egeerg ad Scetsts. Chapter 7 (7.-7.3) & Teachg Materal

More information

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model 1. Estmatg Model parameters Assumptos: ox ad y are related accordg to the smple lear regresso model (The lear regresso model s the model that says that x ad y are related a lear fasho, but the observed

More information

Objectives of Multiple Regression

Objectives of Multiple Regression Obectves of Multple Regresso Establsh the lear equato that best predcts values of a depedet varable Y usg more tha oe eplaator varable from a large set of potetal predctors {,,... k }. Fd that subset of

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Classification : Logistic regression. Generative classification model.

Classification : Logistic regression. Generative classification model. CS 75 Mache Lear Lecture 8 Classfcato : Lostc reresso. Geeratve classfcato model. Mlos Hausrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Lear Bar classfcato o classes Y {} Our oal s to lear to classf

More information

Chapter 8. Inferences about More Than Two Population Central Values

Chapter 8. Inferences about More Than Two Population Central Values Chapter 8. Ifereces about More Tha Two Populato Cetral Values Case tudy: Effect of Tmg of the Treatmet of Port-We tas wth Lasers ) To vestgate whether treatmet at a youg age would yeld better results tha

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

Kernel-based Methods and Support Vector Machines

Kernel-based Methods and Support Vector Machines Kerel-based Methods ad Support Vector Maches Larr Holder CptS 570 Mache Learg School of Electrcal Egeerg ad Computer Scece Washgto State Uverst Refereces Muller et al. A Itroducto to Kerel-Based Learg

More information

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic.

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic. c Pogsa Porchawseskul, Faculty of Ecoomcs, Chulalogkor Uversty olato of costat varace of s but they are stll depedet. C,, he error term s sad to be heteroscedastc. c Pogsa Porchawseskul, Faculty of Ecoomcs,

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Chapter 3 Sampling For Proportions and Percentages

Chapter 3 Sampling For Proportions and Percentages Chapter 3 Samplg For Proportos ad Percetages I may stuatos, the characterstc uder study o whch the observatos are collected are qualtatve ature For example, the resposes of customers may marketg surveys

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Lecture 2 - What are component and system reliability and how it can be improved?

Lecture 2 - What are component and system reliability and how it can be improved? Lecture 2 - What are compoet ad system relablty ad how t ca be mproved? Relablty s a measure of the qualty of the product over the log ru. The cocept of relablty s a exteded tme perod over whch the expected

More information

Lecture 8: Linear Regression

Lecture 8: Linear Regression Lecture 8: Lear egresso May 4, GENOME 56, Sprg Goals Develop basc cocepts of lear regresso from a probablstc framework Estmatg parameters ad hypothess testg wth lear models Lear regresso Su I Lee, CSE

More information

Study of Correlation using Bayes Approach under bivariate Distributions

Study of Correlation using Bayes Approach under bivariate Distributions Iteratoal Joural of Scece Egeerg ad Techolog Research IJSETR Volume Issue Februar 4 Stud of Correlato usg Baes Approach uder bvarate Dstrbutos N.S.Padharkar* ad. M.N.Deshpade** *Govt.Vdarbha Isttute of

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Chapter 11 Systematic Sampling

Chapter 11 Systematic Sampling Chapter stematc amplg The sstematc samplg techue s operatoall more coveet tha the smple radom samplg. It also esures at the same tme that each ut has eual probablt of cluso the sample. I ths method of

More information

Overcoming Limitations of Sampling for Aggregation Queries

Overcoming Limitations of Sampling for Aggregation Queries CIS 6930 Approxmate Quer Processg Paper Presetato Sprg 2004 - Istructor: Dr Al Dobra Overcomg Lmtatos of Samplg for Aggregato Queres Authors: Surajt Chaudhur, Gautam Das, Maur Datar, Rajeev Motwa, ad Vvek

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

8.1 Hashing Algorithms

8.1 Hashing Algorithms CS787: Advaced Algorthms Scrbe: Mayak Maheshwar, Chrs Hrchs Lecturer: Shuch Chawla Topc: Hashg ad NP-Completeess Date: September 21 2007 Prevously we looked at applcatos of radomzed algorthms, ad bega

More information

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean Research Joural of Mathematcal ad Statstcal Sceces ISS 30 6047 Vol. 1(), 5-1, ovember (013) Res. J. Mathematcal ad Statstcal Sc. Comparso of Dual to Rato-Cum-Product Estmators of Populato Mea Abstract

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

Recall MLR 5 Homskedasticity error u has the same variance given any values of the explanatory variables Var(u x1,...,xk) = 2 or E(UU ) = 2 I

Recall MLR 5 Homskedasticity error u has the same variance given any values of the explanatory variables Var(u x1,...,xk) = 2 or E(UU ) = 2 I Chapter 8 Heterosedastcty Recall MLR 5 Homsedastcty error u has the same varace gve ay values of the eplaatory varables Varu,..., = or EUU = I Suppose other GM assumptos hold but have heterosedastcty.

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

Continuous Distributions

Continuous Distributions 7//3 Cotuous Dstrbutos Radom Varables of the Cotuous Type Desty Curve Percet Desty fucto, f (x) A smooth curve that ft the dstrbuto 3 4 5 6 7 8 9 Test scores Desty Curve Percet Probablty Desty Fucto, f

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

Machine Learning. Introduction to Regression. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Introduction to Regression. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Mache Learg CSE6740/CS764/ISYE6740, Fall 0 Itroducto to Regresso Le Sog Lecture 4, August 30, 0 Based o sldes from Erc g, CMU Readg: Chap. 3, CB Mache learg for apartmet hutg Suppose ou are to move to

More information

Lecture Notes 2. The ability to manipulate matrices is critical in economics.

