Asst. L.Musaab.S.A. ch.2 Soil Aggregate Basic Relationships (composition of soil terminology and definitions) 2.1Composition of soil

Size: px
Start display at page:

Download "Asst. L.Musaab.S.A. ch.2 Soil Aggregate Basic Relationships (composition of soil terminology and definitions) 2.1Composition of soil"

Transcription

1 ch.2 Soil Aggregate Basic Relationships (composition of soil terminology and definitions) 2.1Composition of soil Soil is a complex physical system. A mass of soil includes accumulated solid particles or soil grains and the void spaces that exist between the particles. The void spaces may be partially or completely filled with water or some other liquid. Void spaces not occupied by water or any other liquid are filled with air or some other gas. Phase means any homogeneous part of the system different from other parts of the system,if not, so the material will be consisting of more than one phase is said to be heterogeneous Since the volume occupied by a soil mass may generally be expected to include material in all the three states of matter solid, liquid and gas, soil is, in general, referred to as a three-phase system. When the soil voids are completely filled with water, the gaseous phase being absent, it is said to be fully saturated or merely saturated. When there is no water at all in the voids, the voids will be full of air, the liquid phase being absent ; the soil is said to be dry. (It may be noted that the dry condition is rare in nature and may be achieved in the laboratory through oven-drying). In both 6

2 these cases, the soil system reduces to a two-phase one as shown in Fig. 2.2 (a) and (b). These are merely special cases of the three-phase system. 2.2 Basic terminology A number of quantities or ratios are defined below, which constitute the basic terminology in soil mechanics, these quantities are use in predicting the engineering behavior of soil 7

3 The weight-volume relationships commonly used for the three phases in a soil element Total weight WW s +W w Total volume V V s +V w +V a Water (Moisture) Content Water content or Moisture content of a soil mass is defined as the ratio of the weight of water to the weight of solids (dry weight) of the soil mass. It is denoted by the letter symbol w and is commonly expressed as a percentage : water content of fine-grained soils > water content of coarse- grained soils Void Ratio Void ratio of a soil mass is defined as the ratio of the volume of voids to the volume of solids in the soil mass. It is denoted by the letter symbol e and is generally expressed as a decimal fraction : Porosity Porosity of a soil mass is the ratio of the volume of voids to the total volume of the soil mass. It is denoted by the letter symbol n and is commonly expressed as a percentage: 8

4 s +V v n vv n ss + vv +,divided by V s ee 1+ee, e nn 1 nn Degree of Saturation Degree of saturation of a soil mass is defined as the ratio of the volume of water in the voids to the volume of voids. It is designated by the letter symbol S and is commonly expressed as a percentage : The S value changes from 0% for completely dry soil conditions to 100% for fully saturated soil. The soils with 0 < S < 100% are called partially saturated soils Percent Air Voids Percent air voids of a soil mass is defined as the ratio of the volume of air voids to the total volume of the soil mass. It is denoted by the letter symbol n a and is commonly expressed as a percentage : n a aa x 100 Air Content Air content of a soil mass is defined as the ratio of the volume of air voids to the total volume of voids. It is designated by the letter symbol a c and is commonly expressed as a percentage : 9

5 Specific Gravity of Solids The specific gravity of soil solids is defined as the ratio of the unit weight of solids (absolute unit weight of soil) to the unit weight of water at the standard temperature (4 C). This is denoted by the letter symbol G s and is given by : G s MM ss ss ρρ ww WW ss ss γγ ww, but γγ ss WWWW/ G s γγ ss γγ ww ρ MM MMMM - Bulk density, γ, where g 9.81 Unit weight γ WW ( is one of the most important physical properties of the soil ) Units : KN/m 3, gm/cm 3, t/m 3 the unit weight must be expressed with due regard to the state of soil. γ f ( unit weight of solid constituents, n and S) Bulk Unit weight γγ bb WW wwwwww ( for a partially saturated soil, general case) γγ bb (WW ww + WW ss ) / ( ww + ss + aa ) Dry unit weight γγ dd WW ss / ( for dry soils WW ww, ww 00 ) γ d (W s ) / ( V s + V a ) γ d (W s ) / ( V) (W- W w )/ V * ww w / W s, γ d W s /V γ d W/V - w. W s /V γ d γ b - w γ d γγ dd γγ bb /(11 + ww) Saturated unit weight of soil γγ ssssss (W w + W s ) / ( V w + V s ) 10

6 Submerged (Buoyant) Unit Weight The Submerged unit weight or Buoyant unit weight of a soil is its unit weight in the submerged condition. In other words, it is the submerged weight of soil solids (W s ) sub per unit of total volume, V of the soil. It is denoted by the letter symbol γ sub : γ sub (W s ) sub / V (W s ) sub is equal to the weight of solids in air minus the weight of water displaced by the solids. This leads to : (W s ) sub W s V s. γ w Since the soil is submerged, the voids must be full of water ; the total volume V, then, must be equal to (V s + V w ),(W s ) sub may now be written as : (W s ) sub W W w V s. γ w W V w. γ w V s γ w W γ w (V w + V s ) W V. γ w Dividing throughout by V, the total volume, (W s)sub V 2.3 Certain important relationships (W/V) γ w or γ sub γ sat γ w 11

7 URelationship among: Gs, S, e, w ww w / W s, S V w / V v, e V v /V s S.e V w /V s ww w / W s ww.γγ ww w S.e / G s SS.γγ ss ww.γγ ww SS.GG ss.γγ ww V w /V s.g s w.g s S.e URelationship among: e, V, V s s +V v V s + v V V s + e V s V s (1+e) V s 1+ee URelationship among: S, n, n a a c ( V a+v w -V w ) / V v, but V v V a +V w a c (V v -V w )/V v, a c (V v /V v ) - (V w /V v ), a c 1-S, a c 0 (for sat.soil), a c 1 ( for dry soil ) n. a c. n a n a n(1-s) 12

