Lecture 7: Linear and quadratic classifiers

Size: px
Start display at page:

Download "Lecture 7: Linear and quadratic classifiers"

Transcription

1 Lecture 7: Lear ad quadratc classfers Bayes classfers for ormally dstrbuted classes Case : Σ σ I Case : Σ Σ (Σ daoal Case : Σ Σ (Σ o-daoal Case 4: Σ σ I Case 5: Σ Σ j eeral case Lear ad quadratc classfers: coclusos Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty

2 Bayes classfers for ormally dstrbuted classes O Lecture 4 we showed that the decso rule (MAP that mmzed the probablty of error could be formulated terms of a famly of dscrmat fuctos choose f (x > (x j where (x P( j x As we wll show, for classes that are ormally dstrbuted, ths famly of dscrmat fuctos ca be reduced to very smple expressos Geeral expresso for Gaussa destes he multvarate ormal desty fucto was defed as Dscrmat fuctos Features -/ (x exp P( We take atural los sce the loarthm s a mootocally creas fucto x (x fx(x exp / / ( Wth ths md, ad utlz Bayes rule, the MAP dscrmat fucto becomes P(x P( (x P( x exp (x (x P( / P(x / ( Elmat costat terms (x - lo + ( lo( P( Class assmet Select max (x x x P(x C (x x d Costs hs expresso s called a quadratc dscrmat fucto Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty

3 Case : Σ σ I hs stuato occurs whe the features are statstcally depedet wth the same varace for all classes I ths case, the quadratc dscrmat fucto becomes ( ( ( - lo( + lo( P( - (x I - lo I + lo P( + lo( P( Expad ths expresso (x x - x - + lo P( x x x + Elmat the term x x, whch s costat for all classes ( ( ( ( lo( P( + secod dropp term the (x x + + lo P( w x + w w where w + lo( P( Sce the dscrmat s lear, the decso boudares (x j (x, wll be hyper-plaes If we assume equal prors (x ( ( x σ µ µ µ C Dstace Dstace Dstace Mmum Selector class hs s called a mmum-dstace or earest mea classfer he loc of costat probablty for each class are hyper-spheres For ut varace (σ, the dstace becomes the Eucldea dstace Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty

4 Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty 4 Case : Σ σ I, example o llustrate the prevous result, we wll compute the decso boudares for a - class, -dmesoal problem wth the follow class mea vectors ad covarace matrces ad equal prors [ ] [ ] [ ] 5 4 7

5 Case : Σ Σ (Σ daoal he classes stll have the same covarace matrx, but the features are allowed to have dfferet varaces I ths case, the quadratc dscrmat fucto becomes (x (x (x k k (x[k] x[k] k [k] x[k] O k - lo lo [k] + [k] ( + lo( P( (x k k - lo + lo P( lo ( k k O + lo P( ( + lo P( ( Elmat the term x[k], whch s costat for all classes x[k] [k] + [k] (x lo k + k k k ( lo P( hs dscrmat s lear, so the decso boudares (x j (x, wll be also be hyper-plaes he loc of costat probablty are hyper-ellpses aled wth the feature axs ote that the oly dfferece wth the prevous classfer s that the dstace of each axs s ormalzed by the varace of the axs Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty 5

6 Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty 6 o llustrate the prevous result, we wll compute the decso boudares for a -class, -dmesoal problem wth the follow class mea vectors ad covarace matrces ad equal prors [ ] [ ] [ ] Case : Σ Σ (Σ daoal, example

7 Case : Σ Σ (Σ o-daoal I ths case, all the classes have the same covarace matrx, but ths s o loer daoal he quadratc dscrmat becomes (x - lo - lo ( + lo( P( ( + lo( P( Elmat the term lo, whch s costat for all classes (x + lo P( ( he quadratc term s called the Mahalaobs dstace, a very mportat dstace Statstcal PR Mahalaobs Dstace x - y y y x he Mahalaobs dstace s a vector dstace that uses a - orm - ca be thouht of as a stretch factor o the space ote that for a detty covarace matrx (I, the Mahalaobs dstace becomes the famlar Eucldea dstace µ x x - K x - Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty 7