Lecture Notes 2. The ability to manipulate matrices is critical in economics. Lecture Notes. Revew of Matrces he ablt to mapulate matrces s crtcal ecoomcs.. Matr a rectagular arra of umbers, parameters, or varables placed rows ad colums. Matrces are assocated wth lear equatos. lemets

More information

Can we take the Mysticism Out of the Pearson Coefficient of Linear Correlation?

Can we take the Mysticism Out of the Pearson Coefficient of Linear Correlation? Ca we tae the Mstcsm Out of the Pearso Coeffcet of Lear Correlato? Itroducto As the ttle of ths tutoral dcates, our purpose s to egeder a clear uderstadg of the Pearso coeffcet of lear correlato studets

More information

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions CO-511: Learg Theory prg 2017 Lecturer: Ro Lv Lecture 16: Bacpropogato Algorthm Dsclamer: These otes have ot bee subected to the usual scruty reserved for formal publcatos. They may be dstrbuted outsde

More information

A New Family of Transformations for Lifetime Data

A New Family of Transformations for Lifetime Data Proceedgs of the World Cogress o Egeerg 4 Vol I, WCE 4, July - 4, 4, Lodo, U.K. A New Famly of Trasformatos for Lfetme Data Lakhaa Watthaacheewakul Abstract A famly of trasformatos s the oe of several

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

9.1 Introduction to the probit and logit models

9.1 Introduction to the probit and logit models EC3000 Ecoometrcs Lecture 9 Probt & Logt Aalss 9. Itroducto to the probt ad logt models 9. The logt model 9.3 The probt model Appedx 9. Itroducto to the probt ad logt models These models are used regressos

More information

Lecture Notes Forecasting the process of estimating or predicting unknown situations

Lecture Notes Forecasting the process of estimating or predicting unknown situations Lecture Notes. Ecoomc Forecastg. Forecastg the process of estmatg or predctg ukow stuatos Eample usuall ecoomsts predct future ecoomc varables Forecastg apples to a varet of data () tme seres data predctg

More information

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression Overvew Basc cocepts of Bayesa learg Most probable model gve data Co tosses Lear regresso Logstc regresso Bayesa predctos Co tosses Lear regresso 30 Recap: regresso problems Iput to learg problem: trag

More information

6.867 Machine Learning

6.867 Machine Learning 6.867 Mache Learg Problem set Due Frday, September 9, rectato Please address all questos ad commets about ths problem set to 6.867-staff@a.mt.edu. You do ot eed to use MATLAB for ths problem set though

More information

Bayesian belief networks

Bayesian belief networks Lecture 14 ayesa belef etworks los Hauskrecht mlos@cs.ptt.edu 5329 Seott Square Desty estmato Data: D { D1 D2.. D} D x a vector of attrbute values ttrbutes: modeled by radom varables { 1 2 d} wth: otuous

More information

Fridayʼs lecture" Problem solutions" Joint densities" 1."E(X) xf (x) dx (x,y) dy X,Y Marginal distributions" The distribution of a ratio" Problems"

Fridayʼs lecture Problem solutions Joint densities 1.E(X) xf (x) dx (x,y) dy X,Y Marginal distributions The distribution of a ratio Problems Frdayʼs lecture" Jot destes" Margal dstrbutos" The dstrbuto of a rato" Problems" Problem solutos" 1." E(X) = xf X (x)dx = x f X,Y (x,y)dy dx 2. E(X) " = kp X (k) = p X (1) + 2p X (2) +... = xf X,Y (x,y)dxdy

More information

Class 13,14 June 17, 19, 2015

Class 13,14 June 17, 19, 2015 Class 3,4 Jue 7, 9, 05 Pla for Class3,4:. Samplg dstrbuto of sample mea. The Cetral Lmt Theorem (CLT). Cofdece terval for ukow mea.. Samplg Dstrbuto for Sample mea. Methods used are based o CLT ( Cetral

More information

7. Joint Distributions

7. Joint Distributions 7. Jot Dstrbutos Chrs Pech ad Mehra Saham Ma 2017 Ofte ou wll work o problems where there are several radom varables (ofte teractg wth oe aother. We are gog to start to formall look at how those teractos

More information

ENGI 4421 Propagation of Error Page 8-01

ENGI 4421 Propagation of Error Page 8-01 ENGI 441 Propagato of Error Page 8-01 Propagato of Error [Navd Chapter 3; ot Devore] Ay realstc measuremet procedure cotas error. Ay calculatos based o that measuremet wll therefore also cota a error.

More information

Lecture Note to Rice Chapter 8

Lecture Note to Rice Chapter 8 ECON 430 HG revsed Nov 06 Lecture Note to Rce Chapter 8 Radom matrces Let Y, =,,, m, =,,, be radom varables (r.v. s). The matrx Y Y Y Y Y Y Y Y Y Y = m m m s called a radom matrx ( wth a ot m-dmesoal dstrbuto,

More information

Chapter 2 Supplemental Text Material

Chapter 2 Supplemental Text Material -. Models for the Data ad the t-test Chapter upplemetal Text Materal The model preseted the text, equato (-3) s more properl called a meas model. ce the mea s a locato parameter, ths tpe of model s also

More information

LINEAR REGRESSION ANALYSIS

LINEAR REGRESSION ANALYSIS LINEAR REGRESSION ANALYSIS MODULE V Lecture - Correctg Model Iadequaces Through Trasformato ad Weghtg Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Aalytcal methods for

More information