8 2.5 Illustrative Examples Ex.1: A sample of soil obtained from a test pit is 15x15x15 cm in volume and 6.4 kg in weight, it is oven dried and the dry weight of sample is 5.7 kg. calculate the water content, wet unit weight and dry unit weight. sol: Weight of water W w W- W s kg Wet unit weight γ wet WW gg cccc g/cm3 Dry unit weight γ dry WWWW gg cccc g/cm3 Water content w W w /W s 0.7/ % Ex.2: Determine the wet density, dry unit weight, void ratio, water content, and degree of saturation for a sample of moist soil which has a mass of kg and occupies a total volume of m 3. when dried in an oven, the dry mass is kg. The specific gravity of the soil solids is sol: wet density, ρ MM kkkk 0.009cccc kg/m3 Dry unit weight γ dry WW ss kkkk 0.009cccc kg/m3 1.8 gm/cm 3 w WW ww kkkk x 100% xx100% 12.7% WW ss 16.13kkkk e Vv Vs V s MMMM GGGG.ρρ ww kkkk gggg /cccc kkkk m 3 V v V- V s m 3 S ww.gggg ee *100% 64.7% 13

9 Ex.3:A 150 cm 3 sample of well soil its weight 250 g, it is oven-dried and found that its weight is 162 g. calculate the dry unit weight, water content, void ratio and G s. sol: γ dry WWWW 162gg 150cm g/ cm3 w WW ss WWWW gg 162 gg % V w WW ss gg 88 GG ww.γγ ww 1 1 gg/cccc 3 cm3 V v ( fully saturated state ) V s V-V v cm 3 e 88cccc 3 62cccc G s WW ss ss.γγ ww 62cccc 3 1gg/cccc Ex.4:Labrotory test data on a sample of saturated soil show that the void ratio is 0.45 and the specific of soil solids is For these conditions, determine the wet unit weight and water content of this sample of soil. sol: e V v / V s 0.45 ( V v?, V s? ) UBy using specific volume approach V s 1 V V s + ev s W s V s.g s.γ w 1*2.65*1t/m t W w V w.g w.γ w 0.45*1*1t/m t W W s + W w t γ wet W/V 3.1/ t/m 3 w W w /W s 0.45/ % 14

10 Ex.5: Undisturbed (30*30*30) cm 3 of soil obtained from a test pit found to have a wet weight if 35 kg and its dry weight is 26kg. what would be the unit weight of such soil if it was below and above the water table, G s 2.7 sol : γ sub (W s ) sub / V (W s ) sub W V. γ w, but W35kg, V cm 3 (W s ) sub (27000) 8000 g γ sub 8000/ g/cm 3 γ sat (W w + W s ) / ( V w + V s ) 35000/ g/cm 3 H.W : determine void ratio and porosity Ex.6:For a soil in natural state, given : e 0.8, w 24% and G s 2.68 a) Determine the moist unit weight and dry unit weight and degree of saturation b) If this soil is completely saturated by adding water, what would be its moisture at that time?, also find the saturated unit weight. (γ w 9.81 KN/m 3 ) sol : UBy using unit volume approach V1 a) γγ bbbbbbbb G s (1-n)γ w. (1+w), but n e/(1+e) 4 9 γγ bbbbbbbb 2.68*(1-4 9 )*9.81*(1+0.24) KN/m3 γγ dd G s (1-n)γ w 2.68*(1-4 9 )* KN/m3 S ww GGGG ee *100[ (0.24*2.68)/0.8 ]* % b) e w.g s ( sat.state ), w ee GGGG 0.8 * % 2.68 γ sat G s (1-n)γ w + n γ w [2.68*(1-4 )*9.81]+[ 4 *9.81] KN/m

11 Ex.7:For a saturated soil, prove that γ sat [ 1+ww 1+wwwwww ]G s.γ w sol : γ sat WW WWWW +WWWW ww.wwww+wwww (1 + ww) WWWW but, w WWWW WWWW, W s G s.v s.γ w γ sat (1 + ww) GGGG..γw e by adding one, 1+e e but e wg s γ sat (1 + ww) GGGG.γw 1+ee γ sat [ 1+ww 1+wwwwww ]G s.γ w 16

Soil Mechanics III. SOIL COMPOSITION WEIGHT-VOLUME RELATIONSHIPS TERMINOLOGY AND DEFINITIONS

Soil Mechanics III. SOIL COMPOSITION WEIGHT-VOLUME RELATIONSHIPS TERMINOLOGY AND DEFINITIONS Soil Mechanics III. SOIL COMPOSITION WEIGHT-VOLUME RELATIONSHIPS TERMINOLOGY AND DEFINITIONS Soil Basic Terminology Basic Terminology Porosity. Porosity of a soil mass is the ratio of the volume of voids

More information

SOIL MECHANICS SAB1713 DR. HETTY

SOIL MECHANICS SAB1713 DR. HETTY SOIL MECHANICS SAB1713 DR. HETTY INTRODUCTION SOIL MECHANICS -Concerned solely with soils -Concerned with the deformation and strength of bodies of soils -Concerned with the interaction of structures with

More information

SPECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE FOP FOR AASHTO T 85

SPECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE FOP FOR AASHTO T 85 SPECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE FOP FOR AASHTO T 85 Scope This procedure covers the determination of specific gravity and absorption of coarse aggregate in accordance with AASHTO T