8 Case : Σ Σ (Σ o-daoal Expaso of the quadratc term the dscrmat yelds (x + lo P( + Remov the term x - x, whch s costat for all classes (x ( x + lo( P( + ( ( x x x + lo( P( Reoraz terms we obta (x w where x + w w w + lop( x µ µ µ C Dstace Dstace Dstace Mmum Selector class hs dscrmat s lear, so the decso boudares wll also be hyper-plaes he costat probablty loc are hyper-ellpses aled wth the eevectors of If we ca assume equal prors (x (x he classfer becomes a mmum (Mahalaobs dstace classfer Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty 8

9 Case : Σ Σ (Σ o-daoal, example o llustrate the prevous result, we wll compute the decso boudares for a - class, -dmesoal problem wth the follow class mea vectors ad covarace matrces ad equal prors [ ] [ 5 4] [ 5] Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty 9

10 Case 4: Σ σ I I ths case, each class has a dfferet covarace matrx, whch s proportoal to the detty matrx he quadratc dscrmat becomes (x - lo - lo ( + lo( P( ( + lo( P( hs expresso caot be reduced further so he decso boudares are quadratc: hyper-ellpses he loc of costat probablty are hyper-spheres aled wth the feature axs Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty

11 Case 4: Σ σ I, example o llustrate the prevous result, we wll compute the decso boudares for a - class, -dmesoal problem wth the follow class mea vectors ad covarace matrces ad equal prors [ ] [ 5 4] [ 5].5.5 Zoom out Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty

12 Case 5: Σ Σ j eeral case We already derved the expresso for the eeral case at the be of ths dscusso (x - lo + ( lo( P( Reoraz terms a quadratc form yelds (x x Wx + w x + w W where w w - lo ( + lo( P( he loc of costat probablty for each class are hyper-ellpses, oreted wth the eevectors of Σ for that class he decso boudares are aa quadratc: hyper-ellpses or hyper-parabollods otce that the quadratc expresso the dscrmat s proportoal to the Mahalaobs dstace us the class-codtoal covarace Σ Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty

13 Case 5: Σ Σ j eeral case, example o llustrate the prevous result, we wll compute the decso boudares for a - class, -dmesoal problem wth the follow class mea vectors ad covarace matrces ad equal prors [ ] [ 5 4] [ 5] Zoom out Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty

14 Coclusos From the prevous examples we ca extract the follow coclusos he Bayes classfer for ormally dstrbuted classes (eeral case s a quadratc classfer he Bayes classfer for ormally dstrbuted classes wth equal covarace matrces s a lear classfer he mmum Mahalaobs dstace classfer s optmum for ormally dstrbuted classes ad equal covarace matrces ad equal prors he mmum Eucldea dstace classfer s optmum for ormally dstrbuted classes ad equal covarace matrces proportoal to the detty matrx ad equal prors Both Eucldea ad Mahalaobs dstace classfers are lear classfers he oal of ths dscusso was to show that some of the most popular classfers ca be derved from decso-theoretc prcples ad some smplfy assumptos It s mportat to realze that us a specfc (Eucldea or Mahalaobs mmum dstace classfer mplctly correspods to certa statstcal assumptos he questo whether these assumptos hold or do t ca rarely be aswered practce; most cases we are lmted to post ad aswer the questo does ths classfer solve our problem or ot? Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty 4

Lecture 12: Multilayer perceptrons II

Lecture 12: Multilayer perceptrons II Lecture : Multlayer perceptros II Bayes dscrmats ad MLPs he role of hdde uts A eample Itroducto to Patter Recoto Rcardo Guterrez-Osua Wrht State Uversty Bayes dscrmats ad MLPs ( As we have see throuhout

More information

LECTURE 2: Linear and quadratic classifiers

LECTURE 2: Linear and quadratic classifiers LECURE : Lear ad quadratc classfers g Part : Bayesa Decso heory he Lkelhood Rato est Maxmum A Posteror ad Maxmum Lkelhood Dscrmat fuctos g Part : Quadratc classfers Bayes classfers for ormally dstrbuted

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

LECTURE 9: Principal Components Analysis

LECTURE 9: Principal Components Analysis LECURE 9: Prcpal Compoets Aalss he curse of dmesoalt Dmesoalt reducto Feature selecto vs. feature etracto Sal represetato vs. sal classfcato Prcpal Compoets Aalss Itroducto to Patter Aalss Rcardo Guterrez-Osua