More information

Superpave Volumetric Calculations Review

Superpave Volumetric Calculations Review Superpave Volumetric Calculations Review Bulk Specific Gravity of the Combined Aggregate Aggregate 1 G 1 = 2.60, P 1 = 15 Aggregate 2 G 2 = 2.61, P 2 = 16 Aggregate 3 G 3 = 2.65, P 3 = 49 Aggregate 4 G

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE. BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE. BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1 OCD59 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1 MODULE NO: CIE4009 Date: Saturday 14 January

More information

Module 1 GEOTECHNICAL PROPERTIES OF SOIL AND OF REINFORCED SOIL (Lectures 1 to 4)

Module 1 GEOTECHNICAL PROPERTIES OF SOIL AND OF REINFORCED SOIL (Lectures 1 to 4) Module 1 GEOTECHNICAL PROPERTIES OF SOIL AND OF REINFORCED SOIL (Lectures 1 to 4) Topics 1.1 INTRODUCTION 1.2 GRAIN-SIZE DISTRIBUTION Sieve Analysis Hydrometer Analysis 1.3 SIZE LIMITS FOR SOILS 1.4 WEIGHT-VOLUME

More information

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra Worksheets for GCSE Mathematics Algebraic Expressions Mr Black 's Maths Resources for Teachers GCSE 1-9 Algebra Algebraic Expressions Worksheets Contents Differentiated Independent Learning Worksheets

More information

Archimedes Principle

Archimedes Principle . Object Archimedes Principle To determine the density of objects by using Archimedes principle and to compare with a density measured directly.. Apparatus Assorted masses, balance, beakers, graduated

More information

INTRODUCTION & PHASE SYSTEM

INTRODUCTION & PHASE SYSTEM INTRODUCTION & PHASE SYSTEM Dr. Professor of Civil Engineering S. J. College of Engineering, Mysore 1.1 Geotechnical Engineering Why? 1. We are unable to buil castles in air (yet)! 2. Almost every structure

More information

Chapter 22 : Electric potential

Chapter 22 : Electric potential Chapter 22 : Electric potential What is electric potential? How does it relate to potential energy? How does it relate to electric field? Some simple applications What does it mean when it says 1.5 Volts

More information

SECTION 7: STEADY-STATE ERROR. ESE 499 Feedback Control Systems

SECTION 7: STEADY-STATE ERROR. ESE 499 Feedback Control Systems SECTION 7: STEADY-STATE ERROR ESE 499 Feedback Control Systems 2 Introduction Steady-State Error Introduction 3 Consider a simple unity-feedback system The error is the difference between the reference

More information

Why does my soil moisture sensor read negative? Improving accuracy of dielectric soil moisture sensors

Why does my soil moisture sensor read negative? Improving accuracy of dielectric soil moisture sensors Why does my soil moisture sensor read negative? Improving accuracy of dielectric soil moisture sensors Douglas R. Cobos, Ph.D. Decagon Devices and Washington State University Outline Introduction VWC definition

More information

SPECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE FOP FOR AASHTO T 85

SPECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE FOP FOR AASHTO T 85 SPECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE FOP FOR AASHTO T 85 Scope This procedure covers the determination of specific gravity and absorption of coarse aggregate in accordance with AASHTO T

More information

Lecture 7 MOS Capacitor

Lecture 7 MOS Capacitor EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 7 MOS Capacitor Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030

More information

Unit WorkBook 2 Level 4 ENG U3 Engineering Science LO2 Mechanical Engineering Systems 2018 UniCourse Ltd. All Rights Reserved.

Unit WorkBook 2 Level 4 ENG U3 Engineering Science LO2 Mechanical Engineering Systems 2018 UniCourse Ltd. All Rights Reserved. Pearson BTEC Levels 4 and 5 Higher Nationals in Engineering (RQF) Unit 3: Engineering Science (core) Unit Workbook 2 in a series of 4 for this unit Learning Outcome 2 Mechanical Engineering Systems Page

More information

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1 Geology and Soil Mechanics 55401 /1A (2002-2003) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet.

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet. Geology and Soil Mechanics 55401 /1A (2003-2004) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

P.E. Civil Exam Review: GEOMECHANICS. Jerry Vandevelde, P.E.

P.E. Civil Exam Review: GEOMECHANICS. Jerry Vandevelde, P.E. P.E. Civil Exam Review: GEOMECHANICS Jerry Vandevelde, P.E. gtv@gemeng.com GEOMECHANICS National Council of Examiners for Engineering and Surveying http://www.ncees.org/ 3 STUDY REFERENCES Foundation Engineering;

More information

Gravitation. Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition

Gravitation. Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition Gravitation Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 What you are about to learn: Newton's law of universal gravitation About motion in circular and other orbits How to

More information

Soil Mechanics/Geotechnical Engineering I Prof. Dilip Kumar Baidya Department of Civil Engineering Indian Institute of Technology, Kharagpur

Soil Mechanics/Geotechnical Engineering I Prof. Dilip Kumar Baidya Department of Civil Engineering Indian Institute of Technology, Kharagpur Soil Mechanics/Geotechnical Engineering I Prof. Dilip Kumar Baidya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture - 07 Three - phase diagram (Contd.) (Refer Slide Time:

More information

Volumetric Tests. Overview

Volumetric Tests. Overview Volumetric Tests Qualified Aggregate Technician Overview Volumetrics Specific Gravity Different types Uses Density Why density? Unit Weight 62 What are Volumetrics? All matter has weight and occupies space