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression Overvew Basc cocepts of Bayesa learg Most probable model gve data Co tosses Lear regresso Logstc regresso Bayesa predctos Co tosses Lear regresso 30 Recap: regresso problems Iput to learg problem: trag

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Generative classification models

Generative classification models CS 75 Mache Learg Lecture Geeratve classfcato models Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Data: D { d, d,.., d} d, Classfcato represets a dscrete class value Goal: lear f : X Y Bar classfcato

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

6. Nonparametric techniques

6. Nonparametric techniques 6. Noparametrc techques Motvato Problem: how to decde o a sutable model (e.g. whch type of Gaussa) Idea: just use the orgal data (lazy learg) 2 Idea 1: each data pot represets a pece of probablty P(x)

More information

Unsupervised Learning and Other Neural Networks

Unsupervised Learning and Other Neural Networks CSE 53 Soft Computg NOT PART OF THE FINAL Usupervsed Learg ad Other Neural Networs Itroducto Mture Destes ad Idetfablty ML Estmates Applcato to Normal Mtures Other Neural Networs Itroducto Prevously, all

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

LECTURE 21: Support Vector Machines

LECTURE 21: Support Vector Machines LECURE 2: Support Vector Maches Emprcal Rsk Mmzato he VC dmeso Structural Rsk Mmzato Maxmum mar hyperplae he Laraa dual problem Itroducto to Patter Aalyss Rcardo Guterrez-Osua exas A&M Uversty Itroducto

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

The expected value of a sum of random variables,, is the sum of the expected values:

The expected value of a sum of random variables,, is the sum of the expected values: Sums of Radom Varables xpected Values ad Varaces of Sums ad Averages of Radom Varables The expected value of a sum of radom varables, say S, s the sum of the expected values: ( ) ( ) S Ths s always true

More information

Applications of Multiple Biological Signals

Applications of Multiple Biological Signals Applcatos of Multple Bologcal Sgals I the Hosptal of Natoal Tawa Uversty, curatve gastrectomy could be performed o patets of gastrc cacers who are udergoe the curatve resecto to acqure sgal resposes from

More information

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines CS 675 Itroducto to Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Mdterm eam October 9, 7 I-class eam Closed book Stud materal: Lecture otes Correspodg chapters

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Bayes Decision Theory - II

Bayes Decision Theory - II Bayes Decso Theory - II Ke Kreutz-Delgado (Nuo Vascocelos) ECE 175 Wter 2012 - UCSD Nearest Neghbor Classfer We are cosderg supervsed classfcato Nearest Neghbor (NN) Classfer A trag set D = {(x 1,y 1 ),,

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Simple Linear Regression

Simple Linear Regression Correlato ad Smple Lear Regresso Berl Che Departmet of Computer Scece & Iformato Egeerg Natoal Tawa Normal Uversty Referece:. W. Navd. Statstcs for Egeerg ad Scetsts. Chapter 7 (7.-7.3) & Teachg Materal

More information

An Introduction to. Support Vector Machine

An Introduction to. Support Vector Machine A Itroducto to Support Vector Mache Support Vector Mache (SVM) A classfer derved from statstcal learg theory by Vapk, et al. 99 SVM became famous whe, usg mages as put, t gave accuracy comparable to eural-etwork

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

Classification : Logistic regression. Generative classification model.

Classification : Logistic regression. Generative classification model. CS 75 Mache Lear Lecture 8 Classfcato : Lostc reresso. Geeratve classfcato model. Mlos Hausrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Lear Bar classfcato o classes Y {} Our oal s to lear to classf

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

Introduction to Matrices and Matrix Approach to Simple Linear Regression

Introduction to Matrices and Matrix Approach to Simple Linear Regression Itroducto to Matrces ad Matrx Approach to Smple Lear Regresso Matrces Defto: A matrx s a rectagular array of umbers or symbolc elemets I may applcatos, the rows of a matrx wll represet dvduals cases (people,

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Qualifying Exam Statistical Theory Problem Solutions August 2005

Qualifying Exam Statistical Theory Problem Solutions August 2005 Qualfyg Exam Statstcal Theory Problem Solutos August 5. Let X, X,..., X be d uform U(,),

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Dr. Shalabh. Indian Institute of Technology Kanpur

Dr. Shalabh. Indian Institute of Technology Kanpur Aalyss of Varace ad Desg of Expermets-I MODULE -I LECTURE - SOME RESULTS ON LINEAR ALGEBRA, MATRIX THEORY AND DISTRIBUTIONS Dr. Shalabh Departmet t of Mathematcs t ad Statstcs t t Ida Isttute of Techology

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

Sequential Approach to Covariance Correction for P-Field Simulation

Sequential Approach to Covariance Correction for P-Field Simulation Sequetal Approach to Covarace Correcto for P-Feld Smulato Chad Neufeld ad Clayto V. Deutsch Oe well kow artfact of the probablty feld (p-feld smulato algorthm s a too large covarace ear codtog data. Prevously,

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

22 Nonparametric Methods.

22 Nonparametric Methods. 22 oparametrc Methods. I parametrc models oe assumes apror that the dstrbutos have a specfc form wth oe or more ukow parameters ad oe tres to fd the best or atleast reasoably effcet procedures that aswer

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

New Schedule. Dec. 8 same same same Oct. 21. ^2 weeks ^1 week ^1 week. Pattern Recognition for Vision

New Schedule. Dec. 8 same same same Oct. 21. ^2 weeks ^1 week ^1 week. Pattern Recognition for Vision ew Schedule Dec. 8 same same same Oct. ^ weeks ^ week ^ week Fall 004 Patter Recogto for Vso 9.93 Patter Recogto for Vso Classfcato Berd Hesele Fall 004 Overvew Itroducto Lear Dscrmat Aalyss Support Vector

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Bayesian Inferences for Two Parameter Weibull Distribution Kipkoech W. Cheruiyot 1, Abel Ouko 2, Emily Kirimi 3

Bayesian Inferences for Two Parameter Weibull Distribution Kipkoech W. Cheruiyot 1, Abel Ouko 2, Emily Kirimi 3 IOSR Joural of Mathematcs IOSR-JM e-issn: 78-578, p-issn: 9-765X. Volume, Issue Ver. II Ja - Feb. 05, PP 4- www.osrjourals.org Bayesa Ifereces for Two Parameter Webull Dstrbuto Kpkoech W. Cheruyot, Abel

More information

Linear Regression Linear Regression with Shrinkage. Some slides are due to Tommi Jaakkola, MIT AI Lab

Linear Regression Linear Regression with Shrinkage. Some slides are due to Tommi Jaakkola, MIT AI Lab Lear Regresso Lear Regresso th Shrkage Some sldes are due to Tomm Jaakkola, MIT AI Lab Itroducto The goal of regresso s to make quattatve real valued predctos o the bass of a vector of features or attrbutes.

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

ENGI 4421 Propagation of Error Page 8-01

ENGI 4421 Propagation of Error Page 8-01 ENGI 441 Propagato of Error Page 8-01 Propagato of Error [Navd Chapter 3; ot Devore] Ay realstc measuremet procedure cotas error. Ay calculatos based o that measuremet wll therefore also cota a error.

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for Chapter 4-5 Notes: Although all deftos ad theorems troduced our lectures ad ths ote are mportat ad you should be famlar wth, but I put those

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity ECONOMETRIC THEORY MODULE VIII Lecture - 6 Heteroskedastcty Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur . Breusch Paga test Ths test ca be appled whe the replcated data

More information

Estimation of the Loss and Risk Functions of Parameter of Maxwell Distribution

Estimation of the Loss and Risk Functions of Parameter of Maxwell Distribution Scece Joural of Appled Mathematcs ad Statstcs 06; 4(4): 9- http://www.scecepublshggroup.com/j/sjams do: 0.648/j.sjams.060404. ISSN: 76-949 (Prt); ISSN: 76-95 (Ole) Estmato of the Loss ad Rsk Fuctos of

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

1. BLAST (Karlin Altschul) Statistics

1. BLAST (Karlin Altschul) Statistics Parwse seuece algmet global ad local Multple seuece algmet Substtuto matrces Database searchg global local BLAST Seuece statstcs Evolutoary tree recostructo Gee Fdg Prote structure predcto RNA structure