More information

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition Rotational Motion Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 We ll look for a way to describe the combined (rotational) motion 2 Angle Measurements θθ ss rr rrrrrrrrrrrrrr

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

Commonwealth of Pennsylvania PA Test Method No. 709 Department of Transportation October Pages LABORATORY TESTING SECTION. Method of Test for

Commonwealth of Pennsylvania PA Test Method No. 709 Department of Transportation October Pages LABORATORY TESTING SECTION. Method of Test for Commonwealth of Pennsylvania PA Test Method No. 709 Department of Transportation 15 Pages LABORATORY TESTING SECTION Method of Test for EFFECTIVE ASPHALT CONTENT OF BITUMINOUS PAVING MIXTURES 1. SCOPE

More information

Physics 141 Second Mid-Term Examination Spring 2015 March 31, 2015

Physics 141 Second Mid-Term Examination Spring 2015 March 31, 2015 Physics 141 Second Mid-Term Examination Spring 2015 March 31, 2015 Your Number Solutions LAST Name (print) FIRST Name (print) Signature: UIN #: Your Section: Barkan 9 am Barkan 11 am Goeckner 3 pm PROBLEM

More information

Calculation types: drained, undrained and fully coupled material behavior. Dr Francesca Ceccato

Calculation types: drained, undrained and fully coupled material behavior. Dr Francesca Ceccato Calculation types: drained, undrained and fully coupled material behavior Dr Francesca Ceccato Summary Introduction Applications: Piezocone penetration (CPTU) Submerged slope Conclusions Introduction Porous

More information

Last Name: First Name: Purdue ID: Please write your name in BLOCK letters. Otherwise Gradescope may not recognize your name.

Last Name: First Name: Purdue ID: Please write your name in BLOCK letters. Otherwise Gradescope may not recognize your name. Solution Key Last Name: First Name: Purdue ID: Please write your name in BLOCK letters. Otherwise Gradescope may not recognize your name. CIRCLE YOUR LECTURE BELOW: MWF 10:30 am MWF 3:30 pm TR 8:30 am

More information

Why does my soil moisture sensor read negative? Improving accuracy of dielectric soil moisture sensors

Why does my soil moisture sensor read negative? Improving accuracy of dielectric soil moisture sensors Why does my soil moisture sensor read negative? Improving accuracy of dielectric soil moisture sensors Douglas R. Cobos, Ph.D. Decagon Devices and Washington State University Outline Introduction VWC Direct

More information

Wave Motion. Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition

Wave Motion. Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition Wave Motion Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 Waves: propagation of energy, not particles 2 Longitudinal Waves: disturbance is along the direction of wave propagation

More information

TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES

TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES COMPUTERS AND STRUCTURES, INC., FEBRUARY 2016 TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES Introduction This technical note

More information

EXPERIMENT 3 DETERMINATION OF SPECIFIC GRAVITY AND WATER ABSORPTION OF AGGREGATES

EXPERIMENT 3 DETERMINATION OF SPECIFIC GRAVITY AND WATER ABSORPTION OF AGGREGATES COLLEGE OF ENGINEERING AND ARCHITECTURE CIVIL ENGINEERING DEPARTMENT CE405 Construction Materials and Testing 1 st Semester SY 2016-2017 EXPERIMENT 3 DETERMINATION OF SPECIFIC GRAVITY AND WATER ABSORPTION

More information

PHYSICO-MECHANICAL PROPERTIES OF ROCKS LECTURE 2. Contents

PHYSICO-MECHANICAL PROPERTIES OF ROCKS LECTURE 2. Contents PHYSICO-MECHANICAL PROPERTIES OF ROCKS LECTURE 2 Contents 2.1 Introduction 2.2 Rock coring and logging 2.3 Physico-mechanical properties 2.3.1 Physical Properties 2.3.1.1 Density, unit weight and specific

More information

Free energy dependence along the coexistence curve

Free energy dependence along the coexistence curve Free energy dependence along the coexistence curve In a system where two phases (e.g. liquid and gas) are in equilibrium the Gibbs energy is G = GG l + GG gg, where GG l and GG gg are the Gibbs energies

More information

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra Worksheets for GCSE Mathematics Quadratics mr-mathematics.com Maths Resources for Teachers Algebra Quadratics Worksheets Contents Differentiated Independent Learning Worksheets Solving x + bx + c by factorisation

More information

NUMERICAL ANALYSIS OF DESICCATION, SHRINKAGE AND CRACKING IN LOW PLASTICITY CLAYEY SOILS

NUMERICAL ANALYSIS OF DESICCATION, SHRINKAGE AND CRACKING IN LOW PLASTICITY CLAYEY SOILS IS Numerical - Modelling analysis of Shrinkage of desiccation, Cracking shrinkage, Porous and Media cracking in low plasticity clayey soils XIV International Conference on Computational Plasticity. Fundamentals

More information

Physics for Engineering I PHYS 1210

Physics for Engineering I PHYS 1210 Physics for Engineering I PHYS 1210 Ch 1: Physics and Measurements 1 Lecture Content Units Density and atomic mass Dimensional analysis Conversion of units Estimates and order of magnitude Significant

More information

Chapter 1 - Soil Mechanics Review Part A

Chapter 1 - Soil Mechanics Review Part A Chapter 1 - Soil Mechanics Review Part A 1.1 Introduction Geotechnical Engineer is concerned with predicting / controlling Failure/Stability Deformations Influence of water (Seepage etc.) Soil behavour

More information

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition Work, Energy, and Power Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 With the knowledge we got so far, we can handle the situation on the left but not the one on the right.