More information

CHAPTER 3 POSTERIOR DISTRIBUTIONS

CHAPTER 3 POSTERIOR DISTRIBUTIONS CHAPTER 3 POSTERIOR DISTRIBUTIONS If scece caot measure the degree of probablt volved, so much the worse for scece. The practcal ma wll stck to hs apprecatve methods utl t does, or wll accept the results

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

A NEW LOG-NORMAL DISTRIBUTION

A NEW LOG-NORMAL DISTRIBUTION Joural of Statstcs: Advaces Theory ad Applcatos Volume 6, Number, 06, Pages 93-04 Avalable at http://scetfcadvaces.co. DOI: http://dx.do.org/0.864/jsata_700705 A NEW LOG-NORMAL DISTRIBUTION Departmet of

More information

6.867 Machine Learning

6.867 Machine Learning 6.867 Mache Learg Problem set Due Frday, September 9, rectato Please address all questos ad commets about ths problem set to 6.867-staff@a.mt.edu. You do ot eed to use MATLAB for ths problem set though

More information

Minimax Estimation of the Parameter of the Burr Type Xii Distribution

Minimax Estimation of the Parameter of the Burr Type Xii Distribution Australa Joural of Basc ad Appled Sceces, 4(1): 6611-66, 1 ISSN 1991-8178 Mmax Estmato of the Parameter of the Burr Type X Dstrbuto Masoud Yarmohammad ad Hassa Pazra Departmet of Statstcs, Payame Noor

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

BIOREPS Problem Set #11 The Evolution of DNA Strands

BIOREPS Problem Set #11 The Evolution of DNA Strands BIOREPS Problem Set #11 The Evoluto of DNA Strads 1 Backgroud I the md 2000s, evolutoary bologsts studyg DNA mutato rates brds ad prmates dscovered somethg surprsg. There were a large umber of mutatos

More information

Chapter 2 Supplemental Text Material

Chapter 2 Supplemental Text Material -. Models for the Data ad the t-test Chapter upplemetal Text Materal The model preseted the text, equato (-3) s more properl called a meas model. ce the mea s a locato parameter, ths tpe of model s also

More information

Objectives of Multiple Regression

Objectives of Multiple Regression Obectves of Multple Regresso Establsh the lear equato that best predcts values of a depedet varable Y usg more tha oe eplaator varable from a large set of potetal predctors {,,... k }. Fd that subset of

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM Jose Javer Garca Moreta Ph. D research studet at the UPV/EHU (Uversty of Basque coutry) Departmet of Theoretcal

More information

Regresso What s a Model? 1. Ofte Descrbe Relatoshp betwee Varables 2. Types - Determstc Models (o radomess) - Probablstc Models (wth radomess) EPI 809/Sprg 2008 9 Determstc Models 1. Hypothesze

More information

4. Standard Regression Model and Spatial Dependence Tests

4. Standard Regression Model and Spatial Dependence Tests 4. Stadard Regresso Model ad Spatal Depedece Tests Stadard regresso aalss fals the presece of spatal effects. I case of spatal depedeces ad/or spatal heterogeet a stadard regresso model wll be msspecfed.

More information

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic.

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic. c Pogsa Porchawseskul, Faculty of Ecoomcs, Chulalogkor Uversty olato of costat varace of s but they are stll depedet. C,, he error term s sad to be heteroscedastc. c Pogsa Porchawseskul, Faculty of Ecoomcs,

More information

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem Joural of Amerca Scece ;6( Cubc Nopolyomal Sple Approach to the Soluto of a Secod Order Two-Pot Boudary Value Problem W.K. Zahra, F.A. Abd El-Salam, A.A. El-Sabbagh ad Z.A. ZAk * Departmet of Egeerg athematcs

More information

SPECIAL CONSIDERATIONS FOR VOLUMETRIC Z-TEST FOR PROPORTIONS

SPECIAL CONSIDERATIONS FOR VOLUMETRIC Z-TEST FOR PROPORTIONS SPECIAL CONSIDERAIONS FOR VOLUMERIC Z-ES FOR PROPORIONS Oe s stctve reacto to the questo of whether two percetages are sgfcatly dfferet from each other s to treat them as f they were proportos whch the