More information

Buoyancy and Stability of Immersed and Floating Bodies

Buoyancy and Stability of Immersed and Floating Bodies Buoyancy and Stability of Immersed and Floating Bodies 9. 12. 2016 Hyunse Yoon, Ph.D. Associate Research Scientist IIHR-Hydroscience & Engineering Review: Pressure Force on a Plane Surface The resultant

More information

Lecture 2 Electrons and Holes in Semiconductors

Lecture 2 Electrons and Holes in Semiconductors EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 2 Electrons and Holes in Semiconductors Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology

More information

Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method

Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method Lecture No. 5 LL(uu) pp(xx) = 0 in ΩΩ SS EE (uu) = gg EE on ΓΓ EE SS NN (uu) = gg NN on ΓΓ NN For all weighted residual methods NN uu aaaaaa = uu BB + αα ii φφ ii For all (Bubnov) Galerkin methods ii=1

More information

Lecture 3 Transport in Semiconductors

Lecture 3 Transport in Semiconductors EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 3 Transport in Semiconductors Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken,

More information

(1) Correspondence of the density matrix to traditional method

(1) Correspondence of the density matrix to traditional method (1) Correspondence of the density matrix to traditional method New method (with the density matrix) Traditional method (from thermal physics courses) ZZ = TTTT ρρ = EE ρρ EE = dddd xx ρρ xx ii FF = UU

More information

Interaction with matter

Interaction with matter Interaction with matter accelerated motion: ss = bb 2 tt2 tt = 2 ss bb vv = vv 0 bb tt = vv 0 2 ss bb EE = 1 2 mmvv2 dddd dddd = mm vv 0 2 ss bb 1 bb eeeeeeeeeeee llllllll bbbbbbbbbbbbbb dddddddddddddddd

More information

CEEN Laboratory 4 Aggregates for Base Layers, Portland Cement Concrete & Hot Mix Asphalt

CEEN Laboratory 4 Aggregates for Base Layers, Portland Cement Concrete & Hot Mix Asphalt CEEN 3320 - Laboratory 4 Aggregates for Base Layers, Portland Cement Concrete & Hot Mix Asphalt INTRODUCTION Civil Engineering projects utilize aggregates for a variety of purposes, including unbound base

More information

Chemical Engineering 693R

Chemical Engineering 693R Chemical Engineering 693R Reactor Design and Analysis Lecture 4 Reactor Flow and Pump Sizing Spiritual Thought 2 Rod Analysis with non-constant q 3 Now q = qq zz = qqq mmmmmm sin ππzz Steady state Know

More information

The Soil Reference Shrinkage Curve

The Soil Reference Shrinkage Curve The Soil Reference Shrinkage Curve V.Y. Chertkov* Agricultural Engineering Division, Faculty of Civil and Environmental Engineering, Technion, Haifa 32000, Israel Abstract: A recently proposed model showed

More information

Geology 229 Engineering Geology. Lecture 8. Elementary Soil Mechanics (West, Ch. 7)

Geology 229 Engineering Geology. Lecture 8. Elementary Soil Mechanics (West, Ch. 7) Geology 229 Engineering Geology Lecture 8 Elementary Soil Mechanics (West, Ch. 7) Outline of this Lecture 1. Introduction of soil properties 2. Index properties of soils Soil particles Phase relationship

More information

Thermodynamic Cycles

Thermodynamic Cycles Thermodynamic Cycles Content Thermodynamic Cycles Carnot Cycle Otto Cycle Rankine Cycle Refrigeration Cycle Thermodynamic Cycles Carnot Cycle Derivation of the Carnot Cycle Efficiency Otto Cycle Otto Cycle

More information

SOILS/AGGREGATE TECHNICIAN REVIEW

SOILS/AGGREGATE TECHNICIAN REVIEW (8:00 to 4:00) SOILS/GGREGTE TECHNICIN REVIEW Intro TTI Safety Rounding Procedure Thursday RIZ 201 SHTO T 11 RIZ 210 SHTO T 19 RIZ 211 SHTO T 255 RIZ 212 RIZ 233 RIZ 236 RIZ 225 RIZ 245 SHTO T 89 SHTO

More information

Soil Mechanics Prof. B.V.S. Viswanadham Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 3

Soil Mechanics Prof. B.V.S. Viswanadham Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 3 Soil Mechanics Prof. B.V.S. Viswanadham Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 3 In the previous lecture we have studied about definitions of volumetric ratios and

More information

CE2251- SOIL MECHANICS (FOR IV SEMESTER)

CE2251- SOIL MECHANICS (FOR IV SEMESTER) CE5 SOIL MECHANICS /UNIT-I/INTRODUCTION CE5- SOIL MECHANICS (FOR IV SEMESTER) UNIT - I COMPILED BY Mr.J.Thavaseelan M.E (Soil) Assistant professor Department of Civil Engineering Fatima Michael College

More information

TESTING of AGGREGATES for CONCRETE

TESTING of AGGREGATES for CONCRETE TESTING of AGGREGATES for CONCRETE The properties of the aggregates affect both the fresh and hardened properties of concrete. It is crucial to know the properties of the aggregates to be used in the making

More information

CONSOLIDATION OF SOIL

CONSOLIDATION OF SOIL Lecture-6 Soil consolidation Dr. Attaullah Shah 1 CONSOLIDATION OF SOIL When a soil mass is subjected to a compressive force there is a decrease in volume of soil mass. The reduction in volume of a saturated

More information

Module 7 (Lecture 27) RETAINING WALLS

Module 7 (Lecture 27) RETAINING WALLS Module 7 (Lecture 27) RETAINING WALLS Topics 1.1 RETAINING WALLS WITH METALLIC STRIP REINFORCEMENT Calculation of Active Horizontal and vertical Pressure Tie Force Factor of Safety Against Tie Failure

More information

INFLUENCE OF AGGREGATE INTERFACE IN CONCRETE ON PERMEABILITY

INFLUENCE OF AGGREGATE INTERFACE IN CONCRETE ON PERMEABILITY OS2-4 INFLUENCE OF AGGREGATE INTERFACE IN CONCRETE ON PERMEABILITY Koki Tagomori (1), Takeshi Iyoda (2) (1) Graduate school of Engineering, Shibaura Institute of Technology, Japan (2) Department of Civil

More information

CE330L Student Lab Manual Mineral Aggregate Properties

CE330L Student Lab Manual Mineral Aggregate Properties Mineral Aggregate Properties Introduction In this lab module several characteristics of aggregates are determined. Tests will be conducted on both coarse and fine aggregates. The results of some of these

More information

National 5 Mathematics. Practice Paper E. Worked Solutions

National 5 Mathematics. Practice Paper E. Worked Solutions National 5 Mathematics Practice Paper E Worked Solutions Paper One: Non-Calculator Copyright www.national5maths.co.uk 2015. All rights reserved. SQA Past Papers & Specimen Papers Working through SQA Past

More information

1. Water in Soils: Infiltration and Redistribution

1. Water in Soils: Infiltration and Redistribution Contents 1 Water in Soils: Infiltration and Redistribution 1 1a Material Properties of Soil..................... 2 1b Soil Water Flow........................... 4 i Incorporating K - θ and ψ - θ Relations

More information

Class Principles of Foundation Engineering CEE430/530

Class Principles of Foundation Engineering CEE430/530 Class Principles of Foundation Engineering CEE430/530 1-1 General Information Lecturer: Scott A. Barnhill, P.E. Lecture Time: Thursday, 7:10 pm to 9:50 pm Classroom: Kaufmann, Room 224 Office Hour: I have

More information

Lesson 7: Algebraic Expressions The Commutative and Associative Properties

Lesson 7: Algebraic Expressions The Commutative and Associative Properties Algebraic Expressions The Commutative and Associative Properties Classwork Exercise 1 Suzy draws the following picture to represent the sum 3 + 4: Ben looks at this picture from the opposite side of the

More information

CE2251- SOIL MECHANICS

CE2251- SOIL MECHANICS CE5- SOIL MECHANICS (FOR IV SEMESTER) UNIT I to V DEPARTMENT OF CIVIL ENGINEERING CE5 SOIL MECHANICS 3 0 0 3 OBJECTIVE After undergoing this course, the student gains adequate knowledge on engineering

More information

QUESTION BANK DEPARTMENT: CIVIL SUBJECT CODE / Name: CE 2251 / SOIL MECHANICS SEMESTER: IV UNIT 1- INTRODUCTION PART - A (2 marks) 1. Distinguish between Residual and Transported soil. (AUC May/June 2012)

More information

GaN and GaN/AlGaN Heterostructure Properties Investigation and Simulations. Ziyang (Christian) Xiao Neil Goldsman University of Maryland

GaN and GaN/AlGaN Heterostructure Properties Investigation and Simulations. Ziyang (Christian) Xiao Neil Goldsman University of Maryland GaN and GaN/AlGaN Heterostructure Properties Investigation and Simulations Ziyang (Christian) Xiao Neil Goldsman University of Maryland OUTLINE 1. GaN (bulk) 1.1 Crystal Structure 1.2 Band Structure Calculation

More information

Chapter 6. Heat capacity, enthalpy, & entropy

Chapter 6. Heat capacity, enthalpy, & entropy Chapter 6 Heat capacity, enthalpy, & entropy 1 6.1 Introduction In this lecture, we examine the heat capacity as a function of temperature, compute the enthalpy, entropy, and Gibbs free energy, as functions

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 1 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles 5.6 Uncertainty Principle Topics 5.7

More information

Geology and Soil Mechanics Prof. P. Ghosh Department of Civil Engineering Indian Institute of Technology Kanpur Lecture - 13 Soil Compaction- C

Geology and Soil Mechanics Prof. P. Ghosh Department of Civil Engineering Indian Institute of Technology Kanpur Lecture - 13 Soil Compaction- C Geology and Soil Mechanics Prof. P. Ghosh Department of Civil Engineering Indian Institute of Technology Kanpur Lecture - 13 Soil Compaction- C Keywords: Soil compaction, In-situ density, Sand cone method,

More information

Revision : Thermodynamics

Revision : Thermodynamics Revision : Thermodynamics Formula sheet Formula sheet Formula sheet Thermodynamics key facts (1/9) Heat is an energy [measured in JJ] which flows from high to low temperature When two bodies are in thermal

More information

Elastic light scattering

Elastic light scattering Elastic light scattering 1. Introduction Elastic light scattering in quantum mechanics Elastic scattering is described in quantum mechanics by the Kramers Heisenberg formula for the differential cross

More information

Integrating Rational functions by the Method of Partial fraction Decomposition. Antony L. Foster

Integrating Rational functions by the Method of Partial fraction Decomposition. Antony L. Foster Integrating Rational functions by the Method of Partial fraction Decomposition By Antony L. Foster At times, especially in calculus, it is necessary, it is necessary to express a fraction as the sum of

More information

CHAPTER: 4 PLASTICITY OF SOILS

CHAPTER: 4 PLASTICITY OF SOILS CHAPTER: 4 PLASTICITY OF SOILS CONTENTS: Plasticity characteristics of soils, Atterberg limits, determination of shrinkage limit, plasticity, liquidity & consistency indexes, thixotropy, activity of soil,

More information

Anthropometry Formulas

Anthropometry Formulas Anthropometry Formulas W. Rose KAAP47/67 Segment Dimensions FF = mmmm, dddd dddd = FF mm ττ = IIII, dddd dddd = ττ II Length of body segments is often obtainable by direct measurement. If not, the segment

More information

Answers to Practice Test Questions 2 Atoms, Isotopes and Nuclear Chemistry

Answers to Practice Test Questions 2 Atoms, Isotopes and Nuclear Chemistry Answers to Practice Test Questions 2 Atoms, Isotopes and Nuclear Chemistry. Fluine has only one stable isotope. Its mass number is _9_. A neutral atom of fluine has 9 protons, 0 neutrons and 9 electrons.