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

Chapter 8. Inferences about More Than Two Population Central Values

Chapter 8. Inferences about More Than Two Population Central Values Chapter 8. Ifereces about More Tha Two Populato Cetral Values Case tudy: Effect of Tmg of the Treatmet of Port-We tas wth Lasers ) To vestgate whether treatmet at a youg age would yeld better results tha

More information

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions CO-511: Learg Theory prg 2017 Lecturer: Ro Lv Lecture 16: Bacpropogato Algorthm Dsclamer: These otes have ot bee subected to the usual scruty reserved for formal publcatos. They may be dstrbuted outsde

More information

Tema 5: Aprendizaje NO Supervisado: CLUSTERING Unsupervised Learning: CLUSTERING. Febrero-Mayo 2005

Tema 5: Aprendizaje NO Supervisado: CLUSTERING Unsupervised Learning: CLUSTERING. Febrero-Mayo 2005 Tema 5: Apredzae NO Supervsado: CLUSTERING Usupervsed Learg: CLUSTERING Febrero-Mayo 2005 SUPERVISED METHODS: LABELED Data Base Labeled Data Base Dvded to Tra ad Test Choose Algorthm: MAP, ML, K-Nearest

More information

Chapter Statistics Background of Regression Analysis

Chapter Statistics Background of Regression Analysis Chapter 06.0 Statstcs Backgroud of Regresso Aalyss After readg ths chapter, you should be able to:. revew the statstcs backgroud eeded for learg regresso, ad. kow a bref hstory of regresso. Revew of Statstcal

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information Malaysa Joural of Mathematcal Sceces (): 97- (9) Bayes Estmator for Expoetal Dstrbuto wth Exteso of Jeffery Pror Iformato Hadeel Salm Al-Kutub ad Noor Akma Ibrahm Isttute for Mathematcal Research, Uverst

More information

Lecture 1 Review of Fundamental Statistical Concepts

Lecture 1 Review of Fundamental Statistical Concepts Lecture Revew of Fudametal Statstcal Cocepts Measures of Cetral Tedecy ad Dsperso A word about otato for ths class: Idvduals a populato are desgated, where the dex rages from to N, ad N s the total umber

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

A New Family of Transformations for Lifetime Data

A New Family of Transformations for Lifetime Data Proceedgs of the World Cogress o Egeerg 4 Vol I, WCE 4, July - 4, 4, Lodo, U.K. A New Famly of Trasformatos for Lfetme Data Lakhaa Watthaacheewakul Abstract A famly of trasformatos s the oe of several

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

Dimensionality Reduction and Learning

Dimensionality Reduction and Learning CMSC 35900 (Sprg 009) Large Scale Learg Lecture: 3 Dmesoalty Reducto ad Learg Istructors: Sham Kakade ad Greg Shakharovch L Supervsed Methods ad Dmesoalty Reducto The theme of these two lectures s that

More information

Statistical pattern recognition

Statistical pattern recognition Statstcal pattern recognton Bayes theorem Problem: decdng f a patent has a partcular condton based on a partcular test However, the test s mperfect Someone wth the condton may go undetected (false negatve

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER II STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Aalyss of Varace ad Desg of Exermets-I MODULE II LECTURE - GENERAL LINEAR HYPOTHESIS AND ANALYSIS OF VARIANCE Dr Shalabh Deartmet of Mathematcs ad Statstcs Ida Isttute of Techology Kaur Tukey s rocedure

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Lecture 1: Introduction to Regression

Lecture 1: Introduction to Regression Lecture : Itroducto to Regresso A Eample: Eplag State Homcde Rates What kds of varables mght we use to epla/predct state homcde rates? Let s cosder just oe predctor for ow: povert Igore omtted varables,

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates

Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates Joural of Moder Appled Statstcal Methods Volume Issue Artcle 8 --03 Comparso of Parameters of Logormal Dstrbuto Based O the Classcal ad Posteror Estmates Raja Sulta Uversty of Kashmr, Sragar, Ida, hamzasulta8@yahoo.com

More information

ε. Therefore, the estimate

ε. Therefore, the estimate Suggested Aswers, Problem Set 3 ECON 333 Da Hugerma. Ths s ot a very good dea. We kow from the secod FOC problem b) that ( ) SSE / = y x x = ( ) Whch ca be reduced to read y x x = ε x = ( ) The OLS model

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information