More information

WRITE ALL YOUR CALCULATIONS IN THE BLUEBOOK PUT YOUR NAME AND THE TEST IN THE BLUEBOOK AND HAND IN

WRITE ALL YOUR CALCULATIONS IN THE BLUEBOOK PUT YOUR NAME AND THE TEST IN THE BLUEBOOK AND HAND IN Physics 6B - MWF - Midterm 1 Test #: A Name: Perm #: Section (10-11 or 12-1): You MUST put the TEST # in the first answer bubble. The TA will explain. YOU MUST do this or the test will not be graded. WRITE

More information

Objective: To enable the students to describe, state and derive the terms and expressions relevant in carrying out experiment 5 meaningfully.

Objective: To enable the students to describe, state and derive the terms and expressions relevant in carrying out experiment 5 meaningfully. Pre-Lab Questions 5 Topic: Archimedes Principle Objective: To enable the students to describe, state and derive the terms and expressions relevant in carrying out experiment 5 meaningfully. After successfully

More information

Variability in Geotechnical Properties of Sediments and Dredged Materials

Variability in Geotechnical Properties of Sediments and Dredged Materials Variability in Geotechnical Properties of Sediments and Dredged Materials PURPOSE: This technical note provides an overview of selected uncertainties involved in estimating or characterizing pre-dredged

More information

CE 240 Soil Mechanics & Foundations Lecture 5.2. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. 2-6)

CE 240 Soil Mechanics & Foundations Lecture 5.2. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. 2-6) CE 40 Soil Mechanics & Foundations Lecture 5. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. -6) Outline of this Lecture 1. Getting the in situ hydraulic conductivity 1.1 pumping

More information

Module 7 (Lecture 25) RETAINING WALLS

Module 7 (Lecture 25) RETAINING WALLS Module 7 (Lecture 25) RETAINING WALLS Topics Check for Bearing Capacity Failure Example Factor of Safety Against Overturning Factor of Safety Against Sliding Factor of Safety Against Bearing Capacity Failure

More information

Tikrit University. College of Engineering Civil engineering Department SOIL PROPERTES. Soil Mechanics. 3 rd Class Lecture notes Up Copyrights 2016

Tikrit University. College of Engineering Civil engineering Department SOIL PROPERTES. Soil Mechanics. 3 rd Class Lecture notes Up Copyrights 2016 Tikrit University SOIL PROPERTES College of Engineering Civil engineering Department Soil Mechanics 3 rd Class Lecture notes Up Copyrights 2016 1-Soil Composition -Solids -Water -Air 2-Soil Phases -Dry

More information

Pure Substance. Properties of Pure Substances & Equations of State. Vapour-Liquid-Solid Phase Equilibrium

Pure Substance. Properties of Pure Substances & Equations of State. Vapour-Liquid-Solid Phase Equilibrium Pure Substance Properties of Pure Substances & Equations of State Dr. d. Zahurul Haq Professor Department of echanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-1000, Bangladesh

More information

Water in Soil Sections in Craig

Water in Soil Sections in Craig Water in Soil Sections 2.1-2.6 in Craig Outlines Introduction Darcy s Law Volume of water flowing per unit time Measuring K in laboratory Seepage Theory Flow Net Introduction All soils are permeable materials,

More information

Principles of Foundation Engineering 8th Edition Das SOLUTIONS MANUAL

Principles of Foundation Engineering 8th Edition Das SOLUTIONS MANUAL Principles of Foundation Engineering 8th Edition SOLUTIONS MANUAL Full clear download (no formatting errors) at: https://testbankreal.com/download/principles-foundation-engineering- 8th-edition-das-solutions-manual/

More information

Basic Aggregates Study Guide

Basic Aggregates Study Guide Basic Aggregates Study Guide General Conversions 1) There are pounds in one ton. 2) There are grams in one pound. 3) One kilogram consists of grams. 4) The linear distance that one station covers is feet.

More information

WORKBOOK FOR CHEMICAL REACTOR RELIEF SYSTEM SIZING ANNEX 10 NOMENCLATURE A cross-sectional flow area of relief system (m 2 ) A actual actual cross-sectional area of safety valve nozzle (m 2 ) A approx

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information

1. Heterogeneous Systems and Chemical Equilibrium

1. Heterogeneous Systems and Chemical Equilibrium 1. Heterogeneous Systems and Chemical Equilibrium The preceding section involved only single phase systems. For it to be in thermodynamic equilibrium, a homogeneous system must be in thermal equilibrium

More information

Custody Transfer Measurement and Calibration Round Robin Testing for Natural Gas with Coriolis Meters

Custody Transfer Measurement and Calibration Round Robin Testing for Natural Gas with Coriolis Meters Custody Transfer Measurement and Calibration Round Robin Testing for Natural Gas with Coriolis Meters 1 Agenda Coriolis Meter Principle of Operation AGA Report No. 11 Conversion of Mass to Gas Standard

More information

Introduction to Electrical Theory and DC Circuits

Introduction to Electrical Theory and DC Circuits Introduction to Electrical Theory and DC Circuits For Engineers of All Disciplines by James Doane, PhD, PE Contents 1.0 Course Overview... 4 2.0 Fundamental Concepts... 4 2.1 Electric Charges... 4 2.1.1

More information

2.4 Error Analysis for Iterative Methods

2.4 Error Analysis for Iterative Methods 2.4 Error Analysis for Iterative Methods 1 Definition 2.7. Order of Convergence Suppose {pp nn } nn=0 is a sequence that converges to pp with pp nn pp for all nn. If positive constants λλ and αα exist

More information

Crash course Verification of Finite Automata Binary Decision Diagrams

Crash course Verification of Finite Automata Binary Decision Diagrams Crash course Verification of Finite Automata Binary Decision Diagrams Exercise session 10 Xiaoxi He 1 Equivalence of representations E Sets A B A B Set algebra,, ψψ EE = 1 ψψ AA = ff ψψ BB = gg ψψ AA BB

More information

GEOTECHNICAL INVESTIGATION REPORT

GEOTECHNICAL INVESTIGATION REPORT GEOTECHNICAL INVESTIGATION REPORT SOIL INVESTIGATION REPORT FOR STATIC TEST FACILITY FOR PROPELLANTS AT BDL, IBRAHIMPATNAM. Graphics Designers, M/s Architecture & Engineering 859, Banjara Avenue, Consultancy

More information

Partial Saturation Fluid Substitution with Partial Saturation

Partial Saturation Fluid Substitution with Partial Saturation Fluid Substitution with 261 5 4.5 ρ fluid S w ρ w + S o ρ o + S g ρ g Vp (km/s) 4 3.5 K fluid S w K w + S o K o + S g K g Patchy Saturation Drainage 3 2.5 2 Fine-scale mixing 1 = S w + S o + S g K fluid

More information

Manipulator Dynamics (1) Read Chapter 6

Manipulator Dynamics (1) Read Chapter 6 Manipulator Dynamics (1) Read Capter 6 Wat is dynamics? Study te force (torque) required to cause te motion of robots just like engine power required to drive a automobile Most familiar formula: f = ma

More information

Permeability of Sandy Soil CIVE 2341 Section 2 Soil Mechanics Laboratory Experiment #5, Laboratory #6 SPRING 2015 Group #3

Permeability of Sandy Soil CIVE 2341 Section 2 Soil Mechanics Laboratory Experiment #5, Laboratory #6 SPRING 2015 Group #3 Permeability of Sandy Soil CIVE 2341 Section 2 Soil Mechanics Laboratory Experiment #5, Laboratory #6 SPRING 2015 Group #3 Abstract: The purpose of this experiment was to determine the coefficient of permeability

More information

Clay Robinson, PhD, CPSS, PG copyright 2009

Clay Robinson, PhD, CPSS, PG   copyright 2009 Engineering: What's soil got to do with it? Clay Robinson, PhD, CPSS, PG crobinson@wtamu.edu, http://www.wtamu.edu/~crobinson, copyright 2009 Merriam-Webster Online Dictionary soil, noun 1 : firm land

More information

Lecture 3: DESIGN CONSIDERATION OF DRIERS

Lecture 3: DESIGN CONSIDERATION OF DRIERS Lecture 3: DESIGN CONSIDERATION OF DRIERS 8. DESIGN OF DRYER Design of a rotary dryer only on the basis of fundamental principle is very difficult. Few of correlations that are available for design may

More information

Lesson 9: Law of Cosines

Lesson 9: Law of Cosines Student Outcomes Students prove the law of cosines and use it to solve problems (G-SRT.D.10). Lesson Notes In this lesson, students continue the study of oblique triangles. In the previous lesson, students

More information

Patterns of soiling in the Old Library Trinity College Dublin. Allyson Smith, Robbie Goodhue, Susie Bioletti

Patterns of soiling in the Old Library Trinity College Dublin. Allyson Smith, Robbie Goodhue, Susie Bioletti Patterns of soiling in the Old Library Trinity College Dublin Allyson Smith, Robbie Goodhue, Susie Bioletti Trinity College aerial view Old Library E N S W Old Library main (south) elevation Gallery Fagel

More information

ON CALCULATION OF EFFECTIVE ELASTIC PROPERTIES OF MATERIALS WITH CRACKS

ON CALCULATION OF EFFECTIVE ELASTIC PROPERTIES OF MATERIALS WITH CRACKS Materials Physics and Mechanics 32 (2017) 213-221 Received: November 7, 2017 ON CALCULATION OF EFFECTIVE ELASTIC PROPERTIES OF MATERIALS WITH CRACKS Ruslan L. Lapin 1, Vitaly A. Kuzkin 1,2 1 Peter the

More information

Chapter 2. 53% v. 2.2 a. From Eqs. (2.11) and (2.12), it can be seen that, 2.67

Chapter 2. 53% v. 2.2 a. From Eqs. (2.11) and (2.12), it can be seen that, 2.67 Chapter 2 2.1 d. (87.5)(9.81) (1000)(0.05) 3 17.17 kn/m c. d 1 w 17.17 1 0.15 3 14.93 kn/m G a. Eq. (2.12): s w (2.68)(9.81). 14.93 ; e 0.76 1 e 1 e e 0.76 b. Eq. (2.6): n 0.43 1 e 1 0.76 Vw wgs (0.15)(2.68)

More information